ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Optimization of Mass Spectrometry-Compatible Surfactants for Shotgun Proteomics

View Author Information
Department of Cell Biology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, California 92037, and Protein Discovery, Inc., Knoxville, Tennessee 37902
Cite this: J. Proteome Res. 2007, 6, 7, 2529–2538
Publication Date (Web):May 27, 2007
https://doi.org/10.1021/pr060682a
Copyright © 2007 American Chemical Society

    Article Views

    3385

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (437 KB)

    Abstract

    Abstract Image

    An optimization and comparison of trypsin digestion strategies for peptide/protein identifications by μLC−MS/MS with or without MS compatible detergents in mixed organic-aqueous and aqueous systems was carried out in this study. We determine that adding MS-compatible detergents to proteolytic digestion protocols dramatically increases peptide and protein identifications in complex protein mixtures by shotgun proteomics. Protein solubilization and proteolytic efficiency are increased by including MS-compatible detergents in trypsin digestion buffers. A modified trypsin digestion protocol incorporating the MS compatible detergents consistently identifies over 300 proteins from 5 μg of pancreatic cell lysates and generates a greater number of peptide identifications than trypsin digestion with urea when using LC−MS/MS. Furthermore, over 700 proteins were identified by merging protein identifications from trypsin digestion with three different MS-compatible detergents. We also observe that the use of mixed aqueous and organic solvent systems can influence protein identifications in combinations with different MS-compatible detergents. Peptide mixtures generated from different MS-compatible detergents and buffer combinations show a significant difference in hydrophobicity. Our results show that protein digestion schemes incorporating MS-compatible detergents generate quantitative as well as qualitative changes in observed peptide identifications, which lead to increased protein identifications overall and potentially increased identification of low-abundance proteins.

    Keywords: shotgun proteomics • mass spectrometry • proteolysis • cancer cells • protein profiling

     The Scripps Research Institute.

     Protein Discovery, Inc.

    *

     To whom correspondence should be addressed: John R. Yates, III, The Scripps Research Institute, 10550 North Torrey Pines Road, SR 11, La Jolla, CA 92037. E-mail, [email protected]; phone, (858) 784-8862; fax, (858) 784-8883.

    Cited By

    This article is cited by 183 publications.

    1. Chin-Wen Chen, Chia-Feng Tsai, Miao-Hsia Lin, Shu-Yu Lin, Chuan-Chih Hsu. Suspension Trapping-Based Sample Preparation Workflow for In-Depth Plant Phosphoproteomics. Analytical Chemistry 2023, 95 (33) , 12232-12239. https://doi.org/10.1021/acs.analchem.3c00786
    2. Kyle A. Brown, Morgan K. Gugger, David S. Roberts, David Moreno, Pil Seok Chae, Ying Ge, Song Jin. Synthesis, Self-Assembly Properties, and Degradation Characterization of a Nonionic Photocleavable Azo-Sulfide Surfactant Family. Langmuir 2023, 39 (4) , 1465-1473. https://doi.org/10.1021/acs.langmuir.2c02820
    3. Kohei Nishino, Harunori Yoshikawa, Kou Motani, Hidetaka Kosako. Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics. Journal of Proteome Research 2022, 21 (9) , 2094-2103. https://doi.org/10.1021/acs.jproteome.2c00130
    4. Zhenbin Zhang, Norman J. Dovichi. Seamlessly Integrated Miniaturized Filter-Aided Sample Preparation Method to Fractionation Techniques for Fast, Loss-Less, and In-Depth Proteomics Analysis of 1 μg of Cell Lysates at Low Cost. Analytical Chemistry 2022, 94 (28) , 10135-10141. https://doi.org/10.1021/acs.analchem.2c01396
    5. John William Young, Irvinder Singh Wason, Zhiyu Zhao, Sunyoung Kim, Hiroyuki Aoki, Sadhna Phanse, David G. Rattray, Leonard J. Foster, Mohan Babu, Franck Duong van Hoa. Development of a Method Combining Peptidiscs and Proteomics to Identify, Stabilize, and Purify a Detergent-Sensitive Membrane Protein Assembly. Journal of Proteome Research 2022, 21 (7) , 1748-1758. https://doi.org/10.1021/acs.jproteome.2c00129
    6. Liping Wang, Aynur Abdulla, Aiting Wang, Antony R. Warden, Khan Zara Ahmad, Yufang Xin, Xianting Ding. Sickle-like Inertial Microfluidic System for Online Rare Cell Separation and Tandem Label-Free Quantitative Proteomics (Orcs-Proteomics). Analytical Chemistry 2022, 94 (15) , 6026-6035. https://doi.org/10.1021/acs.analchem.2c00679
    7. Langlang Tang, Zhen Wu, Jie Wang, Xumin Zhang. Formaldehyde Derivatization: An Unexpected Side Reaction During Filter-Aided Sample Preparation. Analytical Chemistry 2020, 92 (18) , 12120-12125. https://doi.org/10.1021/acs.analchem.0c01981
    8. Mowei Zhou, Naomi Uwugiaren, Sarah M. Williams, Ronald J. Moore, Rui Zhao, David Goodlett, Irena Dapic, Ljiljana Paša-Tolić, Ying Zhu. Sensitive Top-Down Proteomics Analysis of a Low Number of Mammalian Cells Using a Nanodroplet Sample Processing Platform. Analytical Chemistry 2020, 92 (10) , 7087-7095. https://doi.org/10.1021/acs.analchem.0c00467
    9. Ting-Chun Pan, Chieh-Wen Lo, Weng Man Chong, Chia-Ni Tsai, Kuan-Ying Lee, Pin-Yin Chen, Jung-Chi Liao, Ming-Jiun Yu. Differential Proteomics Reveals Discrete Functions of Proteins Interacting with Hypo- versus Hyper-phosphorylated NS5A of the Hepatitis C Virus. Journal of Proteome Research 2019, 18 (7) , 2813-2825. https://doi.org/10.1021/acs.jproteome.9b00130
    10. Zhen Wu, Jichang Huang, Jingnan Huang, Qingqing Li, Xumin Zhang. Lys-C/Arg-C, a More Specific and Efficient Digestion Approach for Proteomics Studies. Analytical Chemistry 2018, 90 (16) , 9700-9707. https://doi.org/10.1021/acs.analchem.8b02448
    11. Frank Klont, Linda Bras, Justina C. Wolters, Sara Ongay, Rainer Bischoff, Gyorgy B. Halmos, Péter Horvatovich. Assessment of Sample Preparation Bias in Mass Spectrometry-Based Proteomics. Analytical Chemistry 2018, 90 (8) , 5405-5413. https://doi.org/10.1021/acs.analchem.8b00600
    12. Irena Dapic, Naomi Uwugiaren, Petra J. Jansen, and Garry L. Corthals . Fast and Simple Protocols for Mass Spectrometry-Based Proteomics of Small Fresh Frozen Uterine Tissue Sections. Analytical Chemistry 2017, 89 (20) , 10769-10775. https://doi.org/10.1021/acs.analchem.7b01937
    13. Yuhuan Ji, Minjing Liu, Markus M. Bachschmid, Catherine E. Costello, and Cheng Lin . Surfactant-Induced Artifacts during Proteomic Sample Preparation. Analytical Chemistry 2015, 87 (11) , 5500-5504. https://doi.org/10.1021/acs.analchem.5b00249
    14. Ekta Patel, Malcolm R. Clench, Andy West, Peter S. Marshall, Nathan Marshall, Simona Francese. Alternative Surfactants for Improved Efficiency of In Situ Tryptic Proteolysis of Fingermarks. Journal of the American Society for Mass Spectrometry 2015, 26 (6) , 862-872. https://doi.org/10.1007/s13361-015-1140-z
    15. Ying-Hua Chang, Zachery R. Gregorich, Albert J. Chen, Leekyoung Hwang, Huseyin Guner, Deyang Yu, Jianyi Zhang, and Ying Ge . New Mass-Spectrometry-Compatible Degradable Surfactant for Tissue Proteomics. Journal of Proteome Research 2015, 14 (3) , 1587-1599. https://doi.org/10.1021/pr5012679
    16. Jing Liu, Fangjun Wang, Jiawei Mao, Zhang Zhang, Zheyi Liu, Guang Huang, Kai Cheng, and Hanfa Zou . High-Sensitivity N-Glycoproteomic Analysis of Mouse Brain Tissue by Protein Extraction with a Mild Detergent of N-Dodecyl β-D-Maltoside. Analytical Chemistry 2015, 87 (4) , 2054-2057. https://doi.org/10.1021/ac504700t
    17. Piliang Hao, Yan Ren, Arnab Datta, James P. Tam, and Siu Kwan Sze . Evaluation of the Effect of Trypsin Digestion Buffers on Artificial Deamidation. Journal of Proteome Research 2015, 14 (2) , 1308-1314. https://doi.org/10.1021/pr500903b
    18. Jin-Hee Kim, Dorota Inerowicz, Vicki Hedrick, and Fred Regnier . Integrated Sample Preparation Methodology for Proteomics: Analysis of Native Proteins. Analytical Chemistry 2013, 85 (17) , 8039-8045. https://doi.org/10.1021/ac401477w
    19. Anastasia Kalli, Geoffrey T. Smith, Michael J. Sweredoski, and Sonja Hess . Evaluation and Optimization of Mass Spectrometric Settings during Data-dependent Acquisition Mode: Focus on LTQ-Orbitrap Mass Analyzers. Journal of Proteome Research 2013, 12 (7) , 3071-3086. https://doi.org/10.1021/pr3011588
    20. K. W. Hallgren, D. Zhang, M. Kinter, B. Willard, and K. L. Berkner . Methylation of γ-Carboxylated Glu (Gla) Allows Detection by Liquid Chromatography–Mass Spectrometry and the Identification of Gla Residues in the γ-Glutamyl Carboxylase. Journal of Proteome Research 2013, 12 (6) , 2365-2374. https://doi.org/10.1021/pr3003722
    21. Yaoyang Zhang, Bryan R. Fonslow, Bing Shan, Moon-Chang Baek, and John R. Yates, III . Protein Analysis by Shotgun/Bottom-up Proteomics. Chemical Reviews 2013, 113 (4) , 2343-2394. https://doi.org/10.1021/cr3003533
    22. Harriet Mörtstedt, Monica H. Kåredal, Bo A. G. Jönsson, and Christian H. Lindh . Screening Method Using Selected Reaction Monitoring for Targeted Proteomics Studies of Nasal Lavage Fluid. Journal of Proteome Research 2013, 12 (1) , 234-247. https://doi.org/10.1021/pr300802g
    23. Timo Glatter, Christina Ludwig, Erik Ahrné, Ruedi Aebersold, Albert J. R. Heck, and Alexander Schmidt . Large-Scale Quantitative Assessment of Different In-Solution Protein Digestion Protocols Reveals Superior Cleavage Efficiency of Tandem Lys-C/Trypsin Proteolysis over Trypsin Digestion. Journal of Proteome Research 2012, 11 (11) , 5145-5156. https://doi.org/10.1021/pr300273g
    24. Marc Slattery, Sridevi Ankisetty, Jone Corrales, K. Erica Marsh-Hunkin, Deborah J. Gochfeld, Kristine L. Willett, and John M. Rimoldi . Marine Proteomics: A Critical Assessment of an Emerging Technology. Journal of Natural Products 2012, 75 (10) , 1833-1877. https://doi.org/10.1021/np300366a
    25. Xiaoxia Ye and Liang Li . Microwave-Assisted Protein Solubilization for Mass Spectrometry-Based Shotgun Proteome Analysis. Analytical Chemistry 2012, 84 (14) , 6181-6191. https://doi.org/10.1021/ac301169q
    26. Waeowalee Choksawangkarn, Nathan Edwards, Yan Wang, Peter Gutierrez, and Catherine Fenselau . Comparative Study of Workflows Optimized for In-gel, In-solution, and On-filter Proteolysis in the Analysis of Plasma Membrane Proteins. Journal of Proteome Research 2012, 11 (5) , 3030-3034. https://doi.org/10.1021/pr300188b
    27. Difei Sun, Nan Wang, and Liang Li . Integrated SDS Removal and Peptide Separation by Strong-Cation Exchange Liquid Chromatography for SDS-Assisted Shotgun Proteome Analysis. Journal of Proteome Research 2012, 11 (2) , 818-828. https://doi.org/10.1021/pr200676v
    28. Kathryn R. Rebecchi, Eden P. Go, Li Xu, Carrie L. Woodin, Minae Mure, and Heather Desaire . A General Protease Digestion Procedure for Optimal Protein Sequence Coverage and Post-Translational Modifications Analysis of Recombinant Glycoproteins: Application to the Characterization of Human Lysyl Oxidase-like 2 Glycosylation. Analytical Chemistry 2011, 83 (22) , 8484-8491. https://doi.org/10.1021/ac2017037
    29. Niroshini J. Nirmalan, Christopher Hughes, Jianhe Peng, Therese McKenna, James Langridge, David A. Cairns, Patricia Harnden, Peter J. Selby, and Rosamonde E. Banks . Initial Development and Validation of a Novel Extraction Method for Quantitative Mining of the Formalin-Fixed, Paraffin-Embedded Tissue Proteome for Biomarker Investigations. Journal of Proteome Research 2011, 10 (2) , 896-906. https://doi.org/10.1021/pr100812d
    30. Junfeng Ma, Chunyan Hou, Liangliang Sun, Dingyin Tao, Yanyan Zhang, Yichu Shan, Zhen Liang, Lihua Zhang, Ling Yang, and Yukui Zhang. Coupling Formic Acid Assisted Solubilization and Online Immobilized Pepsin Digestion with Strong Cation Exchange and Microflow Reversed-Phase Liquid Chromatography with Electrospray Ionization Tandem Mass Spectrometry for Integral Membrane Proteome Analysis. Analytical Chemistry 2010, 82 (23) , 9622-9625. https://doi.org/10.1021/ac1023099
    31. Asif Alam, Agron Mataj, Yuanzhong Yang, Reinhard I. Boysen, Donald K. Bowden, and Milton T. W. Hearn . Rapid Microwave-Assisted Chemical Cleavage - Mass Spectrometric Method for the Identification of Hemoglobin Variants in Blood. Analytical Chemistry 2010, 82 (21) , 8922-8930. https://doi.org/10.1021/ac1017106
    32. Nadia Taouatas, Albert J. R. Heck and Shabaz Mohammed. Evaluation of Metalloendopeptidase Lys-N Protease Performance under Different Sample Handling Conditions. Journal of Proteome Research 2010, 9 (8) , 4282-4288. https://doi.org/10.1021/pr100341e
    33. Martial Rey, Hynek Mrázek, Petr Pompach, Petr Novák, Ludovic Pelosi, Gérard Brandolin, Eric Forest, Vladimír Havlíček and Petr Man . Effective Removal of Nonionic Detergents in Protein Mass Spectrometry, Hydrogen/Deuterium Exchange, and Proteomics. Analytical Chemistry 2010, 82 (12) , 5107-5116. https://doi.org/10.1021/ac100171m
    34. Ziyou Cui, Junjie Hou, Xiulan Chen, Jing Li, Zhensheng Xie, Peng Xue, Tanxi Cai, Peng Wu, Tao Xu and Fuquan Yang . The Profile of Mitochondrial Proteins and Their Phosphorylation Signaling Network in INS-1 β Cells. Journal of Proteome Research 2010, 9 (6) , 2898-2908. https://doi.org/10.1021/pr100139z
    35. Xi Zhang, Ellen Y. T. Chien, Michael J. Chalmers, Bruce D. Pascal, Jovylyn Gatchalian, Raymond C. Stevens and Patrick R. Griffin . Dynamics of the β2-Adrenergic G-Protein Coupled Receptor Revealed by Hydrogen−Deuterium Exchange. Analytical Chemistry 2010, 82 (3) , 1100-1108. https://doi.org/10.1021/ac902484p
    36. Jacek R. Wiśniewski, Alexandre Zougman and Matthias Mann. Combination of FASP and StageTip-Based Fractionation Allows In-Depth Analysis of the Hippocampal Membrane Proteome. Journal of Proteome Research 2009, 8 (12) , 5674-5678. https://doi.org/10.1021/pr900748n
    37. Xiaotao Duan, Rebeccah Young, Robert M. Straubinger, Brian Page, Jin Cao, Hao Wang, Haoying Yu, John M. Canty, Jr. and Jun Qu . A Straightforward and Highly Efficient Precipitation/On-Pellet Digestion Procedure Coupled with a Long Gradient Nano-LC Separation and Orbitrap Mass Spectrometry for Label-Free Expression Profiling of the Swine Heart Mitochondrial Proteome. Journal of Proteome Research 2009, 8 (6) , 2838-2850. https://doi.org/10.1021/pr900001t
    38. Mio Iwasaki, Takeshi Masuda, Masaru Tomita and Yasushi Ishihama . Chemical Cleavage-Assisted Tryptic Digestion for Membrane Proteome Analysis. Journal of Proteome Research 2009, 8 (6) , 3169-3175. https://doi.org/10.1021/pr900074n
    39. Emily I. Chen, Daniel McClatchy, Sung Kyu Park and John R. Yates III . Comparisons of Mass Spectrometry Compatible Surfactants for Global Analysis of the Mammalian Brain Proteome. Analytical Chemistry 2008, 80 (22) , 8694-8701. https://doi.org/10.1021/ac800606w
    40. Meiling Lu, Hailin Wang, Zhongwen Wang, Xing-Fang Li and X. Chris Le . Identification of Reactive Cysteines in a Protein Using Arsenic Labeling and Collision-Induced Dissociation Tandem Mass Spectrometry. Journal of Proteome Research 2008, 7 (8) , 3080-3090. https://doi.org/10.1021/pr700662y
    41. Daniel López-Ferrer, Konstantinos Petritis, Kim K. Hixson, Tyler H. Heibeck, Ronald J. Moore, Mikhail E. Belov, David G. Camp, II and Richard D. Smith . Application of Pressurized Solvents for Ultrafast Trypsin Hydrolysis in Proteomics: Proteomics on the Fly. Journal of Proteome Research 2008, 7 (8) , 3276-3281. https://doi.org/10.1021/pr7008077
    42. Adele R. Blackler, Anna E. Speers, Mark S. Ladinsky and Christine C. Wu . A Shotgun Proteomic Method for the Identification of Membrane-Embedded Proteins and Peptides. Journal of Proteome Research 2008, 7 (7) , 3028-3034. https://doi.org/10.1021/pr700795f
    43. Xu Zhang,, Mark Scalf,, Michael S. Westphall, and, Lloyd M. Smith. Membrane Protein Separation and Analysis by Supercritical Fluid Chromatography−Mass Spectrometry. Analytical Chemistry 2008, 80 (7) , 2590-2598. https://doi.org/10.1021/ac702319u
    44. Kamonchanok Sansuk, Crina I. A. Balog, Anne M. van der Does, Raymond Booth, Willem J. de Grip, André M. Deelder, Remko A. Bakker, Rob Leurs, and Paul J. Hensbergen . GPCR Proteomics: Mass Spectrometric and Functional Analysis of Histamine H1 Receptor after Baculovirus-Driven and in Vitro Cell Free Expression. Journal of Proteome Research 2008, 7 (2) , 621-629. https://doi.org/10.1021/pr7005654
    45. Takeshi Masuda, Masaru Tomita, and Yasushi Ishihama . Phase Transfer Surfactant-Aided Trypsin Digestion for Membrane Proteome Analysis. Journal of Proteome Research 2008, 7 (2) , 731-740. https://doi.org/10.1021/pr700658q
    46. Roland Hellinger, Arnar Sigurdsson, Wenxin Wu, Elena V. Romanova, Lingjun Li, Jonathan V. Sweedler, Roderich D. Süssmuth, Christian W. Gruber. Peptidomics. Nature Reviews Methods Primers 2023, 3 (1) https://doi.org/10.1038/s43586-023-00205-2
    47. Murat Akkurt Arslan, Ghislaine Rabut, Solenne Chardonnet, Cédric Pionneau, Alfred Kobal, Marilyne Gratas Pelletier, Nouara Harfouche, Annabelle Réaux La Goazigo, Christophe Baudouin, Françoise Brignole-Baudouin, Karima Kessal. Expanded biochemical analyses of human tear fluid: Polyvalent faces of the schirmer strip. Experimental Eye Research 2023, 237 , 109679. https://doi.org/10.1016/j.exer.2023.109679
    48. Jonathan Maurer, Eric Grouzmann, Philippe J. Eugster. Tutorial review for peptide assays: An ounce of pre-analytics is worth a pound of cure. Journal of Chromatography B 2023, 1229 , 123904. https://doi.org/10.1016/j.jchromb.2023.123904
    49. Qin Fu, Christopher I. Murray, Oleg A. Karpov, Jennifer E. Van Eyk. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis. Mass Spectrometry Reviews 2023, 42 (2) , 873-886. https://doi.org/10.1002/mas.21750
    50. C. Bruce Mousseau, Camille A. Pierre, Daniel D. Hu, Matthew M. Champion. Miniprep assisted proteomics (MAP) for rapid proteomics sample preparation. Analytical Methods 2023, 15 (7) , 916-924. https://doi.org/10.1039/D2AY01549H
    51. Sarah Brajkovic, Nils Rugen, Carlos Agius, Nicola Berner, Stephan Eckert, Amirhossein Sakhteman, Claus Schwechheimer, Bernhard Kuster. Getting Ready for Large-Scale Proteomics in Crop Plants. Nutrients 2023, 15 (3) , 783. https://doi.org/10.3390/nu15030783
    52. Peng Ma, Yifen Hong, Chunxue Liu, Yuqin Sun, Minze Liu, Zhengang Yang, Pengyun Ma, Hongxiang Wu, Fuguang Xue. Rumen microbiota responses to the enzymatic hydrolyzed cottonseed peptide supplement under high-concentrate diet feeding process. Frontiers in Veterinary Science 2022, 9 https://doi.org/10.3389/fvets.2022.984634
    53. Katerina Danko, Elena Lukasheva, Vladimir A. Zhukov, Viktor Zgoda, Andrej Frolov. Detergent-Assisted Protein Digestion—On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. International Journal of Molecular Sciences 2022, 23 (22) , 13903. https://doi.org/10.3390/ijms232213903
    54. Mehul V. Makwana, Mike P. Williamson, Richard F. W. Jackson, Richmond Muimo, . Quantitation of phosphohistidine in proteins in a mammalian cell line by 31P NMR. PLOS ONE 2022, 17 (9) , e0273797. https://doi.org/10.1371/journal.pone.0273797
    55. Julia Mergner, Bernhard Kuster. Plant Proteome Dynamics. Annual Review of Plant Biology 2022, 73 (1) , 67-92. https://doi.org/10.1146/annurev-arplant-102620-031308
    56. Seiryo Ogata, Takeshi Masuda, Shingo Ito, Sumio Ohtsuki, . Targeted proteomics for cancer biomarker verification and validation. Cancer Biomarkers 2022, 33 (4) , 427-436. https://doi.org/10.3233/CBM-210218
    57. Maryam Baniasad, Yongseok Kim, Michael Shaffer, Anice Sabag-Daigle, Ikaia Leleiwi, Rebecca A. Daly, Brian M. M. Ahmer, Kelly C. Wrighton, Vicki H. Wysocki. Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces. Analytical and Bioanalytical Chemistry 2022, 414 (7) , 2317-2331. https://doi.org/10.1007/s00216-022-03885-z
    58. Takeshi Masuda, Shingo Ito, Sumio Ohtsuki. Advances in sample preparation for membrane proteome quantification. Drug Discovery Today: Technologies 2021, 39 , 23-29. https://doi.org/10.1016/j.ddtec.2021.06.005
    59. Maryam Baniasad, Andrew J. Reed, Stella M. Lai, Liwen Zhang, Kathleen Q. Schulte, Alan R. Smith, Danielle S. LeSassier, Katharina L. Weber, F. Curtis Hewitt, August E. Woerner, Myles W. Gardner, Vicki H. Wysocki, Michael A. Freitas. Optimization of proteomics sample preparation for forensic analysis of skin samples. Journal of Proteomics 2021, 249 , 104360. https://doi.org/10.1016/j.jprot.2021.104360
    60. Jakub Faktor, David R. Goodlett, Irena Dapic. Trends in Sample Preparation for Proteome Analysis. 2021https://doi.org/10.5772/intechopen.95962
    61. Joanna Kruszewska, Joanna Zajda, Magdalena Matczuk. How to effectively prepare a sample for bottom-up proteomic analysis of nanoparticle protein corona? A critical review. Talanta 2021, 226 , 122153. https://doi.org/10.1016/j.talanta.2021.122153
    62. Katarina Davalieva, Sanja Kiprijanovska, Aleksandar Dimovski, Gorazd Rosoklija, Andrew J. Dwork. Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues. Journal of Proteomics 2021, 235 , 104117. https://doi.org/10.1016/j.jprot.2021.104117
    63. Clarissa Braccia, Nara Liessi, Andrea Armirotti. Quantification of Changes in Protein Expression Using SWATH Proteomics. 2021, 75-94. https://doi.org/10.1007/978-1-0716-1641-3_5
    64. Liting Deng, David C.L. Handler, Dylan H. Multari, Paul A. Haynes. Comparison of protein and peptide fractionation approaches in protein identification and quantification from Saccharomyces cerevisiae. Journal of Chromatography B 2021, 1162 , 122453. https://doi.org/10.1016/j.jchromb.2020.122453
    65. Yumeng Huo, Kehui Liu, Xinhui Lou. Strong additive and synergistic effects of polyoxyethylene nonionic surfactant-assisted protein MALDI imaging mass spectrometry. Talanta 2021, 222 , 121524. https://doi.org/10.1016/j.talanta.2020.121524
    66. Han Chung Lee, Adam Carroll, Ben Crossett, Angela Connolly, Amani Batarseh, Michael A. Djordjevic. Improving the Identification and Coverage of Plant Transmembrane Proteins in Medicago Using Bottom–Up Proteomics. Frontiers in Plant Science 2020, 11 https://doi.org/10.3389/fpls.2020.595726
    67. Shin-Haw Lee, Sina Hadipour-Lakmehsari, Da Hye Kim, Michelle Di Paola, Uros Kuzmanov, Saumya Shah, Joseph Jong-Hwan Lee, Thomas Kislinger, Parveen Sharma, Gavin Y. Oudit, Anthony O. Gramolini. Bioinformatic analysis of membrane and associated proteins in murine cardiomyocytes and human myocardium. Scientific Data 2020, 7 (1) https://doi.org/10.1038/s41597-020-00762-1
    68. Emna Ouni, Sébastien Pyr dit Ruys, Marie-Madeleine Dolmans, Gaëtan Herinckx, Didier Vertommen, Christiani A. Amorim. Divide-and-Conquer Matrisome Protein (DC-MaP) Strategy: An MS-Friendly Approach to Proteomic Matrisome Characterization. International Journal of Molecular Sciences 2020, 21 (23) , 9141. https://doi.org/10.3390/ijms21239141
    69. Galina Smolikova, Daria Gorbach, Elena Lukasheva, Gregory Mavropolo-Stolyarenko, Tatiana Bilova, Alena Soboleva, Alexander Tsarev, Ekaterina Romanovskaya, Ekaterina Podolskaya, Vladimir Zhukov, Igor Tikhonovich, Sergei Medvedev, Wolfgang Hoehenwarter, Andrej Frolov. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. International Journal of Molecular Sciences 2020, 21 (23) , 9162. https://doi.org/10.3390/ijms21239162
    70. Jinghua Zhu, Kunmiao Zhu, Liang Li, Zengxin Li, Weiwei Qin, Yoonseong Park, Yueping He. Proteomics of the Honeydew from the Brown Planthopper and Green Rice Leafhopper Reveal They Are Rich in Proteins from Insects, Rice Plant and Bacteria. Insects 2020, 11 (9) , 582. https://doi.org/10.3390/insects11090582
    71. Jong-Soon Choi, Yun Hwan Park, Jeong Hyun Oh, Sooyong Kim, Joseph Kwon, Yoon-E Choi. Efficient profiling of detergent-assisted membrane proteome in cyanobacteria. Journal of Applied Phycology 2020, 32 (2) , 1177-1184. https://doi.org/10.1007/s10811-019-01986-4
    72. Raksha Singh, Rohana Liyanage, Chirag Gupta, Jackson O. Lay, Andy Pereira, Clemencia M. Rojas. The Arabidopsis Proteins AtNHR2A and AtNHR2B Are Multi-Functional Proteins Integrating Plant Immunity With Other Biological Processes. Frontiers in Plant Science 2020, 11 https://doi.org/10.3389/fpls.2020.00232
    73. Xue Wang, Shichen Shen, Sailee Suryakant Rasam, Jun Qu. MS1 ion current‐based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. Mass Spectrometry Reviews 2019, 38 (6) , 461-482. https://doi.org/10.1002/mas.21595
    74. Jan Leipert, Andreas Tholey. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants. Lab on a Chip 2019, 19 (20) , 3490-3498. https://doi.org/10.1039/C9LC00715F
    75. Benjamin Yii Chung Lau, Abrizah Othman, . Evaluation of sodium deoxycholate as solubilization buffer for oil palm proteomics analysis. PLOS ONE 2019, 14 (8) , e0221052. https://doi.org/10.1371/journal.pone.0221052
    76. Irena Dapic, Lucia Baljeu‐Neuman, Naomi Uwugiaren, Jesper Kers, David R. Goodlett, Garry L. Corthals. Proteome analysis of tissues by mass spectrometry. Mass Spectrometry Reviews 2019, 38 (4-5) , 403-441. https://doi.org/10.1002/mas.21598
    77. Lucas Rodrigues-Ribeiro, Marcella Nunes Melo-Braga, Frank Kjeldsen, Diana Paola Gómez-Mendoza, Thiago Verano-Braga. Assessment of protein extraction and digestion efficiency of well-established shotgun protocols for heart proteomics. Analytical Biochemistry 2019, 578 , 51-59. https://doi.org/10.1016/j.ab.2019.05.006
    78. Klaus Faserl, Andrew J. Chetwynd, Iseult Lynch, James A. Thorn, Herbert H. Lindner. Corona Isolation Method Matters: Capillary Electrophoresis Mass Spectrometry Based Comparison of Protein Corona Compositions Following On-Particle versus In-Solution or In-Gel Digestion. Nanomaterials 2019, 9 (6) , 898. https://doi.org/10.3390/nano9060898
    79. Kyle A. Brown, Bifan Chen, Tania M. Guardado-Alvarez, Ziqing Lin, Leekyoung Hwang, Serife Ayaz-Guner, Song Jin, Ying Ge. A photocleavable surfactant for top-down proteomics. Nature Methods 2019, 16 (5) , 417-420. https://doi.org/10.1038/s41592-019-0391-1
    80. L. M. Cole, M. R. Clench, S. Francese. Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics. 2019, 77-123. https://doi.org/10.1007/978-3-030-12298-0_4
    81. Anton Iliuk. Identification of Phosphorylated Proteins on a Global Scale. Current Protocols in Chemical Biology 2018, 10 (3) https://doi.org/10.1002/cpch.48
    82. Yuanhui Ma, Daniel B. McClatchy, Salim Barkallah, William W. Wood, John R. Yates. Quantitative analysis of newly synthesized proteins. Nature Protocols 2018, 13 (8) , 1744-1762. https://doi.org/10.1038/s41596-018-0012-y
    83. Carolyn Kachuk, Alan A. Doucette. The benefits (and misfortunes) of SDS in top-down proteomics. Journal of Proteomics 2018, 175 , 75-86. https://doi.org/10.1016/j.jprot.2017.03.002
    84. Sandra Murphy, Kay Ohlendieck. Proteomic Profiling of the Dystrophin-Deficient Brain. 2018, 91-105. https://doi.org/10.1007/978-1-4939-7374-3_7
    85. Alena Soboleva, Rico Schmidt, Maria Vikhnina, Tatiana Grishina, Andrej Frolov. Maillard Proteomics: Opening New Pages. International Journal of Molecular Sciences 2017, 18 (12) , 2677. https://doi.org/10.3390/ijms18122677
    86. Elizabeth A. Rowland, Todd M. Greco, Caroline K. Snowden, Anne L. McCabe, Thomas J. Silhavy, Ileana M. Cristea, . Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes. mBio 2017, 8 (5) https://doi.org/10.1128/mBio.01096-17
    87. James P. McCord, David C. Muddiman, Morteza G. Khaledi. Perfluorinated alcohol induced coacervates as extraction media for proteomic analysis. Journal of Chromatography A 2017, 1523 , 293-299. https://doi.org/10.1016/j.chroma.2017.06.025
    88. Yongle Pang, Chuan Shi, Wenying Jian. Targeted Protein Biomarker Quantitation by LC‐MS. 2017, 227-244. https://doi.org/10.1002/9781119413073.ch15
    89. O. Vit, J. Petrak. Integral membrane proteins in proteomics. How to break open the black box?. Journal of Proteomics 2017, 153 , 8-20. https://doi.org/10.1016/j.jprot.2016.08.006
    90. Ekta Patel. Peptide Imaging: Maximizing Peptide Yield, Optimization of the “Peptide Mass Fingerprint”. 2017, 77-84. https://doi.org/10.1007/978-1-4939-7051-3_8
    91. Jeffrey M. Sifford, Haiyan Tan, Hong Wang, Junmin Peng. Analysis of Brain Phosphoproteome Using Titanium Dioxide Enrichment and High-Resolution LC-MS/MS. 2017, 141-159. https://doi.org/10.1007/978-1-4939-7119-0_9
    92. Thomas Y. K. Lau, Ben C. Collins, Peter Stone, Ning Tang, William M. Gallagher, Stephen R. Pennington. Absolute Quantification of Toxicological Biomarkers via Mass Spectrometry. 2017, 337-348. https://doi.org/10.1007/978-1-4939-7172-5_19
    93. Xi Zhang. Instant Integrated Ultradeep Quantitative-structural Membrane Proteomics Discovered Post-translational Modification Signatures for Human Cys-loop Receptor Subunit Bias. Molecular & Cellular Proteomics 2016, 15 (12) , 3665-3684. https://doi.org/10.1074/mcp.M114.047514
    94. Dean E. McNulty, Timothy W. Sikorski, Roland S. Annan. Identification and Analysis of Protein Phosphorylation by Mass Spectrometry. 2016, 17-87. https://doi.org/10.1002/9781119250906.ch2
    95. Maria Kristina Parr, Othman Montacir, Houda Montacir. Physicochemical characterization of biopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis 2016, 130 , 366-389. https://doi.org/10.1016/j.jpba.2016.05.028
    96. Himabindu V. Kilambi, Kalyani Manda, Hemalatha Sanivarapu, Vineet K. Maurya, Rameshwar Sharma, Yellamaraju Sreelakshmi. Shotgun Proteomics of Tomato Fruits: Evaluation, Optimization and Validation of Sample Preparation Methods and Mass Spectrometric Parameters. Frontiers in Plant Science 2016, 7 https://doi.org/10.3389/fpls.2016.00969
    97. Kevin Brown Chandler, Catherine E. Costello. Glycomics and glycoproteomics of membrane proteins and cell‐surface receptors: Present trends and future opportunities. ELECTROPHORESIS 2016, 37 (11) , 1407-1419. https://doi.org/10.1002/elps.201500552
    98. Rudolf Kupčík, Miroslava Zelená, Pavel Řehulka, Zuzana Bílková, Lenka Česlová. Selective isolation of hydrophobin SC3 by solid‐phase extraction with polytetrafluoroethylene microparticles and subsequent mass spectrometric analysis. Journal of Separation Science 2016, 39 (4) , 717-724. https://doi.org/10.1002/jssc.201500912
    99. Todd M. Greco, Amanda J. Guise, Ileana M. Cristea. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy. 2016, 39-63. https://doi.org/10.1007/978-1-4939-3524-6_3
    100. John C. Rogers, Ryan D. Bomgarden. Sample Preparation for Mass Spectrometry-Based Proteomics; from Proteomes to Peptides. 2016, 43-62. https://doi.org/10.1007/978-3-319-41448-5_3
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect