ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Efficient Marginalization to Compute Protein Posterior Probabilities from Shotgun Mass Spectrometry Data

View Author Information
Department of Genome Sciences, University of Washington, Seattle, Washington
Department of Genome Sciences, University of Washington, Seattle, Washington
Department of Genome Sciences, Department of Computer Science and Engineering, University of Washington, Seattle, Washington
* To whom correspondence should be addressed. E-mail: [email protected]
Cite this: J. Proteome Res. 2010, 9, 10, 5346–5357
Publication Date (Web):August 16, 2010
https://doi.org/10.1021/pr100594k
Copyright © 2010 American Chemical Society

    Article Views

    1398

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The problem of identifying proteins from a shotgun proteomics experiment has not been definitively solved. Identifying the proteins in a sample requires ranking them, ideally with interpretable scores. In particular, “degenerate” peptides, which map to multiple proteins, have made such a ranking difficult to compute. The problem of computing posterior probabilities for the proteins, which can be interpreted as confidence in a protein’s presence, has been especially daunting. Previous approaches have either ignored the peptide degeneracy problem completely, addressed it by computing a heuristic set of proteins or heuristic posterior probabilities, or estimated the posterior probabilities with sampling methods. We present a probabilistic model for protein identification in tandem mass spectrometry that recognizes peptide degeneracy. We then introduce graph-transforming algorithms that facilitate efficient computation of protein probabilities, even for large data sets. We evaluate our identification procedure on five different well-characterized data sets and demonstrate our ability to efficiently compute high-quality protein posteriors.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Derivation of the model and algorithms and supplementary Figure 1. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 85 publications.

    1. Steven R. Shuken. An Introduction to Mass Spectrometry-Based Proteomics. Journal of Proteome Research 2023, 22 (7) , 2151-2171. https://doi.org/10.1021/acs.jproteome.2c00838
    2. Brian D. Young, Jihui Sha, Ajay A. Vashisht, James A. Wohlschlegel. Human Multisubunit E3 Ubiquitin Ligase Required for Heterotrimeric G-Protein β-Subunit Ubiquitination and Downstream Signaling. Journal of Proteome Research 2021, 20 (9) , 4318-4330. https://doi.org/10.1021/acs.jproteome.1c00292
    3. Mark V. Ivanov, Elizaveta M. Solovyeva, Julia A. Bubis, Mikhail V. Gorshkov. Improving the Protein Inference from Bottom-Up Proteomic Data Using Identifications from MS1 Spectra. Journal of the American Society for Mass Spectrometry 2021, 32 (5) , 1258-1262. https://doi.org/10.1021/jasms.1c00061
    4. Julianus Pfeuffer, Timo Sachsenberg, Tjeerd M. H. Dijkstra, Oliver Serang, Knut Reinert, Oliver Kohlbacher. EPIFANY: A Method for Efficient High-Confidence Protein Inference. Journal of Proteome Research 2020, 19 (3) , 1060-1072. https://doi.org/10.1021/acs.jproteome.9b00566
    5. Gorka Prieto, Jesús Vázquez. Protein Probability Model for High-Throughput Protein Identification by Mass Spectrometry-Based Proteomics. Journal of Proteome Research 2020, 19 (3) , 1285-1297. https://doi.org/10.1021/acs.jproteome.9b00819
    6. William D. Barshop, Hee Jong Kim, Xiaorui Fan, Jihui Sha, Shima Rayatpisheh, James A. Wohlschlegel. Chemical Derivatization of Affinity Matrices Provides Protection from Tryptic Proteolysis. Journal of Proteome Research 2019, 18 (10) , 3586-3596. https://doi.org/10.1021/acs.jproteome.9b00254
    7. John T. Halloran, Hantian Zhang, Kaan Kara, Cédric Renggli, Matthew The, Ce Zhang, David M. Rocke, Lukas Käll, William Stafford Noble. Speeding Up Percolator. Journal of Proteome Research 2019, 18 (9) , 3353-3359. https://doi.org/10.1021/acs.jproteome.9b00288
    8. Rachel M. Miller, Robert J. Millikin, Connor V. Hoffmann, Stefan K. Solntsev, Gloria M. Sheynkman, Michael R. Shortreed, Lloyd M. Smith. Improved Protein Inference from Multiple Protease Bottom-Up Mass Spectrometry Data. Journal of Proteome Research 2019, 18 (9) , 3429-3438. https://doi.org/10.1021/acs.jproteome.9b00330
    9. Lev I. Levitsky, Mark V. Ivanov, Anna A. Lobas, Julia A. Bubis, Irina A. Tarasova, Elizaveta M. Solovyeva, Marina L. Pridatchenko, Mikhail V. Gorshkov. IdentiPy: An Extensible Search Engine for Protein Identification in Shotgun Proteomics. Journal of Proteome Research 2018, 17 (7) , 2249-2255. https://doi.org/10.1021/acs.jproteome.7b00640
    10. Matthew The, Fredrik Edfors, Yasset Perez-Riverol, Samuel H. Payne, Michael R. Hoopmann, Magnus Palmblad, Björn Forsström, Lukas Käll. A Protein Standard That Emulates Homology for the Characterization of Protein Inference Algorithms. Journal of Proteome Research 2018, 17 (5) , 1879-1886. https://doi.org/10.1021/acs.jproteome.7b00899
    11. Olivier Langella, Benoît Valot, Thierry Balliau, Mélisande Blein-Nicolas, Ludovic Bonhomme, and Michel Zivy . X!TandemPipeline: A Tool to Manage Sequence Redundancy for Protein Inference and Phosphosite Identification. Journal of Proteome Research 2017, 16 (2) , 494-503. https://doi.org/10.1021/acs.jproteome.6b00632
    12. Hendrik Weisser, James C. Wright, Jonathan M. Mudge, Petra Gutenbrunner, and Jyoti S. Choudhary . Flexible Data Analysis Pipeline for High-Confidence Proteogenomics. Journal of Proteome Research 2016, 15 (12) , 4686-4695. https://doi.org/10.1021/acs.jproteome.6b00765
    13. Matthew The, Michael J. MacCoss, William S. Noble, Lukas Käll. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. Journal of the American Society for Mass Spectrometry 2016, 27 (11) , 1719-1727. https://doi.org/10.1007/s13361-016-1460-7
    14. Oliver Serang and Lukas Käll . Solution to Statistical Challenges in Proteomics Is More Statistics, Not Less. Journal of Proteome Research 2015, 14 (10) , 4099-4103. https://doi.org/10.1021/acs.jproteome.5b00568
    15. Jeffrey A. Cramer . Approaching the Chemometric Modeling of Realistically Diverse Biochemical Data. 2015, 283-298. https://doi.org/10.1021/bk-2015-1199.ch012
    16. Sean McIlwain, Kaipo Tamura, Attila Kertesz-Farkas, Charles E. Grant, Benjamin Diament, Barbara Frewen, J. Jeffry Howbert, Michael R. Hoopmann, Lukas Käll, Jimmy K. Eng, Michael J. MacCoss, and William Stafford Noble . Crux: Rapid Open Source Protein Tandem Mass Spectrometry Analysis. Journal of Proteome Research 2014, 13 (10) , 4488-4491. https://doi.org/10.1021/pr500741y
    17. Viktor Granholm, Sangtae Kim, José C. F. Navarro, Erik Sjölund, Richard D. Smith, and Lukas Käll . Fast and Accurate Database Searches with MS-GF+Percolator. Journal of Proteome Research 2014, 13 (2) , 890-897. https://doi.org/10.1021/pr400937n
    18. Luminita Moruz, Michael R. Hoopmann, Magnus Rosenlund, Viktor Granholm, Robert L. Moritz, and Lukas Käll . Mass Fingerprinting of Complex Mixtures: Protein Inference from High-Resolution Peptide Masses and Predicted Retention Times. Journal of Proteome Research 2013, 12 (12) , 5730-5741. https://doi.org/10.1021/pr400705q
    19. Harald Marx, Simone Lemeer, Susan Klaeger, Thomas Rattei, and Bernhard Kuster . MScDB: A Mass Spectrometry-centric Protein Sequence Database for Proteomics. Journal of Proteome Research 2013, 12 (6) , 2386-2398. https://doi.org/10.1021/pr400215r
    20. Oliver Serang , Luminita Moruz , Michael R. Hoopmann , Lukas Käll . Recognizing Uncertainty Increases Robustness and Reproducibility of Mass Spectrometry-based Protein Inferences. Journal of Proteome Research 2012, 11 (12) , 5586-5591. https://doi.org/10.1021/pr300426s
    21. Quanhu Sheng, Jie Dai, Yibo Wu, Haixu Tang, and Rong Zeng . BuildSummary: Using a Group-Based Approach To Improve the Sensitivity of Peptide/Protein Identification in Shotgun Proteomics. Journal of Proteome Research 2012, 11 (3) , 1494-1502. https://doi.org/10.1021/pr200194p
    22. William R. Cannon, Mitchell M. Rawlins, Douglas J. Baxter, Stephen J. Callister, Mary S. Lipton, and Donald A. Bryant . Large Improvements in MS/MS-Based Peptide Identification Rates using a Hybrid Analysis. Journal of Proteome Research 2011, 10 (5) , 2306-2317. https://doi.org/10.1021/pr101130b
    23. Yalda Afshar, Feyiang Ma, Austin Quach, Anhyo Jeong, Hannah L Sunshine, Vanessa Freitas, Yasaman Jami-Alahmadi, Raphael Helaers, Xinmin Li, Matteo Pellegrini, James A Wohlschlegel, Casey E Romanoski, Miikka Vikkula, M Luisa Iruela-Arispe. Transcriptional drifts associated with environmental changes in endothelial cells. eLife 2023, 12 https://doi.org/10.7554/eLife.81370
    24. Hui Peng, Limsoon Wong, Wilson Wen Bin Goh, . ProInfer: An interpretable protein inference tool leveraging on biological networks. PLOS Computational Biology 2023, 19 (3) , e1010961. https://doi.org/10.1371/journal.pcbi.1010961
    25. Paul Anziani, Jérémie Becker, Charlotte Mignon, Nadège Arnaud-Barbe, Virginie Courtois, Marie Izac, Romain Pizzato, Joséphine Abi-Ghanem, Viet-Dung Tran, Magali Sarafian, Andrei Bunescu, Dominique Garnier, Eric Abachin, Geneviève Renauld-Mongénie, Cyril Guyard. Deep longitudinal multi-omics analysis of Bordetella pertussis cultivated in bioreactors highlights medium starvations and transitory metabolisms, associated to vaccine antigen biosynthesis variations and global virulence regulation. Frontiers in Microbiology 2023, 14 https://doi.org/10.3389/fmicb.2023.1036386
    26. Rachel M. Miller, Ben T. Jordan, Madison M. Mehlferber, Erin D. Jeffery, Christina Chatzipantsiou, Simi Kaur, Robert J. Millikin, Yunxiang Dai, Simone Tiberi, Peter J. Castaldi, Michael R. Shortreed, Chance John Luckey, Ana Conesa, Lloyd M. Smith, Anne Deslattes Mays, Gloria M. Sheynkman. Enhanced protein isoform characterization through long-read proteogenomics. Genome Biology 2022, 23 (1) https://doi.org/10.1186/s13059-022-02624-y
    27. Laura Fancello, Thomas Burger. An analysis of proteogenomics and how and when transcriptome-informed reduction of protein databases can enhance eukaryotic proteomics. Genome Biology 2022, 23 (1) https://doi.org/10.1186/s13059-022-02701-2
    28. Matthew The, Patroklos Samaras, Bernhard Kuster, Mathias Wilhelm. Reanalysis of ProteomicsDB Using an Accurate, Sensitive, and Scalable False Discovery Rate Estimation Approach for Protein Groups. Molecular & Cellular Proteomics 2022, 21 (12) , 100437. https://doi.org/10.1016/j.mcpro.2022.100437
    29. Shichao Feng, Hong-Long Ji, Huan Wang, Bailu Zhang, Ryan Sterzenbach, Chongle Pan, Xuan Guo, . MetaLP: An integrative linear programming method for protein inference in metaproteomics. PLOS Computational Biology 2022, 18 (10) , e1010603. https://doi.org/10.1371/journal.pcbi.1010603
    30. Maryam Ataeian, Yihua Liu, Angela Kouris, Alyse K. Hawley, Marc Strous. Ecological Interactions of Cyanobacteria and Heterotrophs Enhances the Robustness of Cyanobacterial Consortium for Carbon Sequestration. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.780346
    31. J. Alfredo Blakeley-Ruiz, Manuel Kleiner. Considerations for constructing a protein sequence database for metaproteomics. Computational and Structural Biotechnology Journal 2022, 20 , 937-952. https://doi.org/10.1016/j.csbj.2022.01.018
    32. Maryam Ataeian, Agasteswar Vadlamani, Marianne Haines, Damon Mosier, Xiaoli Dong, Manuel Kleiner, Marc Strous, Alyse K. Hawley. Proteome and strain analysis of cyanobacterium Candidatus “Phormidium alkaliphilum” reveals traits for success in biotechnology. iScience 2021, 24 (12) , 103405. https://doi.org/10.1016/j.isci.2021.103405
    33. Nilesh M. Agalave, Resti Rudjito, Alex Bersellini Farinotti, Payam Emami Khoonsari, Katalin Sandor, Yuki Nomura, Thomas A. Szabo-Pardi, Carlos Morado Urbina, Vinko Palada, Theodore J. Price, Helena Erlandsson Harris, Michael D. Burton, Kim Kultima, Camilla I. Svensson. Sex-dependent role of microglia in disulfide high mobility group box 1 protein-mediated mechanical hypersensitivity. Pain 2021, 162 (2) , 446-458. https://doi.org/10.1097/j.pain.0000000000002033
    34. Steven Verbruggen, Siegfried Gessulat, Ralf Gabriels, Anna Matsaroki, Hendrik Van de Voorde, Bernhard Kuster, Sven Degroeve, Lennart Martens, Wim Van Criekinge, Mathias Wilhelm, Gerben Menschaert. Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics. Molecular & Cellular Proteomics 2021, 20 , 100076. https://doi.org/10.1016/j.mcpro.2021.100076
    35. Zobeida Cruz-Monserrate, Kristyn Gumpper, Sabrina Kaul, Niharika Badi, Samantha Terhorst, Kelly Dubay, Gregory B. Lesinski, William Fisher, Amy McElhany, Luis F. Lara, Somashekar Krishna, Thomas Mace, Natalia Higuita-Castro, Lilibeth Ortega-Pineda, Michael A. Freitas, Alice Hinton, Dhiraj Yadav, Phil A. Hart, Stephen J. Pandol, Saima Ahmed, Benoit Fatou, Hanno Steen, Darwin L. Conwell, . Delayed Processing of Secretin-Induced Pancreas Fluid Influences the Quality and Integrity of Proteins and Nucleic Acids. Pancreas 2021, 50 (1) , 17-28. https://doi.org/10.1097/MPA.0000000000001717
    36. Tamara Scheidt, Oliver Alka, Humberto Gonczarowska-Jorge, Wolfgang Gruber, Florian Rathje, Margherita Dell’Aica, Marc Rurik, Oliver Kohlbacher, René P. Zahedi, Fritz Aberger, Christian G. Huber. Phosphoproteomics of short-term hedgehog signaling in human medulloblastoma cells. Cell Communication and Signaling 2020, 18 (1) https://doi.org/10.1186/s12964-020-00591-0
    37. Gabriele Colozza, Yasaman Jami-Alahmadi, Alyssa Dsouza, Nydia Tejeda-Muñoz, Lauren V. Albrecht, Eric A. Sosa, James A. Wohlschlegel, Edward M. De Robertis. Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-78019-5
    38. Sami Abu Hamdeh, Payam Emami Khoonsari, Ganna Shevchenko, Torsten Gordh, Hans Ericson, Kim Kultima. Increased CSF Levels of Apolipoproteins and Complement Factors in Trigeminal Neuralgia Patients–In Depth Proteomic Analysis Using Mass Spectrometry. The Journal of Pain 2020, 21 (9-10) , 1075-1084. https://doi.org/10.1016/j.jpain.2020.03.002
    39. Chen Chen, Jie Hou, John J. Tanner, Jianlin Cheng. Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis. International Journal of Molecular Sciences 2020, 21 (8) , 2873. https://doi.org/10.3390/ijms21082873
    40. Jeremy P. Koelmel, Xiangdong Li, Sarah M. Stow, Mark J. Sartain, Adithya Murali, Robin Kemperman, Hiroshi Tsugawa, Mikiko Takahashi, Vasilis Vasiliou, John A. Bowden, Richard A. Yost, Timothy J. Garrett, Norton Kitagawa. Lipid Annotator: Towards Accurate Annotation in Non-Targeted Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) Lipidomics Using a Rapid and User-Friendly Software. Metabolites 2020, 10 (3) , 101. https://doi.org/10.3390/metabo10030101
    41. Mia Yang Ang, Teck Yew Low, Pey Yee Lee, Wan Fahmi Wan Mohamad Nazarie, Victor Guryev, Rahman Jamal. Proteogenomics: From next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine. Clinica Chimica Acta 2019, 498 , 38-46. https://doi.org/10.1016/j.cca.2019.08.010
    42. Adarsh K. Mayank, Vijaya Pandey, Ajay A. Vashisht, William D. Barshop, Shima Rayatpisheh, Tanu Sharma, Tisha Haque, David N. Powers, James A. Wohlschlegel. An Oxygen-Dependent Interaction between FBXL5 and the CIA-Targeting Complex Regulates Iron Homeostasis. Molecular Cell 2019, 75 (2) , 382-393.e5. https://doi.org/10.1016/j.molcel.2019.05.020
    43. Albert Tian Chen, Alexander Franks, Nikolai Slavov, . DART-ID increases single-cell proteome coverage. PLOS Computational Biology 2019, 15 (7) , e1007082. https://doi.org/10.1371/journal.pcbi.1007082
    44. Riten Mitra, Ryan Gill, Sinjini Sikdar, Susmita Datta. Bayesian hierarchical model for protein identifications. Journal of Applied Statistics 2019, 46 (1) , 30-46. https://doi.org/10.1080/02664763.2018.1454893
    45. Payam Emami Khoonsari, Sravani Musunri, Stephanie Herman, Camilla I. Svensson, Lars Tanum, Torsten Gordh, Kim Kultima. Systematic analysis of the cerebrospinal fluid proteome of fibromyalgia patients. Journal of Proteomics 2019, 190 , 35-43. https://doi.org/10.1016/j.jprot.2018.04.014
    46. Pavel Sinitcyn, Jan Daniel Rudolph, Jürgen Cox. Computational Methods for Understanding Mass Spectrometry–Based Shotgun Proteomics Data. Annual Review of Biomedical Data Science 2018, 1 (1) , 207-234. https://doi.org/10.1146/annurev-biodatasci-080917-013516
    47. Manuel Kleiner, Erin Thorson, Christine E. Sharp, Xiaoli Dong, Dan Liu, Carmen Li, Marc Strous. Assessing species biomass contributions in microbial communities via metaproteomics. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01544-x
    48. Jiancheng Zhong, Jianxing Wang, Xiaojun Ding, Zhen Zhang, Min Li, Fang-Xiang Wu, Yi Pan. Protein Inference from the Integration of Tandem MS Data and Interactome Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2017, 14 (6) , 1399-1409. https://doi.org/10.1109/TCBB.2016.2601618
    49. Minseung Kim, Ameen Eetemadi, Ilias Tagkopoulos, . DeepPep: Deep proteome inference from peptide profiles. PLOS Computational Biology 2017, 13 (9) , e1005661. https://doi.org/10.1371/journal.pcbi.1005661
    50. Ying S Ting, Jarrett D Egertson, James G Bollinger, Brian C Searle, Samuel H Payne, William Stafford Noble, Michael J MacCoss. PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data. Nature Methods 2017, 14 (9) , 903-908. https://doi.org/10.1038/nmeth.4390
    51. Canan Has, Jens Allmer. PGMiner: Complete proteogenomics workflow; from data acquisition to result visualization. Information Sciences 2017, 384 , 126-134. https://doi.org/10.1016/j.ins.2016.08.005
    52. Enrique Audain, Julian Uszkoreit, Timo Sachsenberg, Julianus Pfeuffer, Xiao Liang, Henning Hermjakob, Aniel Sanchez, Martin Eisenacher, Knut Reinert, David L. Tabb, Oliver Kohlbacher, Yasset Perez-Riverol. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. Journal of Proteomics 2017, 150 , 170-182. https://doi.org/10.1016/j.jprot.2016.08.002
    53. James C. Wright, Jyoti S. Choudhary. PSM Scoring and Validation. 2016, 69-92. https://doi.org/10.1039/9781782626732-00069
    54. Lars Nilse. OpenMS: A Modular, Open-Source Workflow System for the Analysis of Quantitative Proteomics Data. 2016, 259-288. https://doi.org/10.1039/9781782626732-00259
    55. Lars Nilse, Dönem Avci, Patrick Heisterkamp, Oliver Serang, Marius K. Lemberg, Oliver Schilling. Yeast membrane proteomics using leucine metabolic labelling: Bioinformatic data processing and exemplary application to the ER-intramembrane protease Ypf1. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016, 1864 (10) , 1363-1371. https://doi.org/10.1016/j.bbapap.2016.07.002
    56. Hannes L Röst, Timo Sachsenberg, Stephan Aiche, Chris Bielow, Hendrik Weisser, Fabian Aicheler, Sandro Andreotti, Hans-Christian Ehrlich, Petra Gutenbrunner, Erhan Kenar, Xiao Liang, Sven Nahnsen, Lars Nilse, Julianus Pfeuffer, George Rosenberger, Marc Rurik, Uwe Schmitt, Johannes Veit, Mathias Walzer, David Wojnar, Witold E Wolski, Oliver Schilling, Jyoti S Choudhary, Lars Malmström, Ruedi Aebersold, Knut Reinert, Oliver Kohlbacher. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nature Methods 2016, 13 (9) , 741-748. https://doi.org/10.1038/nmeth.3959
    57. Matthew The, Ayesha Tasnim, Lukas Käll. How to talk about protein‐level false discovery rates in shotgun proteomics. PROTEOMICS 2016, 16 (18) , 2461-2469. https://doi.org/10.1002/pmic.201500431
    58. Dennis Goldfarb, Wei Wang, Michael B. Major. MSAcquisitionSimulator: data-dependent acquisition simulator for LC-MS shotgun proteomics. Bioinformatics 2016, 32 (8) , 1269-1271. https://doi.org/10.1093/bioinformatics/btv745
    59. Sujun Li, Haixu Tang. Computational Methods in Mass Spectrometry-Based Proteomics. 2016, 63-89. https://doi.org/10.1007/978-981-10-1503-8_4
    60. Belinda Hernández, Stephen R Pennington, Andrew C Parnell. Bayesian methods for proteomic biomarker development. EuPA Open Proteomics 2015, 9 , 54-64. https://doi.org/10.1016/j.euprot.2015.08.001
    61. Yaoyang Zhang, Tao Xu, Bing Shan, Jonathan Hart, Aaron Aslanian, Xuemei Han, Nobel Zong, Haomin Li, Howard Choi, Dong Wang, Lipi Acharya, Lisa Du, Peter K. Vogt, Peipei Ping, John R. Yates. ProteinInferencer: Confident protein identification and multiple experiment comparison for large scale proteomics projects. Journal of Proteomics 2015, 129 , 25-32. https://doi.org/10.1016/j.jprot.2015.07.006
    62. Oliver Serang. A Fast Numerical Method for Max-Convolution and the Application to Efficient Max-Product Inference in Bayesian Networks. Journal of Computational Biology 2015, 22 (8) , 770-783. https://doi.org/10.1089/cmb.2015.0013
    63. William Stafford Noble. Mass spectrometrists should search only for peptides they care about. Nature Methods 2015, 12 (7) , 605-608. https://doi.org/10.1038/nmeth.3450
    64. Franziska Zickmann, Bernhard Y. Renard. MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms. Bioinformatics 2015, 31 (12) , i106-i115. https://doi.org/10.1093/bioinformatics/btv236
    65. Xiaofeng Guo, David C. Trudgian, Andrew Lemoff, Sivaramakrishna Yadavalli, Hamid Mirzaei. Confetti: A Multiprotease Map of the HeLa Proteome for Comprehensive Proteomics. Molecular & Cellular Proteomics 2014, 13 (6) , 1573-1584. https://doi.org/10.1074/mcp.M113.035170
    66. Oliver Serang, . The Probabilistic Convolution Tree: Efficient Exact Bayesian Inference for Faster LC-MS/MS Protein Inference. PLoS ONE 2014, 9 (3) , e91507. https://doi.org/10.1371/journal.pone.0091507
    67. Sarah Gerster, Taejoon Kwon, Christina Ludwig, Mariette Matondo, Christine Vogel, Edward M. Marcotte, Ruedi Aebersold, Peter Bühlmann. Statistical Approach to Protein Quantification. Molecular & Cellular Proteomics 2014, 13 (2) , 666-677. https://doi.org/10.1074/mcp.M112.025445
    68. Toshihide Nishimura, Hiromasa Tojo. Mass Spectrometry-Based Protein Sequencing Platforms. 2014, 69-99. https://doi.org/10.1007/978-94-017-9202-8_5
    69. Chao Yang, Zengyou He, Weichuan Yu. A Combinatorial Perspective of the Protein Inference Problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2013, 10 (6) , 1542-1547. https://doi.org/10.1109/TCBB.2013.110
    70. Maria Bendz, Marcin Skwark, Daniel Nilsson, Viktor Granholm, Susana Cristobal, Lukas Käll, Arne Elofsson. Membrane protein shaving with thermolysin can be used to evaluate topology predictors. PROTEOMICS 2013, 13 (9) , 1467-1480. https://doi.org/10.1002/pmic.201200517
    71. Ting Huang, Haipeng Gong, Can Yang, Zengyou He. ProteinLasso: A Lasso regression approach to protein inference problem in shotgun proteomics. Computational Biology and Chemistry 2013, 43 , 46-54. https://doi.org/10.1016/j.compbiolchem.2012.12.008
    72. Viktor Granholm, José Fernández Navarro, William Stafford Noble, Lukas Käll. Determining the calibration of confidence estimation procedures for unique peptides in shotgun proteomics. Journal of Proteomics 2013, 80 , 123-131. https://doi.org/10.1016/j.jprot.2012.12.007
    73. Oliver Serang, Joao Paulo, Hanno Steen, Judith A. Steen. A Non-parametric Cutout Index for Robust Evaluation of Identified Proteins. Molecular & Cellular Proteomics 2013, 12 (3) , 807-812. https://doi.org/10.1074/mcp.O112.022863
    74. Michael R Hoopmann, Robert L Moritz. Current algorithmic solutions for peptide-based proteomics data generation and identification. Current Opinion in Biotechnology 2013, 24 (1) , 31-38. https://doi.org/10.1016/j.copbio.2012.10.013
    75. Oliver Serang. Concerning the accuracy of Fido and parameter choice. Bioinformatics 2013, 29 (3) , 412-412. https://doi.org/10.1093/bioinformatics/bts687
    76. Ting Huang, Zengyou He. A linear programming model for protein inference problem in shotgun proteomics. Bioinformatics 2012, 28 (22) , 2956-2962. https://doi.org/10.1093/bioinformatics/bts540
    77. Yong Fuga Li, Predrag Radivojac. Computational approaches to protein inference in shotgun proteomics. BMC Bioinformatics 2012, 13 (S16) https://doi.org/10.1186/1471-2105-13-S16-S4
    78. Manfred Claassen. Inference and Validation of Protein Identifications. Molecular & Cellular Proteomics 2012, 11 (11) , 1097-1104. https://doi.org/10.1074/mcp.R111.014795
    79. Viktor Granholm, William Stafford Noble, Lukas Käll. A cross-validation scheme for machine learning algorithms in shotgun proteomics. BMC Bioinformatics 2012, 13 (S16) https://doi.org/10.1186/1471-2105-13-S16-S3
    80. T. Huang, J. Wang, W. Yu, Z. He. Protein inference: a review. Briefings in Bioinformatics 2012, 13 (5) , 586-614. https://doi.org/10.1093/bib/bbs004
    81. O. Serang, W. S. Noble. Faster Mass Spectrometry-Based Protein Inference: Junction Trees Are More Efficient than Sampling and Marginalization by Enumeration. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2012, 9 (3) , 809-817. https://doi.org/10.1109/TCBB.2012.26
    82. Oliver Serang, Marcelo Mollinari, Antonio Augusto Franco Garcia, . Efficient Exact Maximum a Posteriori Computation for Bayesian SNP Genotyping in Polyploids. PLoS ONE 2012, 7 (2) , e30906. https://doi.org/10.1371/journal.pone.0030906
    83. William Stafford Noble, Michael J. MacCoss, . Computational and Statistical Analysis of Protein Mass Spectrometry Data. PLoS Computational Biology 2012, 8 (1) , e1002296. https://doi.org/10.1371/journal.pcbi.1002296
    84. Jimmy K. Eng, Brian C. Searle, Karl R. Clauser, David L. Tabb. A Face in the Crowd: Recognizing Peptides Through Database Search. Molecular & Cellular Proteomics 2011, 10 (11) , R111.009522. https://doi.org/10.1074/mcp.R111.009522
    85. Alexey I. Nesvizhskii. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. Journal of Proteomics 2010, 73 (11) , 2092-2123. https://doi.org/10.1016/j.jprot.2010.08.009

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect