ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

1H NMR Spectroscopy-Based Interventional Metabolic Phenotyping: A Cohort Study of Rheumatoid Arthritis Patients

View Author Information
Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark, The Parker Institute, Copenhagen University Hospital, Frederiksberg, Denmark, Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark, Faculty of Health & Science, University of Copenhagen, Copenhagen, Denmark, Oregon Health & Sciences University, Portland, Oregon, Faculty of Medicine, Imperial College London, London, United Kingdom, Department of Heamatology, The Finsen Centre, Rigshospitalet, Copenhagen, Denmark, and Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
* To whom correspondence should be addressed. Henning Bliddal, The Parker Institute, Copenhagen University Hospital, Frederiksberg, Denmark. E-mail: [email protected]
†Faculty of Life Sciences, University of Copenhagen.
‡Aalborg University.
§Copenhagen University Hospital.
∥University of Southern Denmark.
⊥Faculty of Health & Science, University of Copenhagen.
#Oregon Health & Sciences University.
∇Imperial College London.
¶The Finsen Centre.
◆Faculty of Pharmaceutical Sciences, University of Copenhagen.
Cite this: J. Proteome Res. 2010, 9, 9, 4545–4553
Publication Date (Web):August 11, 2010
https://doi.org/10.1021/pr1002774
Copyright © 2010 American Chemical Society

    Article Views

    1251

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (554 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    1H NMR spectroscopy-based metabolic phenotyping was used to identify biomarkers in the plasma of patients with rheumatoid arthritis (RA). Forty-seven patients with RA (23 with active disease at baseline and 24 in remission) and 51 healthy subjects were evaluated during a one-year follow-up with assessments of disease activity (DAS-28) and 1H NMR spectroscopy of plasma samples. Discriminant analysis provided evidence that the metabolic profiles predicted disease severity. Cholesterol, lactate, acetylated glycoprotein, and lipid signatures were found to be candidate biomarkers for disease severity. The results also supported the link between RA and coronary artery disease. Repeated assessment using mixed linear models showed that the predictors obtained from metabolic profiles of plasma at baseline from patients with active RA were significantly different from those of patients in remission (P = 0.0007). However, after 31 days of optimized therapy, the two patient groups were not significantly different (P = 0.91). The metabolic profiles of both groups of RA patients were different from the healthy subjects. 1H NMR-based metabolic phenotyping of plasma samples in patients with RA is well suited for discovery of biomarkers and may be a potential approach for disease monitoring and personalized medication for RA therapy.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Back-scaled loading plots obtained from OPLS-DA models of age and gender are available for comparison to the back-scaled loading plot from the OPLS-DA model of RA. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 79 publications.

    1. Durgesh Dubey, Sandeep Kumar, Atul Rawat, Anupam Guleria, Reena Kumari, Sakir Ahmed, Rajeev Singh, Ramnath Misra, Dinesh Kumar. NMR-Based Metabolomics Revealed the Underlying Inflammatory Pathology in Reactive Arthritis Synovial Joints. Journal of Proteome Research 2021, 20 (11) , 5088-5102. https://doi.org/10.1021/acs.jproteome.1c00620
    2. Ruey Leng Loo, Samantha Lodge, Torben Kimhofer, Sze-How Bong, Sofina Begum, Luke Whiley, Nicola Gray, John C. Lindon, Philipp Nitschke, Nathan G. Lawler, Hartmut Schäfer, Manfred Spraul, Toby Richards, Jeremy K. Nicholson, Elaine Holmes. Quantitative In-Vitro Diagnostic NMR Spectroscopy for Lipoprotein and Metabolite Measurements in Plasma and Serum: Recommendations for Analytical Artifact Minimization with Special Reference to COVID-19/SARS-CoV-2 Samples. Journal of Proteome Research 2020, 19 (11) , 4428-4441. https://doi.org/10.1021/acs.jproteome.0c00537
    3. Rocío Fuertes-Martín, Dèlia Taverner, Joan-Carles Vallvé, Silvia Paredes, Lluis Masana, Xavier Correig Blanchar, Núria Amigó Grau. Characterization of 1H NMR Plasma Glycoproteins as a New Strategy To Identify Inflammatory Patterns in Rheumatoid Arthritis. Journal of Proteome Research 2018, 17 (11) , 3730-3739. https://doi.org/10.1021/acs.jproteome.8b00411
    4. Anupam Guleria, Sanat Phatak, Durgesh Dubey, Sandeep Kumar, Abhishek Zanwar, Smriti Chaurasia, Umesh Kumar, Ranjan Gupta, Amita Aggarwal, Dinesh Kumar, Ramnath Misra. NMR-Based Serum Metabolomics Reveals Reprogramming of Lipid Dysregulation Following Cyclophosphamide-Based Induction Therapy in Lupus Nephritis. Journal of Proteome Research 2018, 17 (7) , 2440-2448. https://doi.org/10.1021/acs.jproteome.8b00192
    5. Filippos Michopoulos, Niki Karagianni, Nichola M. Whalley, Mike A. Firth, Christoforos Nikolaou, Ian D. Wilson, Susan E. Critchlow, George Kollias, and Georgios A. Theodoridis . Targeted Metabolic Profiling of the Tg197 Mouse Model Reveals Itaconic Acid as a Marker of Rheumatoid Arthritis. Journal of Proteome Research 2016, 15 (12) , 4579-4590. https://doi.org/10.1021/acs.jproteome.6b00654
    6. Ching-Wan Lam and Chun-Yiu Law . Pleural Effusion Lipoproteins Measured by NMR Spectroscopy for Diagnosis of Exudative Pleural Effusions: A Novel Tool for Pore-Size Estimation. Journal of Proteome Research 2014, 13 (9) , 4104-4112. https://doi.org/10.1021/pr5004856
    7. Miao Jiang, Tianlu Chen, Hui Feng, Yinan Zhang, Li Li, Aihua Zhao, Xuyan Niu, Fei Liang, Minzhi Wang, Junping Zhan, Cheng Lu, Xiaojuan He, Lianbo Xiao, Wei Jia, and Aiping Lu . Serum Metabolic Signatures of Four Types of Human Arthritis. Journal of Proteome Research 2013, 12 (8) , 3769-3779. https://doi.org/10.1021/pr400415a
    8. Rasmus Madsen, Solbritt Rantapää-Dahlqvist, Torbjörn Lundstedt, Thomas Moritz, and Johan Trygg . Metabolic Responses to Change in Disease Activity during Tumor Necrosis Factor Inhibition in Patients with Rheumatoid Arthritis. Journal of Proteome Research 2012, 11 (7) , 3796-3804. https://doi.org/10.1021/pr300296v
    9. Lili Song, Jiayi Wang, Yue Zhang, Xingxu Yan, Junjie He, Jiaxuan Nie, Fangfang Zhang, Rui Han, Hongqing Yin, Jingfang Li, Huimin Liu, Liping Huang, Yubo Li. Association Between Human Metabolomics and Rheumatoid Arthritis: A Systematic Review and Meta-analysis. Archives of Medical Research 2024, 55 (1) , 102907. https://doi.org/10.1016/j.arcmed.2023.102907
    10. Samantha Rodríguez-Muguruza, Antonio Altuna-Coy, Verónica Arreaza-Gil, Marina Mendieta-Homs, Sonia Castro-Oreiro, Maria José Poveda-Elices, Nuria del Castillo-Piñol, Ramon Fontova-Garrofé, Matilde R. Chacón. A serum metabolic biomarker panel for early rheumatoid arthritis. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1253913
    11. Maryam Masoumi, Nader Hashemi, Fatemeh Moadab, Mojtaba Didehdar, Rahim Farahani, Hossein Khorramdelazad, Amirhossein Sahebkar, Thomas P. Johnston, Jafar Karami. Immunometabolism Dysfunction in the Pathophysiology and Treatment of Rheumatoid Arthritis. Current Medicinal Chemistry 2023, 30 (27) , 3119-3136. https://doi.org/10.2174/0929867329666220907151213
    12. Lulu Cao, Xi Zheng, Peng Han, Limin Ren, Jing Wang, Fanlei Hu, Zhanguo Li. Raman spectroscopy as a promising diagnostic method for rheumatoid arthritis. Analytical Methods 2023, 15 (6) , 709-718. https://doi.org/10.1039/D2AY01904C
    13. Lingxia Xu, Cen Chang, Ping Jiang, Kai Wei, Runrun Zhang, Yehua Jin, Jianan Zhao, Linshuai Xu, Yiming Shi, Shicheng Guo, Dongyi He. Metabolomics in rheumatoid arthritis: Advances and review. Frontiers in Immunology 2022, 13 https://doi.org/10.3389/fimmu.2022.961708
    14. Erika Dorochow, Michaela Köhm, Lisa Hahnefeld, Robert Gurke. Metabolic Profiling in Rheumatoid Arthritis, Psoriatic Arthritis, and Psoriasis: Elucidating Pathogenesis, Improving Diagnosis, and Monitoring Disease Activity. Journal of Personalized Medicine 2022, 12 (6) , 924. https://doi.org/10.3390/jpm12060924
    15. Bárbara Jonson Bartikoski, Marianne Schrader De Oliveira, Rafaela Cavalheiro Do Espírito Santo, Leonardo Peterson Dos Santos, Natália Garcia Dos Santos, Ricardo Machado Xavier. A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease Pathogenesis, Treatment and Comorbidities. Metabolites 2022, 12 (5) , 394. https://doi.org/10.3390/metabo12050394
    16. Julia Debik, Matteo Sangermani, Feng Wang, Torfinn S. Madssen, Guro F. Giskeødegård. Multivariate analysis of NMR‐based metabolomic data. NMR in Biomedicine 2022, 35 (2) https://doi.org/10.1002/nbm.4638
    17. Yolima Puentes-Osorio, Pedro Amariles, Miguel Ángel Calleja, Vicente Merino, Juan Camilo Díaz-Coronado, Daniel Taborda. Potential clinical biomarkers in rheumatoid arthritis with an omic approach. Autoimmunity Highlights 2021, 12 (1) https://doi.org/10.1186/s13317-021-00152-6
    18. Yulai Fang, Cong Duan, Jing Zhang, Yue Dai, Yufeng Xia. NMR-based untargeted metabolomics approach to investigate the systemic lipid metabolism regulation of norisoboldine in collagen-induced arthritis rats. European Journal of Pharmacology 2021, 912 , 174608. https://doi.org/10.1016/j.ejphar.2021.174608
    19. Balasubramanian Chellammal Muthubharathi, Thirumugam Gowripriya, Krishnaswamy Balamurugan. Metabolomics: small molecules that matter more. Molecular Omics 2021, 17 (2) , 210-229. https://doi.org/10.1039/D0MO00176G
    20. Cheng Li, Bin Chen, Zhen Fang, Yu-fei Leng, Dan-wen Wang, Feng-qin Chen, Xiao Xu, Zhi-ling Sun. Metabolomics in the development and progression of rheumatoid arthritis: A systematic review. Joint Bone Spine 2020, 87 (5) , 425-430. https://doi.org/10.1016/j.jbspin.2020.05.005
    21. Mengchan Fang, Fan Liu, Lingling Huang, Liqing Wu, Lan Guo, Yiqun Wan. A Urine Metabonomics Study of Rat Bladder Cancer by Combining Gas Chromatography-Mass Spectrometry with Random Forest Algorithm. International Journal of Analytical Chemistry 2020, 2020 , 1-9. https://doi.org/10.1155/2020/8839215
    22. Katherine R. Swank, Jamie E. Furness, Erin A. Baker, Corinn K. Gehrke, Stephen P. Biebelhausen, Kevin C. Baker. Metabolomic Profiling in the Characterization of Degenerative Bone and Joint Diseases. Metabolites 2020, 10 (6) , 223. https://doi.org/10.3390/metabo10060223
    23. Roxana Coras, Jessica Murillo-Saich, Monica Guma. Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid Arthritis Pathogenesis. Cells 2020, 9 (4) , 827. https://doi.org/10.3390/cells9040827
    24. Margarida Souto-Carneiro, Lilla Tóth, Rouven Behnisch, Konstantin Urbach, Karel D Klika, Rui A Carvalho, Hanns-Martin Lorenz. Differences in the serum metabolome and lipidome identify potential biomarkers for seronegative rheumatoid arthritis versus psoriatic arthritis. Annals of the Rheumatic Diseases 2020, 79 (4) , 499-506. https://doi.org/10.1136/annrheumdis-2019-216374
    25. Deanna D.H. Franke, Margery A. Connelly. Nuclear magnetic resonance technology and clinical applications. 2020, 187-200. https://doi.org/10.1016/B978-0-12-815499-1.00011-9
    26. Scott C. Ritchie, Johannes Kettunen, Marta Brozynska, Artika P. Nath, Aki S. Havulinna, Satu Männistö, Markus Perola, Veikko Salomaa, Mika Ala-Korpela, Gad Abraham, Peter Würtz, Michael Inouye, . Elevated serum alpha-1 antitrypsin is a major component of GlycA-associated risk for future morbidity and mortality. PLOS ONE 2019, 14 (10) , e0223692. https://doi.org/10.1371/journal.pone.0223692
    27. Fabrizio Pin, Rafael Barreto, Marion E. Couch, Andrea Bonetto, Thomas M. O'Connell. Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism. Journal of Cachexia, Sarcopenia and Muscle 2019, 10 (1) , 140-154. https://doi.org/10.1002/jcsm.12360
    28. Suyasha Roy, Zaigham Abbas Rizvi, Amit Awasthi. Metabolic Checkpoints in Differentiation of Helper T Cells in Tissue Inflammation. Frontiers in Immunology 2019, 9 https://doi.org/10.3389/fimmu.2018.03036
    29. Anna Winkvist, Linnea Bärebring, Inger Gjertsson, Lars Ellegård, Helen M. Lindqvist. A randomized controlled cross-over trial investigating the effect of anti-inflammatory diet on disease activity and quality of life in rheumatoid arthritis: the Anti-inflammatory Diet In Rheumatoid Arthritis (ADIRA) study protocol. Nutrition Journal 2018, 17 (1) https://doi.org/10.1186/s12937-018-0354-x
    30. Johannes Kettunen, Scott C. Ritchie, Olga Anufrieva, Leo-Pekka Lyytikäinen, Jussi Hernesniemi, Pekka J. Karhunen, Pekka Kuukasjärvi, Jari Laurikka, Mika Kähönen, Terho Lehtimäki, Aki S. Havulinna, Veikko Salomaa, Satu Männistö, Mika Ala-Korpela, Markus Perola, Michael Inouye, Peter Würtz. Biomarker Glycoprotein Acetyls Is Associated With the Risk of a Wide Spectrum of Incident Diseases and Stratifies Mortality Risk in Angiography Patients. Circulation: Genomic and Precision Medicine 2018, 11 (11) https://doi.org/10.1161/CIRCGEN.118.002234
    31. Latika Gupta, Sakir Ahmed, Avinash Jain, Ramnath Misra. Emerging role of metabolomics in rheumatology. International Journal of Rheumatic Diseases 2018, 21 (8) , 1468-1477. https://doi.org/10.1111/1756-185X.13353
    32. Takaichi Okano, Jun Saegusa, Soshi Takahashi, Yo Ueda, Akio Morinobu. Immunometabolism in rheumatoid arthritis. Immunological Medicine 2018, 41 (3) , 89-97. https://doi.org/10.1080/25785826.2018.1531186
    33. Ju Li, Nan Che, Lingxiao Xu, Qian Zhang, Qi Wang, Wenfeng Tan, Miaojia Zhang. LC-MS-based serum metabolomics reveals a distinctive signature in patients with rheumatoid arthritis. Clinical Rheumatology 2018, 37 (6) , 1493-1502. https://doi.org/10.1007/s10067-018-4021-6
    34. Joong Kyong Ahn, Jungyeon Kim, Jiwon Hwang, Juhwan Song, Kyoung Heon Kim, Hoon-Suk Cha. Potential metabolomic biomarkers for reliable diagnosis of Behcet's disease using gas chromatography/ time-of-flight-mass spectrometry. Joint Bone Spine 2018, 85 (3) , 337-343. https://doi.org/10.1016/j.jbspin.2017.05.019
    35. Xinming Yun, Shu Dong, Qiaoqiao Hu, Yue Dai, Yufeng Xia. 1H NMR-based metabolomics approach to investigate the urine samples of collagen-induced arthritis rats and the intervention of tetrandrine. Journal of Pharmaceutical and Biomedical Analysis 2018, 154 , 302-311. https://doi.org/10.1016/j.jpba.2018.03.026
    36. Cristina Dumitru, Agnieszka M. Kabat, Kevin J. Maloy. Metabolic Adaptations of CD4+ T Cells in Inflammatory Disease. Frontiers in Immunology 2018, 9 https://doi.org/10.3389/fimmu.2018.00540
    37. Drupad K. Trivedi, Katherine A. Hollywood, Royston Goodacre. Metabolomics for the masses: The future of metabolomics in a personalized world. European Journal of Molecular & Clinical Medicine 2017, 3 (6) , 294. https://doi.org/10.1016/j.nhtm.2017.06.001
    38. Noha A. Yousri, Karim Bayoumy, Wessam Gad Elhaq, Robert P. Mohney, Samar Al Emadi, Mohammed Hammoudeh, Hussein Halabi, Basel Masri, Humeira Badsha, Imad Uthman, Robert Plenge, Richa Saxena, Karsten Suhre, Thurayya Arayssi. Large Scale Metabolic Profiling identifies Novel Steroids linked to Rheumatoid Arthritis. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-05439-1
    39. Cornelia M. Weyand, Jörg J. Goronzy. Immunometabolism in early and late stages of rheumatoid arthritis. Nature Reviews Rheumatology 2017, 13 (5) , 291-301. https://doi.org/10.1038/nrrheum.2017.49
    40. Srivastava Niraj Kumar. Can NMR (Nuclear Magnetic Resonance) spectroscopy serve as a diagnostic tool for Rheumatoid Arthritis?. Rheumatica Acta: Open Access 2017, , 001-004. https://doi.org/10.17352/raoa.000009
    41. Zuzana Tatar, Carole Migne, Melanie Petera, Philippe Gaudin, Thierry Lequerre, Hubert Marotte, Jacques Tebib, Estelle Pujos Guillot, Martin Soubrier. Variations in the metabolome in response to disease activity of rheumatoid arthritis. BMC Musculoskeletal Disorders 2016, 17 (1) https://doi.org/10.1186/s12891-016-1214-5
    42. Wei Wang, Gen-jin Yang, Ju Zhang, Chen Chen, Zhen-yu Jia, Jia Li, Wei-dong Xu. Plasma, urine and ligament tissue metabolite profiling reveals potential biomarkers of ankylosing spondylitis using NMR-based metabolic profiles. Arthritis Research & Therapy 2016, 18 (1) https://doi.org/10.1186/s13075-016-1139-2
    43. Izabella Surowiec, Lisbeth Ärlestig, Solbritt Rantapää-Dahlqvist, Johan Trygg, . Metabolite and Lipid Profiling of Biobank Plasma Samples Collected Prior to Onset of Rheumatoid Arthritis. PLOS ONE 2016, 11 (10) , e0164196. https://doi.org/10.1371/journal.pone.0164196
    44. Margery A. Connelly, Irina Shalaurova, James D. Otvos. High-density lipoprotein and inflammation in cardiovascular disease. Translational Research 2016, 173 , 7-18. https://doi.org/10.1016/j.trsl.2016.01.006
    45. Ana Márquez, Javier Martín, F. David Carmona. Emerging aspects of molecular biomarkers for diagnosis, prognosis and treatment response in rheumatoid arthritis. Expert Review of Molecular Diagnostics 2016, 16 (6) , 663-675. https://doi.org/10.1080/14737159.2016.1174579
    46. Izabella Surowiec, Clara Gram Gjesdal, Grete Jonsson, Katrine Brække Norheim, Torbjörn Lundstedt, Johan Trygg, Roald Omdal. Metabolomics study of fatigue in patients with rheumatoid arthritis naïve to biological treatment. Rheumatology International 2016, 36 (5) , 703-711. https://doi.org/10.1007/s00296-016-3426-2
    47. Ryan S. Funk, Mara L. Becker. Disease modifying anti-rheumatic drugs in juvenile idiopathic arthritis: striving for individualized therapy. Expert Review of Precision Medicine and Drug Development 2016, 1 (1) , 53-68. https://doi.org/10.1080/23808993.2016.1133234
    48. Margery A. Connelly, Eke G. Gruppen, Justyna Wolak-Dinsmore, Steven P. Matyus, Ineke J. Riphagen, Irina Shalaurova, Stephan J.L. Bakker, James D. Otvos, Robin P.F. Dullaart. GlycA, a marker of acute phase glycoproteins, and the risk of incident type 2 diabetes mellitus: PREVEND study. Clinica Chimica Acta 2016, 452 , 10-17. https://doi.org/10.1016/j.cca.2015.11.001
    49. Adam Zabek, Jerzy Swierkot, Anna Malak, Iga Zawadzka, Stanisław Deja, Katarzyna Bogunia-Kubik, Piotr Mlynarz. Application of 1 H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis. Journal of Pharmaceutical and Biomedical Analysis 2016, 117 , 544-550. https://doi.org/10.1016/j.jpba.2015.10.007
    50. Gurpreet Singh Jutley, Stephen P. Young. Metabolomics to identify biomarkers and as a predictive tool in inflammatory diseases. Best Practice & Research Clinical Rheumatology 2015, 29 (6) , 770-782. https://doi.org/10.1016/j.berh.2016.02.010
    51. Michelle J. Ormseth, Cecilia P. Chung, Annette M. Oeser, Margery A. Connelly, Tuulikki Sokka, Paolo Raggi, Joseph F. Solus, James D. Otvos, C. Michael Stein. Utility of a novel inflammatory marker, GlycA, for assessment of rheumatoid arthritis disease activity and coronary atherosclerosis. Arthritis Research & Therapy 2015, 17 (1) https://doi.org/10.1186/s13075-015-0646-x
    52. Roberta Priori, Luca Casadei, Mariacristina Valerio, Rossana Scrivo, Guido Valesini, Cesare Manetti, . 1H-NMR-Based Metabolomic Study for Identifying Serum Profiles Associated with the Response to Etanercept in Patients with Rheumatoid Arthritis. PLOS ONE 2015, 10 (11) , e0138537. https://doi.org/10.1371/journal.pone.0138537
    53. Scott C. Ritchie, Peter Würtz, Artika P. Nath, Gad Abraham, Aki S. Havulinna, Liam G. Fearnley, Antti-Pekka Sarin, Antti J. Kangas, Pasi Soininen, Kristiina Aalto, Ilkka Seppälä, Emma Raitoharju, Marko Salmi, Mikael Maksimow, Satu Männistö, Mika Kähönen, Markus Juonala, Samuli Ripatti, Terho Lehtimäki, Sirpa Jalkanen, Markus Perola, Olli Raitakari, Veikko Salomaa, Mika Ala-Korpela, Johannes Kettunen, Michael Inouye. The Biomarker GlycA Is Associated with Chronic Inflammation and Predicts Long-Term Risk of Severe Infection. Cell Systems 2015, 1 (4) , 293-301. https://doi.org/10.1016/j.cels.2015.09.007
    54. Joong Kyong Ahn, Sooah Kim, Jungyeon Kim, Jiwon Hwang, Kyoung Heon Kim, Hoon-Suk Cha, . A Comparative Metabolomic Evaluation of Behcet’s Disease with Arthritis and Seronegative Arthritis Using Synovial Fluid. PLOS ONE 2015, 10 (8) , e0135856. https://doi.org/10.1371/journal.pone.0135856
    55. M Guma, E Sanchez-Lopez, A Lodi, R Garcia-Carbonell, S Tiziani, M Karin, J C Lacal, G S Firestein. Choline kinase inhibition in rheumatoid arthritis. Annals of the Rheumatic Diseases 2015, 74 (7) , 1399-1407. https://doi.org/10.1136/annrheumdis-2014-205696
    56. James D Otvos, Irina Shalaurova, Justyna Wolak-Dinsmore, Margery A Connelly, Rachel H Mackey, James H Stein, Russell P Tracy. GlycA: A Composite Nuclear Magnetic Resonance Biomarker of Systemic Inflammation. Clinical Chemistry 2015, 61 (5) , 714-723. https://doi.org/10.1373/clinchem.2014.232918
    57. Mika Ala-Korpela. Serum Nuclear Magnetic Resonance Spectroscopy: One More Step toward Clinical Utility. Clinical Chemistry 2015, 61 (5) , 681-683. https://doi.org/10.1373/clinchem.2015.238279
    58. Rui Chen, Su Han, Daming Dong, Yansong Wang, Qingpeng Liu, Wei Xie, Mi Li, Meng Yao. Serum fatty acid profiles and potential biomarkers of ankylosing spondylitis determined by gas chromatography–mass spectrometry and multivariate statistical analysis. Biomedical Chromatography 2015, 29 (4) , 604-611. https://doi.org/10.1002/bmc.3321
    59. Jian Kang, Ling Zhu, Jingli Lu, Xiaojian Zhang. Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. Journal of Neuroimmunology 2015, 279 , 25-32. https://doi.org/10.1016/j.jneuroim.2015.01.001
    60. Antonio Julià, Arnald Alonso, Sara Marsal. Metabolomics in rheumatic diseases. International Journal of Clinical Rheumatology 2014, 9 (4) , 353-369. https://doi.org/10.2217/ijr.14.25
    61. Sooah Kim, Jiwon Hwang, Jinhua Xuan, Young Hoon Jung, Hoon-Suk Cha, Kyoung Heon Kim, . Global Metabolite Profiling of Synovial Fluid for the Specific Diagnosis of Rheumatoid Arthritis from Other Inflammatory Arthritis. PLoS ONE 2014, 9 (6) , e97501. https://doi.org/10.1371/journal.pone.0097501
    62. Rossana Scrivo, Luca Casadei, Mariacristina Valerio, Roberta Priori, Guido Valesini, Cesare Manetti. Metabolomics Approach in Allergic and Rheumatic Diseases. Current Allergy and Asthma Reports 2014, 14 (6) https://doi.org/10.1007/s11882-014-0445-5
    63. Yao Qi, Shizhe Li, Zifeng Pi, Fengrui Song, Na Lin, Shu Liu, Zhiqiang Liu. Metabonomic study of Wu-tou decoction in adjuvant-induced arthritis rat using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Journal of Chromatography B 2014, 953-954 , 11-19. https://doi.org/10.1016/j.jchromb.2014.01.044
    64. Sarah Schönig, Andreas Recke, Misa Hirose, Ralf J Ludwig, Karsten Seeger. Metabolite analysis distinguishes between mice with epidermolysis bullosa acquisita and healthy mice. Orphanet Journal of Rare Diseases 2013, 8 (1) https://doi.org/10.1186/1750-1172-8-93
    65. Ai‐hua Zhang, Hui Sun, Shi Qiu, Xi‐jun Wang. NMR‐based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magnetic Resonance in Chemistry 2013, 51 (9) , 549-556. https://doi.org/10.1002/mrc.3985
    66. Roberta Priori, Rossana Scrivo, Jessica Brandt, Mariacristina Valerio, Luca Casadei, Guido Valesini, Cesare Manetti. Metabolomics in rheumatic diseases: The potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmunity Reviews 2013, 12 (10) , 1022-1030. https://doi.org/10.1016/j.autrev.2013.04.002
    67. Stephen P. Young, Sabrina R. Kapoor, Mark R. Viant, Jonathan J. Byrne, Andrew Filer, Christopher D. Buckley, George D. Kitas, Karim Raza. The Impact of Inflammation on Metabolomic Profiles in Patients With Arthritis. Arthritis & Rheumatism 2013, 65 (8) , 2015-2023. https://doi.org/10.1002/art.38021
    68. L. Rebekka Ryder, Lars P. Ryder, Else M. Bartels, Anders Woetmann, Hans O. Madsen, Niels Ødum, Bente Danneskiold‐Samsøe, Søren Ribel‐Madsen, Henning Bliddal. Differential effects of decoy receptor‐ and antibody‐mediated tumour necrosis factor blockage on FoxP3 expression in responsive arthritis patients. APMIS 2013, 121 (4) , 337-347. https://doi.org/10.1111/apm.12004
    69. Rongcai Yue, Ling Zhao, Yaohua Hu, Peng Jiang, Shuping Wang, Li Xiang, Wencong Liu, Lei Shan, Weidong Zhang, Runhui Liu. Metabolomic Study of Collagen-Induced Arthritis in Rats and the Interventional Effects of Huang-Lian-Jie-Du-Tang, a Traditional Chinese Medicine. Evidence-Based Complementary and Alternative Medicine 2013, 2013 , 1-12. https://doi.org/10.1155/2013/439690
    70. Ai-ping Lu, Zhao-xiang Bian, Ke-ji Chen. Bridging the traditional chinese medicine pattern classification and biomedical disease diagnosis with systems biology. Chinese Journal of Integrative Medicine 2012, 18 (12) , 883-890. https://doi.org/10.1007/s11655-012-1290-6
    71. Horace R. T. Williams, James D. Willsmore, I. Jane Cox, David G. Walker, Jeremy F. L. Cobbold, Simon D. Taylor-Robinson, Timothy R. Orchard. Serum Metabolic Profiling in Inflammatory Bowel Disease. Digestive Diseases and Sciences 2012, 57 (8) , 2157-2165. https://doi.org/10.1007/s10620-012-2127-2
    72. Ghaniah Hassan-Smith, Graham R. Wallace, Michael R. Douglas, Alexandra J. Sinclair. The role of metabolomics in neurological disease. Journal of Neuroimmunology 2012, 248 (1-2) , 48-52. https://doi.org/10.1016/j.jneuroim.2012.01.009
    73. ZHIGANG WANG, ZHE CHEN, SISI YANG, YU WANG, LIFANG YU, BICHENG ZHANG, ZHIGUO RAO, JIANFEI GAO, SHENGHAO TU. 1H NMR-based metabolomic analysis for identifying serum biomarkers to evaluate methotrexate treatment in patients with early rheumatoid arthritis. Experimental and Therapeutic Medicine 2012, 4 (1) , 165-171. https://doi.org/10.3892/etm.2012.567
    74. Rong You, Zhenbo Xu, Songqing Hu, Lin Li. Characterization of Temporary Metabolic Changes Following Cantonese Herbal Tea Intervention. Phytotherapy Research 2012, 26 (7) , 1097-1102. https://doi.org/10.1002/ptr.3674
    75. Lynnette R. Ferguson. Potential value of nutrigenomics in Crohn's disease. Nature Reviews Gastroenterology & Hepatology 2012, 9 (5) , 260-270. https://doi.org/10.1038/nrgastro.2012.41
    76. Ewa Swiezewska, Jacek Wójcik. NMR of lipids and membranes. 2012, 320-347. https://doi.org/10.1039/9781849734851-00320
    77. Henrike M. Hamer, Vicky De Preter, Karen Windey, Kristin Verbeke. Functional analysis of colonic bacterial metabolism: relevant to health?. American Journal of Physiology-Gastrointestinal and Liver Physiology 2012, 302 (1) , G1-G9. https://doi.org/10.1152/ajpgi.00048.2011
    78. . Current World Literature. Current Opinion in Rheumatology 2011, 317-324. https://doi.org/10.1097/BOR.0b013e328346809c
    79. Haitao Lv, Chia S. Hung, Kaveri S. Chaturvedi, Thomas M. Hooton, Jeffrey P. Henderson. Development of an integrated metabolomic profiling approach for infectious diseases research. The Analyst 2011, 136 (22) , 4752. https://doi.org/10.1039/c1an15590c

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect