ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Combined Proteomic and Metabolomic Profiling of Serum Reveals Association of the Complement System with Obesity and Identifies Novel Markers of Body Fat Mass Changes

View Author Information
IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany
Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
§ Department of Medicine, University of Leipzig, Leipzig, Germany
Department of Proteomics, Helmholtz Centre for Environmental Research, Leipzig, Germany
Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
# Interdisciplinary Centre for Clinical Research, University of Leipzig, Leipzig, Germany
Department of Metabolomics, Helmholtz Centre for Environmental Research, Leipzig, Germany
Department of Visceral, Thoracic, Vascular and Transplant Surgery, University of Leipzig, Leipzig, Germany
Institute of Animal Hygiene and Environmental Health, Freie University Berlin, Philippstr. 13, 10115 Berlin, Germany
Martin von Bergen. Address: Helmholtz Centre for Environmental Research, Department of Metabolomics, Permoser Strasse 15, 04318 Leipzig. Telephone: ++49-341-2351211. E-mail: [email protected]. Fax:++49-341-235451211.
Cite this: J. Proteome Res. 2011, 10, 10, 4769–4788
Publication Date (Web):August 9, 2011
https://doi.org/10.1021/pr2005555
Copyright © 2011 American Chemical Society
Article Views
3786
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (6 MB)
Supporting Info (12)»

Abstract

Abstract Image

Obesity is associated with multiple adverse health effects and a high risk of developing metabolic and cardiovascular diseases. Therefore, there is a great need to identify circulating parameters that link changes in body fat mass with obesity. This study combines proteomic and metabolomic approaches to identify circulating molecules that discriminate healthy lean from healthy obese individuals in an exploratory study design. To correct for variations in physical activity, study participants performed a one hour exercise bout to exhaustion. Subsequently, circulating factors differing between lean and obese individuals, independent of physical activity, were identified. The DIGE approach yielded 126 differentially abundant spots representing 39 unique proteins. Differential abundance of proteins was confirmed by ELISA for antithrombin-III, clusterin, complement C3 and complement C3b, pigment epithelium-derived factor (PEDF), retinol binding protein 4 (RBP4), serum amyloid P (SAP), and vitamin-D binding protein (VDBP). Targeted serum metabolomics of 163 metabolites identified 12 metabolites significantly related to obesity. Among those, glycine (GLY), glutamine (GLN), and glycero-phosphatidylcholine 42:0 (PCaa 42:0) serum concentrations were higher, whereas PCaa 32:0, PCaa 32:1, and PCaa 40:5 were decreased in obese compared to lean individuals. The integrated bioinformatic evaluation of proteome and metabolome data yielded an improved group separation score of 2.65 in contrast to 2.02 and 2.16 for the single-type use of proteomic or metabolomics data, respectively. The identified circulating parameters were further investigated in an extended set of 30 volunteers and in the context of two intervention studies. Those included 14 obese patients who had undergone sleeve gastrectomy and 12 patients on a hypocaloric diet. For determining the long-term adaptation process the samples were taken six months after the treatment. In multivariate regression analyses, SAP, CLU, RBP4, PEDF, GLN, and C18:2 showed the strongest correlation to changes in body fat mass. The combined serum proteomic and metabolomic profiling reveals a link between the complement system and obesity and identifies both novel (C3b, CLU, VDBP, and all metabolites) and confirms previously discovered markers (PEDF, RBP4, C3, ATIII, and SAP) of body fat mass changes.

Supporting Information

ARTICLE SECTIONS
Jump To

Supplemental tables and figures. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 154 publications.

  1. Aoife M. Curran, Colleen Fogarty Draper, Marie-Pier Scott-Boyer, Armand Valsesia, Helen M. Roche, Miriam F. Ryan, Michael J. Gibney, Martina Kutmon, Chris T. Evelo, Susan L. Coort, Arne Astrup, Wim H. Saris, Lorraine Brennan, and Jim Kaput . Sexual Dimorphism, Age, and Fat Mass Are Key Phenotypic Drivers of Proteomic Signatures. Journal of Proteome Research 2017, 16 (11) , 4122-4133. https://doi.org/10.1021/acs.jproteome.7b00501
  2. Marion Carayol, Michael F. Leitzmann, Pietro Ferrari, Raul Zamora-Ros, David Achaintre, Magdalena Stepien, Julie A. Schmidt, Ruth C. Travis, Kim Overvad, Anne Tjønneland, Louise Hansen, Rudolf Kaaks, Tilman Kühn, Heiner Boeing, Ursula Bachlechner, Antonia Trichopoulou, Christina Bamia, Domenico Palli, Claudia Agnoli, Rosario Tumino, Paolo Vineis, Salvatore Panico, J. Ramón Quirós, Emilio Sánchez-Cantalejo, José María Huerta, Eva Ardanaz, Larraitz Arriola, Antonio Agudo, Jan Nilsson, Olle Melander, Bas Bueno-de-Mesquita, Petra H. Peeters, Nick Wareham, Kay-Tee Khaw, Mazda Jenab, Timothy J. Key, Augustin Scalbert, and Sabina Rinaldi . Blood Metabolic Signatures of Body Mass Index: A Targeted Metabolomics Study in the EPIC Cohort. Journal of Proteome Research 2017, 16 (9) , 3137-3146. https://doi.org/10.1021/acs.jproteome.6b01062
  3. Andreas Oberbach, Nadine Schlichting, Jochen Neuhaus, Yvonne Kullnick, Stefanie Lehmann, Marco Heinrich, Arne Dietrich, Friedrich Wilhelm Mohr, Martin von Bergen, and Sven Baumann . Establishing a Reliable Multiple Reaction Monitoring-Based Method for the Quantification of Obesity-Associated Comorbidities in Serum and Adipose Tissue Requires Intensive Clinical Validation. Journal of Proteome Research 2014, 13 (12) , 5784-5800. https://doi.org/10.1021/pr500722k
  4. Flavia Badoud, Karen P. Lam, Alicia DiBattista, Maude Perreault, Michael A. Zulyniak, Bradley Cattrysse, Susan Stephenson, Philip Britz-McKibbin, and David M. Mutch . Serum and Adipose Tissue Amino Acid Homeostasis in the Metabolically Healthy Obese. Journal of Proteome Research 2014, 13 (7) , 3455-3466. https://doi.org/10.1021/pr500416v
  5. Yanpeng An, Wenxin Xu, Huihui Li, Hehua Lei, Limin Zhang, Fuhua Hao, Yixuan Duan, Xing Yan, Ying Zhao, Junfang Wu, Yulan Wang, and Huiru Tang . High-Fat Diet Induces Dynamic Metabolic Alterations in Multiple Biological Matrices of Rats. Journal of Proteome Research 2013, 12 (8) , 3755-3768. https://doi.org/10.1021/pr400398b
  6. Shunxin Jin, Yvo H. A. M. Kusters, Alfons J. H. M. Houben, Jogchum Plat, Peter J. Joris, Ronald P. Mensink, Casper G. Schalkwijk, Coen D. A. Stehouwer, Marleen M. J. van Greevenbroek. A randomized diet‐induced weight‐loss intervention reduces plasma complement C3 : Possible implication for endothelial dysfunction. Obesity 2022, 30 (7) , 1401-1410. https://doi.org/10.1002/oby.23467
  7. Matilde Vaz, Sofia S. Pereira, Mariana P. Monteiro. Metabolomic signatures after bariatric surgery – a systematic review. Reviews in Endocrine and Metabolic Disorders 2022, 23 (3) , 503-519. https://doi.org/10.1007/s11154-021-09695-5
  8. Daniel J. Panyard, Kyeong Mo Kim, Burcu F. Darst, Yuetiva K. Deming, Xiaoyuan Zhong, Yuchang Wu, Hyunseung Kang, Cynthia M. Carlsson, Sterling C. Johnson, Sanjay Asthana, Corinne D. Engelman, Qiongshi Lu. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-020-01583-z
  9. Cullen M Vincellette, Jack Losso, Kate Early, Guillaume Spielmann, Brian A Irving, Timothy D Allerton. Supplemental Watermelon Juice Attenuates Acute Hyperglycemia-Induced Macro-and Microvascular Dysfunction in Healthy Adults. The Journal of Nutrition 2021, 151 (11) , 3450-3458. https://doi.org/10.1093/jn/nxab279
  10. Jane Ha, Yeongkeun Kwon, Sungsoo Park. Metabolomics in Bariatric Surgery: Towards Identification of Mechanisms and Biomarkers of Metabolic Outcomes. Obesity Surgery 2021, 31 (10) , 4564-4574. https://doi.org/10.1007/s11695-021-05566-9
  11. Martino Deidda, Antonio Noto, Christian Cadeddu Dessalvi, Daniele Andreini, Felicita Andreotti, Eleuterio Ferrannini, Roberto Latini, Aldo P. Maggioni, Marco Magnoni, Attilio Maseri, Giuseppe Mercuro. Metabolomic correlates of coronary atherosclerosis, cardiovascular risk, both or neither. Results of the 2 × 2 phenotypic CAPIRE study. International Journal of Cardiology 2021, 336 , 14-21. https://doi.org/10.1016/j.ijcard.2021.05.033
  12. Maryam Mousavi, Mastaneh Rajabian Tabesh, Alireza Khalaj, Hassan Eini-Zinab, Soodeh Razeghi Jahromi, Maryam Abolhasani. Food Addiction Disorder 2 Years After Sleeve Gastrectomy; Association with Physical Activity, Body Composition, and Weight Loss Outcomes. Obesity Surgery 2021, 31 (8) , 3444-3452. https://doi.org/10.1007/s11695-021-05420-y
  13. Gakyung Lee, Young Suk Park, Chamlee Cho, Hyunbeom Lee, Jinyoung Park, Do Joong Park, Joo Ho Lee, Hyuk-Joon Lee, Tae Kyung Ha, Yong-Jin Kim, Seung-Wan Ryu, Sang-Moon Han, Moon-Won Yoo, Sungsoo Park, Sang-Uk Han, Yoonseok Heo, Byung Hwa Jung. Short-term changes in the serum metabolome after laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Metabolomics 2021, 17 (8) https://doi.org/10.1007/s11306-021-01826-y
  14. Jia Hong Liu, Nan Chen, Yan Hong Guo, Xiao Ni Guan, Jun Wang, Dong Wang, Mei Hong Xiu. Metabolomics-based understanding of the olanzapine-induced weight gain in female first-episode drug-naïve patients with schizophrenia. Journal of Psychiatric Research 2021, 140 , 409-415. https://doi.org/10.1016/j.jpsychires.2021.06.001
  15. Wei Xu, Sandra Grindler, Sven Dänicke, Jana Frahm, Akos Kenez, Korinna Huber. Increased plasma and milk short-chain acylcarnitines concentrations reflect systemic LPS response in mid-lactation dairy cows. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2021, 100 https://doi.org/10.1152/ajpregu.00072.2021
  16. Pamela A. Nono Nankam, Matthias Blüher. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Molecular and Cellular Endocrinology 2021, 531 , 111312. https://doi.org/10.1016/j.mce.2021.111312
  17. María del Carmen Vallejo-Curto, Daniela Rodrigues-Amorim, Laura Jardón-Golmar, María Blanco-Formoso, Tania Rivera-Baltanás, Cynthia Rodriguez-Jamardo, Patricia Fernández-Palleiro, María Álvarez-Ariza, Marta López-García, Alejandro García-Caballero, Elena de las Heras, José Manuel Olivares, Carlos Spuch. Proteomic and metabolic profiling of chronic patients with schizophrenia induced by a physical activity program: Pilot study. Revista de Psiquiatría y Salud Mental (English Edition) 2021, 14 (3) , 125-138. https://doi.org/10.1016/j.rpsmen.2021.07.002
  18. María del Carmen Vallejo-Curto, Daniela Rodrigues-Amorim, Laura Jardón-Golmar, María Blanco-Formoso, Tania Rivera-Baltanás, Cynthia Rodriguez-Jamardo, Patricia Fernández-Palleiro, María Álvarez-Ariza, Marta López-García, Alejandro García-Caballero, Elena de las Heras, José Manuel Olivares, Carlos Spuch. Perfil proteómico y metabólico de pacientes crónicos con esquizofrenia tras un programa de actividad física: estudio piloto. Revista de Psiquiatría y Salud Mental 2021, 14 (3) , 125-138. https://doi.org/10.1016/j.rpsm.2020.11.001
  19. Xuling Chang, Ling Wang, Shou Ping Guan, Brian K. Kennedy, Jianjun Liu, Chiea-Chuen Khor, Adrian F. Low, Mark Yan-Yee Chan, Jian-Min Yuan, Woon-Puay Koh, Yechiel Friedlander, Rajkumar Dorajoo, Chew-Kiat Heng. The association of genetically determined serum glycine with cardiovascular risk in East Asians. Nutrition, Metabolism and Cardiovascular Diseases 2021, 31 (6) , 1840-1844. https://doi.org/10.1016/j.numecd.2021.03.010
  20. Carmen Rodríguez-Rivera, María Dolores Pérez-Carrión, Lucía Casariego Olavarría, Luis F. Alguacil, María José Polanco Mora, Carmen González-Martín. Clusterin levels in undernourished SH-SY5Y cells. Food & Nutrition Research 2021, 65 https://doi.org/10.29219/fnr.v65.5709
  21. Marissa R. Pallotto, Patrícia M. Oba, Maria R. C. de Godoy, Kirk L. Pappan, Preston R. Buff, Kelly S. Swanson. Effects of Weight Loss and Moderate-Protein, High-Fiber Diet Consumption on the Fasted Serum Metabolome of Cats. Metabolites 2021, 11 (5) , 324. https://doi.org/10.3390/metabo11050324
  22. Gianfranco Frigerio, Chiara Favero, Diego Savino, Rosa Mercadante, Benedetta Albetti, Laura Dioni, Luisella Vigna, Valentina Bollati, Angela Cecilia Pesatori, Silvia Fustinoni. Plasma Metabolomic Profiling in 1391 Subjects with Overweight and Obesity from the SPHERE Study. Metabolites 2021, 11 (4) , 194. https://doi.org/10.3390/metabo11040194
  23. Chunxiao Liao, Biqi Wang, Wenjing Gao, Weihua Cao, Jun Lv, Canqing Yu, Tao Huang, Dianjianyi Sun, Shengfeng Wang, Zengchang Pang, Liming Cong, Hua Wang, Xianping Wu, Liming Li. Associations of Obesity Measurements with Serum Metabolomic Profile: A Chinese Twin Study. Twin Research and Human Genetics 2021, 24 (1) , 14-21. https://doi.org/10.1017/thg.2021.3
  24. Carmen Rodríguez-Rivera, Miguel M. Garcia, Miguel Molina-Álvarez, Carmen González-Martín, Carlos Goicoechea. Clusterin: Always protecting. Synthesis, function and potential issues. Biomedicine & Pharmacotherapy 2021, 134 , 111174. https://doi.org/10.1016/j.biopha.2020.111174
  25. Ahmad Raza Khan, Raja Roy. Metabolic profiling leading to clinical phenomics: From bench to bedside. 2021,,, 371-382. https://doi.org/10.1016/B978-0-323-85652-2.00018-X
  26. Zhou-Lin Wu, Shi-Yi Chen, Shenqiang Hu, Xianbo Jia, Jie Wang, Song-Jia Lai. Metabolomic and Proteomic Profiles Associated With Ketosis in Dairy Cows. Frontiers in Genetics 2020, 11 https://doi.org/10.3389/fgene.2020.551587
  27. Sylwia M. Figarska, Joseph Rigdon, Andrea Ganna, Sölve Elmståhl, Lars Lind, Christopher D. Gardner, Erik Ingelsson. Proteomic profiles before and during weight loss: Results from randomized trial of dietary intervention. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-64636-7
  28. Karin Wåhlén, Malin Ernberg, Eva Kosek, Kaisa Mannerkorpi, Björn Gerdle, Bijar Ghafouri. Significant correlation between plasma proteome profile and pain intensity, sensitivity, and psychological distress in women with fibromyalgia. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-69422-z
  29. Michaela R. Anderson, Joshua Geleris, David R. Anderson, Jason Zucker, Yael R. Nobel, Daniel Freedberg, Jennifer Small-Saunders, Kartik N. Rajagopalan, Richard Greendyk, Sae-Rom Chae, Karthik Natarajan, David Roh, Ethan Edwin, Dympna Gallagher, Anna Podolanczuk, R. Graham Barr, Anthony W. Ferrante, Matthew R. Baldwin. Body Mass Index and Risk for Intubation or Death in SARS-CoV-2 Infection. Annals of Internal Medicine 2020, 173 (10) , 782-790. https://doi.org/10.7326/M20-3214
  30. Erikka Loftfield, Karl-Heinz Herzig, J. Gregory Caporaso, Andriy Derkach, Yunhu Wan, Doratha A. Byrd, Emily Vogtmann, Minna Männikkö, Ville Karhunen, Rob Knight, Marc J. Gunter, Marjo-Riitta Järvelin, Rashmi Sinha. Association of Body Mass Index with Fecal Microbial Diversity and Metabolites in the Northern Finland Birth Cohort. Cancer Epidemiology, Biomarkers & Prevention 2020, 29 (11) , 2289-2299. https://doi.org/10.1158/1055-9965.EPI-20-0824
  31. Bozidarka L. Zaric, Jelena N. Radovanovic, Zoran Gluvic, Alan J. Stewart, Magbubah Essack, Olaa Motwalli, Takashi Gojobori, Esma R. Isenovic. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.551758
  32. Iñigo Pallardo-Fernández, Victoria Iglesias, Carmen Rodríguez-Rivera, Carmen González-Martín, Luis F. Alguacil. Salivary clusterin as a biomarker of tobacco consumption in nicotine addicts undergoing smoking cessation therapy. Journal of Smoking Cessation 2020, 15 (3) , 171-174. https://doi.org/10.1017/jsc.2020.15
  33. S. Lucena, A.V. Coelho, A. Muñoz-Prieto, S.I. Anjo, B. Manadas, F. Capela e Silva, E. Lamy, A. Tvarijonaviciute. Changes in the salivary proteome of beagle dogs after weight loss. Domestic Animal Endocrinology 2020, 72 , 106474. https://doi.org/10.1016/j.domaniend.2020.106474
  34. Ahsan Hameed, Patrycja Mojsak, Angelika Buczynska, Hafiz Ansar Rasul Suleria, Adam Kretowski, Michal Ciborowski. Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM. Journal of Clinical Medicine 2020, 9 (7) , 2257. https://doi.org/10.3390/jcm9072257
  35. Gopika Satheesh, Surya Ramachandran, Abdul Jaleel. Metabolomics-Based Prospective Studies and Prediction of Type 2 Diabetes Mellitus Risks. Metabolic Syndrome and Related Disorders 2020, 18 (1) , 1-9. https://doi.org/10.1089/met.2019.0047
  36. Victoria L. Stevens, Brian D. Carter, Marjorie L. McCullough, Peter T. Campbell, Ying Wang. Metabolomic Profiles Associated with BMI, Waist Circumference, and Diabetes and Inflammation Biomarkers in Women. Obesity 2020, 28 (1) , 187-196. https://doi.org/10.1002/oby.22670
  37. Sebastian Rauschert, Antonio Gázquez, Olaf Uhl, Franca F. Kirchberg, Hans Demmelmair, María Ruíz-Palacios, María T. Prieto-Sánchez, José E. Blanco-Carnero, Anibal Nieto, Elvira Larqué, Berthold Koletzko. Phospholipids in lipoproteins: compositional differences across VLDL, LDL, and HDL in pregnant women. Lipids in Health and Disease 2019, 18 (1) https://doi.org/10.1186/s12944-019-0957-z
  38. Minoo Bagheri, Abolghasem Djazayery, Farshad Farzadfar, Lu Qi, Mir Saeed Yekaninejad, Stella Aslibekyan, Maryam Chamari, Hossein Hassani, Berthold Koletzko, Olaf Uhl. Plasma metabolomic profiling of amino acids and polar lipids in Iranian obese adults. Lipids in Health and Disease 2019, 18 (1) https://doi.org/10.1186/s12944-019-1037-0
  39. Darrell Pilling, Nehemiah Cox, Megan A. Thomson, Tejas R. Karhadkar, Richard H. Gomer. Serum Amyloid P and a Dendritic Cell–Specific Intercellular Adhesion Molecule-3–Grabbing Nonintegrin Ligand Inhibit High-Fat Diet–Induced Adipose Tissue and Liver Inflammation and Steatosis in Mice. The American Journal of Pathology 2019, 189 (12) , 2400-2413. https://doi.org/10.1016/j.ajpath.2019.08.005
  40. Kosuke Saito, Satoko Ueno, Akira Nakayama, Shin-ichiro Nitta, Koji Arai, Tomoko Hasunuma, Yoshiro Saito. Overall Similarities and a Possible Factor Affecting Plasma Metabolome Profiles Between Venous and Capillary Blood Samples From 20 Healthy Human Males. Journal of Pharmaceutical Sciences 2019, 108 (11) , 3737-3744. https://doi.org/10.1016/j.xphs.2019.08.026
  41. Navid Sahebekhtiari, Mayank Saraswat, Sakari Joenväärä, Riikka Jokinen, Alen Lovric, Sanna Kaye, Adil Mardinoglu, Aila Rissanen, Jaakko Kaprio, Risto Renkonen, Kirsi H. Pietiläinen. Plasma Proteomics Analysis Reveals Dysregulation of Complement Proteins and Inflammation in Acquired Obesity—A Study on Rare BMI‐Discordant Monozygotic Twin Pairs. PROTEOMICS – Clinical Applications 2019, 13 (4) , 1800173. https://doi.org/10.1002/prca.201800173
  42. Parisa Savedoroudi, Tue Bjerg Bennike, Kenneth Kastaniegaard, Mohammad Talebpour, Alireza Ghassempour, Allan Stensballe. Serum proteome changes and accelerated reduction of fat mass after laparoscopic gastric plication in morbidly obese patients. Journal of Proteomics 2019, 203 , 103373. https://doi.org/10.1016/j.jprot.2019.05.001
  43. Oscar Daniel Rangel-Huerta, Belén Pastor-Villaescusa, Angel Gil. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics 2019, 15 (6) https://doi.org/10.1007/s11306-019-1553-y
  44. Aikaterina Siopi, Olga Deda, Vasiliki Manou, Ioannis Kosmidis, Despina Komninou, Nikolaos Raikos, Georgios A. Theodoridis, Vassilis Mougios. Comparison of the Serum Metabolic Fingerprint of Different Exercise Modes in Men with and without Metabolic Syndrome. Metabolites 2019, 9 (6) , 116. https://doi.org/10.3390/metabo9060116
  45. Amrita Vijay, Ana M Valdes. The Metabolomic Signatures of Weight Change. Metabolites 2019, 9 (4) , 67. https://doi.org/10.3390/metabo9040067
  46. Carmen Rodríguez-Rivera, Carmen Pérez-García, José Ramón Muñoz-Rodríguez, Marta Vicente-Rodríguez, Filomena Polo, Rhian-Marie Ford, Esperanza Segura, Alberto León, Elisabet Salas, Luis Sáenz-Mateos, Carmen González-Martín, Gonzalo Herradón, Luis Beato-Fernández, Jesús Martín-Fernández, Luis F. Alguacil. Proteomic Identification of Biomarkers Associated with Eating Control and Bariatric Surgery Outcomes in Patients with Morbid Obesity. World Journal of Surgery 2019, 43 (3) , 744-750. https://doi.org/10.1007/s00268-018-4851-z
  47. Elizabeth T. Cirulli, Lining Guo, Christine Leon Swisher, Naisha Shah, Lei Huang, Lori A. Napier, Ewen F. Kirkness, Tim D. Spector, C. Thomas Caskey, Bernard Thorens, J. Craig Venter, Amalio Telenti. Profound Perturbation of the Metabolome in Obesity Is Associated with Health Risk. Cell Metabolism 2019, 29 (2) , 488-500.e2. https://doi.org/10.1016/j.cmet.2018.09.022
  48. A. Tvarijonaviciute, R. Barić-Rafaj, A. Horvatic, A. Muñoz-Prieto, N. Guillemin, E. Lamy, A. Tumpa, J.J. Ceron, S. Martinez-Subiela, V. Mrljak. Identification of changes in serum analytes and possible metabolic pathways associated with canine obesity-related metabolic dysfunction. The Veterinary Journal 2019, 244 , 51-59. https://doi.org/10.1016/j.tvjl.2018.12.006
  49. Bilal Mirza, Wei Wang, Jie Wang, Howard Choi, Neo Christopher Chung, Peipei Ping. Machine Learning and Integrative Analysis of Biomedical Big Data. Genes 2019, 10 (2) , 87. https://doi.org/10.3390/genes10020087
  50. Nida Ali Syed, Attya Bhatti, Shanzay Ahmed, Huma Syed, Peter John. Single-Cell Omics in Metabolic Disorders. 2019,,, 153-164. https://doi.org/10.1016/B978-0-12-817532-3.00008-6
  51. Andrea M. Brennan, Andre Tchernof, Robert E. Gerszten, Theresa E. Cowan, Robert Ross. Depot-Specific Adipose Tissue Metabolite Profiles and Corresponding Changes Following Aerobic Exercise. Frontiers in Endocrinology 2018, 9 https://doi.org/10.3389/fendo.2018.00759
  52. Jan Kučera, Zdeněk Spáčil, David Friedecký, Jan Novák, Matěj Pekař, Julie Bienertová-Vašků. Human White Adipose Tissue Metabolome: Current Perspective. Obesity 2018, 26 (12) , 1870-1878. https://doi.org/10.1002/oby.22336
  53. Genevieve M. Forster, Jonathan Stockman, Noelle Noyes, Adam L. Heuberger, Corey D. Broeckling, Collin M. Bantle, Elizabeth P. Ryan. A Comparative Study of Serum Biochemistry, Metabolome and Microbiome Parameters of Clinically Healthy, Normal Weight, Overweight, and Obese Companion Dogs. Topics in Companion Animal Medicine 2018, 33 (4) , 126-135. https://doi.org/10.1053/j.tcam.2018.08.003
  54. Xianghui Li, Liang Sun, Wenduo Zhang, Hongxia Li, Siming Wang, Hongna Mu, Qi Zhou, Ying Zhang, Yueming Tang, Yu Wang, Wenxiang Chen, Ruiyue Yang, Jun Dong. Association of serum glycine levels with metabolic syndrome in an elderly Chinese population. Nutrition & Metabolism 2018, 15 (1) https://doi.org/10.1186/s12986-018-0325-4
  55. Renato Russo, Sven-Bastiaan Haange, Ulrike Rolle-Kampczyk, Martin von Bergen, Jeremias Martin Becker, Matthias Liess. Identification of pesticide exposure-induced metabolic changes in mosquito larvae. Science of The Total Environment 2018, 643 , 1533-1541. https://doi.org/10.1016/j.scitotenv.2018.06.282
  56. Kosuke Saito, Masafumi Ikeda, Yasushi Kojima, Hiroko Hosoi, Yoshiro Saito, Shunsuke Kondo. Lipid profiling of pre-treatment plasma reveals biomarker candidates associated with response rates and hand–foot skin reactions in sorafenib-treated patients. Cancer Chemotherapy and Pharmacology 2018, 82 (4) , 677-684. https://doi.org/10.1007/s00280-018-3655-z
  57. Chenjie He, Yongbin Liu, Yicheng Wang, Jie Tang, Zhirong Tan, Xi Li, Yao Chen, Yuanfei Huang, Xiaoping Chen, Dongsheng Ouyang, Honghao Zhou, Jingbo Peng. 1H NMR based pharmacometabolomics analysis of metabolic phenotype on predicting metabolism characteristics of losartan in healthy volunteers. Journal of Chromatography B 2018, 1095 , 15-23. https://doi.org/10.1016/j.jchromb.2018.07.016
  58. Luciana Teixeira de Siqueira, Marcela Silvestre Outtes Wanderley, Roberto Afonso da Silva, Adriana da Silva Andrade Pereira, José Luiz de Lima Filho, Álvaro Antônio Bandeira Ferraz. A Screening Study of Potential Carcinogen Biomarkers After Surgical Treatment of Obesity. Obesity Surgery 2018, 28 (8) , 2487-2493. https://doi.org/10.1007/s11695-018-3191-2
  59. H. Sadri, B. Saremi, S. Dänicke, J. Rehage, M. Mielenz, A. Hosseini, H. Sauerwein. Lactation-related changes in tissue expression of PEDF in dairy cows. Domestic Animal Endocrinology 2018, 64 , 93-101. https://doi.org/10.1016/j.domaniend.2018.04.004
  60. Rebeca Mayo, Javier Crespo, Ibon Martínez‐Arranz, Jesus M Banales, Mayte Arias, Itziar Mincholé, Rocío Aller de la Fuente, Raúl Jimenez‐Agüero, Cristina Alonso, Daniel A. de Luis, Libor Vitek, Jan Stritesky, Joan Caballería, Manuel Romero‐Gómez, Antonio Martín‐Duce, Jose Maria Mugüerza Huguet, José Ignacio Busteros‐Moraza, Michael O. Idowu, Azucena Castro, M. Luz Martínez‐Chantar, Pablo Ortiz, Radan Bruha, Shelly C. Lu, Pierre Bedossa, Mazen Noureddin, Arun J. Sanyal, José M. Mato. Metabolomic‐based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts. Hepatology Communications 2018, 2 (7) , 807-820. https://doi.org/10.1002/hep4.1188
  61. Magali Palau-Rodriguez, Sara Tulipani, Anna Marco-Ramell, Antonio Miñarro, Olga Jáuregui, Alex Sanchez-Pla, Bruno Ramos-Molina, Francisco J. Tinahones, Cristina Andres-Lacueva, . Metabotypes of response to bariatric surgery independent of the magnitude of weight loss. PLOS ONE 2018, 13 (6) , e0198214. https://doi.org/10.1371/journal.pone.0198214
  62. Sarah I. Jacob, Kevin J. Murray, Aaron K. Rendahl, Raymond J. Geor, Nichol E. Schultz, Molly E. McCue. Metabolic perturbations in Welsh Ponies with insulin dysregulation, obesity, and laminitis. Journal of Veterinary Internal Medicine 2018, 32 (3) , 1215-1233. https://doi.org/10.1111/jvim.15095
  63. Yitao Li, Mengci Li, Wei Jia, Yan Ni, Tianlu Chen. MCEE: a data preprocessing approach for metabolic confounding effect elimination. Analytical and Bioanalytical Chemistry 2018, 410 (11) , 2689-2699. https://doi.org/10.1007/s00216-018-0947-4
  64. Maria Elena Romero-Ibarguengoitia, Felipe Vadillo-Ortega, Augusto Enrique Caballero, Isabel Ibarra-González, Arturo Herrera-Rosas, María Fabiola Serratos-Canales, Mireya León-Hernández, Antonio González-Chávez, Srinivas Mummidi, Ravindranath Duggirala, Juan Carlos López-Alvarenga, . Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equation modeling approach. PLOS ONE 2018, 13 (2) , e0193138. https://doi.org/10.1371/journal.pone.0193138
  65. George A. Bray, Leanne M. Redman, Lilian de Jonge, Jennifer Rood, Elizabeth F. Sutton, Steven R. Smith. Plasma Amino Acids During 8 Weeks of Overfeeding: Relation to Diet Body Composition and Fat Cell Size in the PROOF Study. Obesity 2018, 26 (2) , 324-331. https://doi.org/10.1002/oby.22087
  66. Eleni-Ioanna Delatola, Mohammed Dakna. Statistical Inference in High-Dimensional Omics Data. 2018,,, 196-206. https://doi.org/10.1002/9781119183952.ch11
  67. Fen Wu, Liang Chi, Hongyu Ru, Faruque Parvez, Vesna Slavkovich, Mahbub Eunus, Alauddin Ahmed, Tariqul Islam, Muhammad Rakibuz-Zaman, Rabiul Hasan, Golam Sarwar, Joseph H. Graziano, Habibul Ahsan, Kun Lu, Yu Chen. Arsenic Exposure from Drinking Water and Urinary Metabolomics: Associations and Long-Term Reproducibility in Bangladesh Adults. Environmental Health Perspectives 2018, 126 (1) , 017005. https://doi.org/10.1289/EHP1992
  68. Paulina Samczuk, Michal Ciborowski, Adam Kretowski. Application of Metabolomics to Study Effects of Bariatric Surgery. Journal of Diabetes Research 2018, 2018 , 1-13. https://doi.org/10.1155/2018/6270875
  69. Anthony R. Soltis, Norman J. Kennedy, Xiaofeng Xin, Feng Zhou, Scott B. Ficarro, Yoon Sing Yap, Bryan J. Matthews, Douglas A. Lauffenburger, Forest M. White, Jarrod A. Marto, Roger J. Davis, Ernest Fraenkel. Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Reports 2017, 21 (11) , 3317-3328. https://doi.org/10.1016/j.celrep.2017.11.059
  70. Michael J. Haley, Graham Mullard, Katherine A. Hollywood, Garth J. Cooper, Warwick B. Dunn, Catherine B. Lawrence. Adipose tissue and metabolic and inflammatory responses to stroke are altered in obese mice. Disease Models & Mechanisms 2017, 10 (10) , 1229-1243. https://doi.org/10.1242/dmm.030411
  71. B Englich, G Herberth, U Rolle-Kampczyk, S Trump, S Röder, M Borte, G I Stangl, M von Bergen, I Lehmann, K M Junge. Maternal cytokine status may prime the metabolic profile and increase risk of obesity in children. International Journal of Obesity 2017, 41 (9) , 1440-1446. https://doi.org/10.1038/ijo.2017.113
  72. Naglaa M. Ammar, Mohamed A. Farag, Tahani E. Kholeif, Nadia S. Metwally, Nora M. El-Sheikh, Abdel Nasser El Gendy, Abdel- Hamid Z. Abdel- Hamid. Serum metabolomics reveals the mechanistic role of functional foods and exercise for obesity management in rats. Journal of Pharmaceutical and Biomedical Analysis 2017, 142 , 91-101. https://doi.org/10.1016/j.jpba.2017.05.001
  73. Daxesh P. Patel, Kristopher W. Krausz, Cen Xie, Diren Beyoğlu, Frank J. Gonzalez, Jeffrey R. Idle, . Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice. PLOS ONE 2017, 12 (5) , e0177953. https://doi.org/10.1371/journal.pone.0177953
  74. Aikaterina Siopi, Olga Deda, Vasiliki Manou, Spyros Kellis, Ioannis Kosmidis, Despina Komninou, Nikolaos Raikos, Kosmas Christoulas, Georgios Theodoridis, Vassilis Mougios. Effects of Different Exercise Modes on the Urinary Metabolic Fingerprint of Men with and without Metabolic Syndrome. Metabolites 2017, 7 (1) , 5. https://doi.org/10.3390/metabo7010005
  75. Zhi-gang Gong, Jianbing Zhang, Yong-Jiang Xu. Metabolomics Reveals that Momordica charantia Attenuates Metabolic Changes in Experimental Obesity. Phytotherapy Research 2017, 31 (2) , 296-302. https://doi.org/10.1002/ptr.5748
  76. Christian Riebeling, Harald Jungnickel, Andreas Luch, Andrea Haase. Systems Biology to Support Nanomaterial Grouping. 2017,,, 143-171. https://doi.org/10.1007/978-3-319-47754-1_6
  77. Aihua Zhang, Hui Sun, Xijun Wang. Emerging role and recent applications of metabolomics biomarkers in obesity disease research. RSC Advances 2017, 7 (25) , 14966-14973. https://doi.org/10.1039/C6RA28715H
  78. Raúl González-Domínguez, Ana Sayago, Ángeles Fernández-Recamales. Direct infusion mass spectrometry for metabolomic phenotyping of diseases. Bioanalysis 2017, 9 (1) , 131-148. https://doi.org/10.4155/bio-2016-0202
  79. Sara Tulipani, Jules Griffin, Magali Palau-Rodriguez, Ximena Mora-Cubillos, Rosa M. Bernal-Lopez, Francisco J. Tinahones, Barbara E. Corkey, Cristina Andres-Lacueva. Metabolomics-guided insights on bariatric surgery versus behavioral interventions for weight loss. Obesity 2016, 24 (12) , 2451-2466. https://doi.org/10.1002/oby.21686
  80. Zuleen Delina Fasya Abdul Ghani, Juani Mazmin Husin, Ahmad Hazri Ab Rashid, Khozirah Shaari, Zamri Chik. Biochemical studies of Piper betle L leaf extract on obese treated animal using 1H-NMR-based metabolomic approach of blood serum samples. Journal of Ethnopharmacology 2016, 194 , 690-697. https://doi.org/10.1016/j.jep.2016.10.022
  81. Asta Tvarijonaviciute, Jose J. Ceron, Carlos de Torre, Blanka B. Ljubić, Shelley L. Holden, Yann Queau, Penelope J. Morris, Josep Pastor, Alexander J. German. Obese dogs with and without obesity-related metabolic dysfunction – a proteomic approach. BMC Veterinary Research 2016, 12 (1) https://doi.org/10.1186/s12917-016-0839-9
  82. Maria Elena Lacruz, Alexander Kluttig, Daniel Tiller, Daniel Medenwald, Ina Giegling, Dan Rujescu, Cornelia Prehn, Jerzy Adamski, Stefan Frantz, Karin Halina Greiser, Rebecca Thwing Emeny, Gabi Kastenmüller, Johannes Haerting. Cardiovascular Risk Factors Associated With Blood Metabolite Concentrations and Their Alterations During a 4-Year Period in a Population-Based Cohort. Circulation: Cardiovascular Genetics 2016, 9 (6) , 487-494. https://doi.org/10.1161/CIRCGENETICS.116.001444
  83. Shawn A Ritchie, Dushmanthi Jayasinge, Li Wang, Dayan B Goodenowe. Improved specificity of serum phosphatidylcholine detection based on side-chain losses during negative electrospray ionization tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2016, 408 (27) , 7811-7823. https://doi.org/10.1007/s00216-016-9884-2
  84. Cavin K Ward-Caviness, Susanne Breitner, Kathrin Wolf, Josef Cyrys, Gabi Kastenmüller, Rui Wang-Sattler, Alexandra Schneider, Annette Peters. Short-term NO 2 exposure is associated with long-chain fatty acids in prospective cohorts from Augsburg, Germany: results from an analysis of 138 metabolites and three exposures. International Journal of Epidemiology 2016, 45 (5) , 1528-1538. https://doi.org/10.1093/ije/dyw247
  85. Qi Zhao, Yun Zhu, Lyle G. Best, Jason G. Umans, Karan Uppal, ViLinh T. Tran, Dean P. Jones, Elisa T. Lee, Barbara V. Howard, Jinying Zhao, . Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study. PLOS ONE 2016, 11 (7) , e0159548. https://doi.org/10.1371/journal.pone.0159548
  86. Elke Humer, Annabella Khol-Parisini, Barbara U. Metzler-Zebeli, Leonhard Gruber, Qendrim Zebeli, . Alterations of the Lipid Metabolome in Dairy Cows Experiencing Excessive Lipolysis Early Postpartum. PLOS ONE 2016, 11 (7) , e0158633. https://doi.org/10.1371/journal.pone.0158633
  87. J. KLOUČKOVÁ, Z. LACINOVÁ, P. KAVÁLKOVÁ, P. TRACHTA, M. KASALICKÝ, D. HALUZÍKOVÁ, M. MRÁZ, M. HALUZÍK. Plasma Concentrations and Subcutaneous Adipose Tissue mRNA Expression of Clusterin in Obesity and Type 2 Diabetes Mellitus: the Effect of Short-Term Hyperinsulinemia, Very-Low-Calorie Diet and Bariatric Surgery. Physiological Research 2016, , 481-492. https://doi.org/10.33549/physiolres.933121
  88. John Ikwuobe, Srikanth Bellary, Helen R. Griffiths. Innovative biomarkers for predicting type 2 diabetes mellitus: relevance to dietary management of frailty in older adults. Biogerontology 2016, 17 (3) , 511-527. https://doi.org/10.1007/s10522-016-9634-z
  89. Sonia I. Vlaicu, Alexandru Tatomir, Dallas Boodhoo, Stefan Vesa, Petru A. Mircea, Horea Rus. The role of complement system in adipose tissue-related inflammation. Immunologic Research 2016, 64 (3) , 653-664. https://doi.org/10.1007/s12026-015-8783-5
  90. U Bachlechner, A Floegel, A Steffen, C Prehn, J Adamski, T Pischon, H Boeing. Associations of anthropometric markers with serum metabolites using a targeted metabolomics approach: results of the EPIC-potsdam study. Nutrition & Diabetes 2016, 6 (6) , e215-e215. https://doi.org/10.1038/nutd.2016.23
  91. Bénédicte Allam-Ndoul, Frédéric Guénard, Véronique Garneau, Hubert Cormier, Olivier Barbier, Louis Pérusse, Marie-Claude Vohl. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status. Nutrients 2016, 8 (6) , 324. https://doi.org/10.3390/nu8060324
  92. Jan Krumsiek, Jörg Bartel, Fabian J Theis. Computational approaches for systems metabolomics. Current Opinion in Biotechnology 2016, 39 , 198-206. https://doi.org/10.1016/j.copbio.2016.04.009
  93. A. Fardet, Edmond Rock. The healthy core metabolism: A new paradigm for primary preventive nutrition. The journal of nutrition, health & aging 2016, 20 (3) , 239-247. https://doi.org/10.1007/s12603-015-0560-6
  94. Michael Korostishevsky, Claire J Steves, Ida Malkin, Timothy Spector, Frances MK Williams, Gregory Livshits. Genomics and metabolomics of muscular mass in a community-based sample of UK females. European Journal of Human Genetics 2016, 24 (2) , 277-283. https://doi.org/10.1038/ejhg.2015.85
  95. Yunpeng Ding, Gard F. T. Svingen, Eva R. Pedersen, Jesse F. Gregory, Per M. Ueland, Grethe S. Tell, Ottar K. Nygård. Plasma Glycine and Risk of Acute Myocardial Infarction in Patients With Suspected Stable Angina Pectoris. Journal of the American Heart Association 2016, 5 (1) https://doi.org/10.1161/JAHA.115.002621
  96. Waqas Qureshi, David Herrington. Metabolomics and Cardiovascular Medicine. 2016,,, 1-37. https://doi.org/10.1016/B978-0-12-799961-6.00001-9
  97. Kosuke Saito, Keiko Maekawa, Jason M. Kinchen, Rieko Tanaka, Yuji Kumagai, Yoshiro Saito. Gender- and Age-Associated Differences in Serum Metabolite Profiles among Japanese Populations. Biological & Pharmaceutical Bulletin 2016, 39 (7) , 1179-1186. https://doi.org/10.1248/bpb.b16-00226
  98. Carl Brunius, Lin Shi, Rikard Landberg. Metabolomics for Improved Understanding and Prediction of Cardiometabolic Diseases—Recent Findings from Human Studies. Current Nutrition Reports 2015, 4 (4) , 348-364. https://doi.org/10.1007/s13668-015-0144-4
  99. M. S. Ahmad, H. Ashrafian, M. Alsaleh, E. Holmes. Role of metabolic phenotyping in understanding obesity and related conditions in Gulf Co-operation Council countries. Clinical Obesity 2015, 5 (6) , 302-311. https://doi.org/10.1111/cob.12121
  100. Simone Wahl, Susanne Vogt, Ferdinand Stückler, Jan Krumsiek, Jörg Bartel, Tim Kacprowski, Katharina Schramm, Maren Carstensen, Wolfgang Rathmann, Michael Roden, Carolin Jourdan, Antti J Kangas, Pasi Soininen, Mika Ala-Korpela, Ute Nöthlings, Heiner Boeing, Fabian J Theis, Christa Meisinger, Melanie Waldenberger, Karsten Suhre, Georg Homuth, Christian Gieger, Gabi Kastenmüller, Thomas Illig, Jakob Linseisen, Annette Peters, Holger Prokisch, Christian Herder, Barbara Thorand, Harald Grallert. Multi-omic signature of body weight change: results from a population-based cohort study. BMC Medicine 2015, 13 (1) https://doi.org/10.1186/s12916-015-0282-y
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE