ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Stability and Robustness of Human Metabolic Phenotypes in Response to Sequential Food Challenges

View Author Information
Biomolecular Medicine, Department of Surgery & Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, United Kingdom
Nestle Research Center, Vers-chez-les-Blancs, CH-1000 Lausanne 26, Switzerland
Cite this: J. Proteome Res. 2012, 11, 2, 643–655
Publication Date (Web):October 17, 2011
https://doi.org/10.1021/pr2005764
Copyright © 2011 American Chemical Society

    Article Views

    2315

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    High-resolution spectroscopic profiles of biofluids can define metabolic phenotypes, providing a window onto the impact of diet on health to reflect gene–environment interactions. 1H NMR spectroscopic profiling was used to characterize the effect of nutritional intervention on the stability of the metabolic phenotype of 7 individuals following a controlled 7 day dietary protocol. Inter-individual metabolic differences influenced proportionally more of the spectrum than dietary modulation, with certain individuals displaying a greater stability of metabolic phenotypes than others. Correlation structures between urinary metabolites were identified and used to map inter-individual pathway differences. Choline degradation was the pathway most affected by the individual, suggesting that the gut microbiota influence host metabolic phenotypes. This influence was further emphasized by the highly correlated excretion of the microbial–mammalian co-metabolites phenylacetylglutamine, 4-cresylsulfate (r = 0.87), and indoxylsulfate (r = 0.67) across all individuals. Above the background of inter-individual differences, clear biochemical effects of single type dietary interventions, animal protein, fruit and wine intake, were observed; for example, the spectral variance introduced by fruit ingestion was attributed to the metabolites tartrate, proline betaine, hippurate, and 4-hydroxyhippurate. This differential metabolic baseline and response to selected dietary challenges highlights the importance of understanding individual differences in metabolism and provides a rationale for evaluating dietary interventions and stratification of individuals with respect to guiding nutrition and health programmes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Supplementary figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 102 publications.

    1. Ruey Leng Loo, Queenie Chan, Jeremy K. Nicholson, Elaine Holmes. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine-N-oxide. Journal of Proteome Research 2022, 21 (3) , 560-589. https://doi.org/10.1021/acs.jproteome.1c00851
    2. Yuka Shiokawa, Takuma Misawa, Yasuhiro Date, and Jun Kikuchi . Application of Market Basket Analysis for the Visualization of Transaction Data Based on Human Lifestyle and Spectroscopic Measurements. Analytical Chemistry 2016, 88 (5) , 2714-2719. https://doi.org/10.1021/acs.analchem.5b04182
    3. Silke S. Heinzmann, Elaine Holmes, Sunil Kochhar, Jeremy K. Nicholson, and Philippe Schmitt-Kopplin . 2-Furoylglycine as a Candidate Biomarker of Coffee Consumption. Journal of Agricultural and Food Chemistry 2015, 63 (38) , 8615-8621. https://doi.org/10.1021/acs.jafc.5b03040
    4. Silke S. Heinzmann and Philippe Schmitt-Kopplin . Deep Metabotyping of the Murine Gastrointestinal Tract for the Visualization of Digestion and Microbial Metabolism. Journal of Proteome Research 2015, 14 (5) , 2267-2277. https://doi.org/10.1021/acs.jproteome.5b00034
    5. Takuma Misawa, Yasuhiro Date, and Jun Kikuchi . Human Metabolic, Mineral, and Microbiota Fluctuations Across Daily Nutritional Intake Visualized by a Data-Driven Approach. Journal of Proteome Research 2015, 14 (3) , 1526-1534. https://doi.org/10.1021/pr501194k
    6. Yi Chi, Lijun Pei, Gong Chen, Xinming Song, Aihua Zhao, Tianlu Chen, Mingming Su, Yinan Zhang, Jianmeng Liu, Aiguo Ren, Xiaoying Zheng, Guoxiang Xie, and Wei Jia . Metabonomic Profiling of Human Placentas Reveals Different Metabolic Patterns among Subtypes of Neural Tube Defects. Journal of Proteome Research 2014, 13 (2) , 934-945. https://doi.org/10.1021/pr4009805
    7. Yuanyuan Du, Wenxian Lan, Zhusheng Ji, Xu Zhang, Bin Jiang, Xin Zhou, Conggang Li, and Maili Liu . NMR Spectroscopic Approach Reveals Metabolic Diversity of Human Blood Plasma Associated with Protein–Drug Interaction. Analytical Chemistry 2013, 85 (18) , 8601-8608. https://doi.org/10.1021/ac401738z
    8. Yonghai Lu, Honming Lam, Erxu Pi, Qinglei Zhan, Sauna Tsai, Chunmei Wang, Yiuwa Kwan, and Saiming Ngai . Comparative Metabolomics in Glycine max and Glycine soja under Salt Stress To Reveal the Phenotypes of Their Offspring. Journal of Agricultural and Food Chemistry 2013, 61 (36) , 8711-8721. https://doi.org/10.1021/jf402043m
    9. Jim Kaput, Jacqueline Pontes Monteiro, Melissa J. Morine, Martin Kussmann. Personalized nutrition. 2024, 540-561. https://doi.org/10.1016/B978-0-12-824010-6.00003-4
    10. Jennifer J. Dawkins, Jessica R. Allegretti, Travis E. Gibson, Emma McClure, Mary Delaney, Lynn Bry, Georg K. Gerber. Gut metabolites predict Clostridioides difficile recurrence. Microbiome 2022, 10 (1) https://doi.org/10.1186/s40168-022-01284-1
    11. Silke S. Heinzmann, Melanie Waldenberger, Annette Peters, Philippe Schmitt-Kopplin. Cluster Analysis Statistical Spectroscopy for the Identification of Metabolites in 1H NMR Metabolomics. Metabolites 2022, 12 (10) , 992. https://doi.org/10.3390/metabo12100992
    12. Christian Brachem, Kolade Oluwagbemigun, Julia Langenau, Leonie Weinhold, Ute Alexy, Matthias Schmid, Ute Nöthlings. Exploring the Association between Habitual Food Intake and the Urine and Blood Metabolome in Adolescents and Young Adults: A Cohort Study. Molecular Nutrition & Food Research 2022, 66 (18) https://doi.org/10.1002/mnfr.202200023
    13. Eriko Shibutami, Toru Takebayashi. A Scoping Review of the Application of Metabolomics in Nutrition Research: The Literature Survey 2000–2019. Nutrients 2021, 13 (11) , 3760. https://doi.org/10.3390/nu13113760
    14. Xuan-Yi Sim, Baharudin Ibrahim, Lay-Harn Gam. Urinary metabolites of type 2 diabetes rats fed with palm oil-enriched high fat diet. Heliyon 2021, 7 (9) , e08075. https://doi.org/10.1016/j.heliyon.2021.e08075
    15. Theresa Saenger, Florian Hübner, Viktoria Lindemann, Kristina Ganswind, Hans‐Ulrich Humpf. Urinary Biomarkers for Orange Juice Consumption. Molecular Nutrition & Food Research 2021, 65 (2) https://doi.org/10.1002/mnfr.202000781
    16. N. Penney, W. Barton, J. M. Posma, A. Darzi, G. Frost, P. D. Cotter, E. Holmes, F. Shanahan, O. O’Sullivan, I. Garcia-Perez, . Investigating the Role of Diet and Exercise in Gut Microbe-Host Cometabolism. mSystems 2020, 5 (6) https://doi.org/10.1128/mSystems.00677-20
    17. Manfred Beckmann, Thomas Wilson, Amanda J. Lloyd, Duarte Torres, Ana Goios, Naomi D. Willis, Laura Lyons, Helen Phillips, John C. Mathers, John Draper. Challenges Associated With the Design and Deployment of Food Intake Urine Biomarker Technology for Assessment of Habitual Diet in Free-Living Individuals and Populations—A Perspective. Frontiers in Nutrition 2020, 7 https://doi.org/10.3389/fnut.2020.602515
    18. Ata Mahmoodpoor, Ali Shamekh, Sarvin Sanaie. Foodomics and COVID-19. Clinical Nutrition ESPEN 2020, 38 , 283. https://doi.org/10.1016/j.clnesp.2020.05.017
    19. Joram M. Posma, Isabel Garcia-Perez, Gary Frost, Ghadeer S. Aljuraiban, Queenie Chan, Linda Van Horn, Martha Daviglus, Jeremiah Stamler, Elaine Holmes, Paul Elliott, Jeremy K. Nicholson. Nutriome–metabolome relationships provide insights into dietary intake and metabolism. Nature Food 2020, 1 (7) , 426-436. https://doi.org/10.1038/s43016-020-0093-y
    20. Isabel Garcia-Perez, Joram M. Posma, Edward S. Chambers, John C. Mathers, John Draper, Manfred Beckmann, Jeremy K. Nicholson, Elaine Holmes, Gary Frost. RETRACTED ARTICLE: Dietary metabotype modelling predicts individual responses to dietary interventions. Nature Food 2020, 1 (6) , 355-364. https://doi.org/10.1038/s43016-020-0092-z
    21. Erin D Clarke, Megan E Rollo, Kristine Pezdirc, Clare E Collins, Rebecca L Haslam. Urinary biomarkers of dietary intake: a review. Nutrition Reviews 2020, 78 (5) , 364-381. https://doi.org/10.1093/nutrit/nuz048
    22. Robert S. Chapkin, Sandi L. Navarro, Meredith A. J. Hullar, Johanna W. Lampe. Diet and Gut Microbes Act Coordinately to Enhance Programmed Cell Death and Reduce Colorectal Cancer Risk. Digestive Diseases and Sciences 2020, 65 (3) , 840-851. https://doi.org/10.1007/s10620-020-06106-8
    23. Sheng Pan, Meredith A. J. Hullar, Lisa A. Lai, Hong Peng, Damon H. May, William S. Noble, Daniel Raftery, Sandi L. Navarro, Marian L. Neuhouser, Paul D. Lampe, Johanna W. Lampe, Ru Chen. Gut Microbial Protein Expression in Response to Dietary Patterns in a Controlled Feeding Study: A Metaproteomic Approach. Microorganisms 2020, 8 (3) , 379. https://doi.org/10.3390/microorganisms8030379
    24. Amr K. Hussien, Pacint E. Moez, Hala S. Elwakil, Hayam A. Elagaan. Identification of urinary proteomic profile of patients with chronic allograft nephropathy. Alexandria Journal of Medicine 2020, 56 (1) , 93-104. https://doi.org/10.1080/20905068.2020.1749782
    25. Cătălina Cuparencu, Giulia Praticó, Lieselot Y. Hemeryck, Pedapati S. C. Sri Harsha, Stefania Noerman, Caroline Rombouts, Muyao Xi, Lynn Vanhaecke, Kati Hanhineva, Lorraine Brennan, Lars O. Dragsted. Biomarkers of meat and seafood intake: an extensive literature review. Genes & Nutrition 2019, 14 (1) https://doi.org/10.1186/s12263-019-0656-4
    26. Riley L Hughes, Mary E Kable, Maria Marco, Nancy L Keim. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models. Part II: Results. Advances in Nutrition 2019, 10 (6) , 979-998. https://doi.org/10.1093/advances/nmz049
    27. Langenau, Boeing, Bergmann, Nöthlings, Oluwagbemigun. The Association between Alcohol Consumption and Serum Metabolites and the Modifying Effect of Smoking. Nutrients 2019, 11 (10) , 2331. https://doi.org/10.3390/nu11102331
    28. Cătălina Cuparencu, Åsmund Rinnan, Lars O. Dragsted. Combined Markers to Assess Meat Intake—Human Metabolomic Studies of Discovery and Validation. Molecular Nutrition & Food Research 2019, 63 (17) https://doi.org/10.1002/mnfr.201900106
    29. H. M. Roager, L. O. Dragsted. Diet‐derived microbial metabolites in health and disease. Nutrition Bulletin 2019, 44 (3) , 216-227. https://doi.org/10.1111/nbu.12396
    30. M. Urpi-Sarda, E. Almanza-Aguilera, R. Llorach, R. Vázquez-Fresno, R. Estruch, D. Corella, J.V. Sorli, F. Carmona, A. Sanchez-Pla, J. Salas-Salvadó, C. Andres-Lacueva. Non-targeted metabolomic biomarkers and metabotypes of type 2 diabetes: A cross-sectional study of PREDIMED trial participants. Diabetes & Metabolism 2019, 45 (2) , 167-174. https://doi.org/10.1016/j.diabet.2018.02.006
    31. Nadezda V. Khodorova, Douglas N. Rutledge, Marion Oberli, David Mathiron, Paulo Marcelo, Robert Benamouzig, Daniel Tomé, Claire Gaudichon, Serge Pilard. Urinary Metabolomics Profiles Associated to Bovine Meat Ingestion in Humans. Molecular Nutrition & Food Research 2019, 63 (1) https://doi.org/10.1002/mnfr.201700834
    32. Ryan B Gil, Alberto Ortiz, Maria D Sanchez-Niño, Katerina Markoska, Eva Schepers, Raymond Vanholder, Griet Glorieux, Philippe Schmitt-Kopplin, Silke S Heinzmann. Increased urinary osmolyte excretion indicates chronic kidney disease severity and progression rate. Nephrology Dialysis Transplantation 2018, 33 (12) , 2156-2164. https://doi.org/10.1093/ndt/gfy020
    33. Charlotte C. J. R. Michielsen, Enrique Almanza-Aguilera, Elske M. Brouwer-Brolsma, Mireia Urpi-Sarda, Lydia A. Afman. Biomarkers of food intake for cocoa and liquorice (products): a systematic review. Genes & Nutrition 2018, 13 (1) https://doi.org/10.1186/s12263-018-0610-x
    34. Robert Davies. The metabolomic quest for a biomarker in chronic kidney disease. Clinical Kidney Journal 2018, 11 (5) , 694-703. https://doi.org/10.1093/ckj/sfy037
    35. Ruey Leng Loo, Xin Zou, Lawrence J Appel, Jeremy K Nicholson, Elaine Holmes. Characterization of metabolic responses to healthy diets and association with blood pressure: application to the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart), a randomized controlled study. The American Journal of Clinical Nutrition 2018, 107 (3) , 323-334. https://doi.org/10.1093/ajcn/nqx072
    36. Ryan B. Gil, Silke Heinzmann. Metabolomics of Body Fluids. 2018, 173-195. https://doi.org/10.1002/9781119183952.ch10
    37. Toby J. Athersuch, Anisha wijeyesekera. NMR in Environmental and Nutritional Research. 2018, 168-182. https://doi.org/10.1039/9781782627937-00168
    38. Aikaterina Siopi, Vassilis Mougios. Metabolomics in Human Acute-Exercise Trials: Study Design and Preparation. 2018, 279-287. https://doi.org/10.1007/978-1-4939-7643-0_19
    39. David Marx, Jochen Metzger, Martin Pejchinovski, Ryan Bruce Gil, Maria Frantzi, Agnieszka Latosinska, Iwona Belczacka, Silke Sophie Heinzmann, Holger Husi, Jerome Zoidakis, Matthias Klingele, Stefan Herget-Rosenthal. Proteomics and Metabolomics for AKI Diagnosis. Seminars in Nephrology 2018, 38 (1) , 63-87. https://doi.org/10.1016/j.semnephrol.2017.09.007
    40. Mengxia Wang, Xiaojun Zhang, Yuanyuan Wang, Yuan Li, Yongxiong Chen, Haihui Zheng, Fangli Ma, Chung Wah Ma, Biyu Lu, Zhiyong Xie, Qiongfeng Liao. Metabonomic strategy for the detection of metabolic effects of probiotics combined with prebiotic supplementation in weaned rats. RSC Advances 2018, 8 (9) , 5042-5057. https://doi.org/10.1039/C7RA12067B
    41. Manuel Suárez, Antoni Caimari, Josep M. del Bas, Lluís Arola. Metabolomics: An emerging tool to evaluate the impact of nutritional and physiological challenges. TrAC Trends in Analytical Chemistry 2017, 96 , 79-88. https://doi.org/10.1016/j.trac.2017.06.003
    42. Clare B. O’Donovan, Marianne C. Walsh, Clara Woolhead, Hannah Forster, Carlos Celis-Morales, Rosalind Fallaize, Anna L. Macready, Cyril F. M. Marsaux, Santiago Navas-Carretero, S. Rodrigo San-Cristobal, Silvia Kolossa, Lydia Tsirigoti, Christina Mvrogianni, Christina P. Lambrinou, George Moschonis, Magdalena Godlewska, Agnieszka Surwillo, Iwona Traczyk, Christian A. Drevon, Hannelore Daniel, Yannis Manios, J. Alfredo Martinez, Wim H. M. Saris, Julie A. Lovegrove, John C. Mathers, Michael J. Gibney, Eileen R. Gibney, Lorraine Brennan. Metabotyping for the development of tailored dietary advice solutions in a European population: the Food4Me study. British Journal of Nutrition 2017, 118 (8) , 561-569. https://doi.org/10.1017/S0007114517002069
    43. Jingjing Xu, Xujuan Zheng, Kian-Kai Cheng, Xiaorong Chang, Guiping Shen, Mi Liu, Yadong Wang, Jiacheng Shen, Yuan Zhang, Qida He, Jiyang Dong, Zongbao Yang. NMR-based metabolomics Reveals Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep45580
    44. Berthold Hocher, Jerzy Adamski. Metabolomics for clinical use and research in chronic kidney disease. Nature Reviews Nephrology 2017, 13 (5) , 269-284. https://doi.org/10.1038/nrneph.2017.30
    45. Katharina J. Penczynski, Danika Krupp, Anna Bring, Katja Bolzenius, Thomas Remer, Anette E. Buyken. Relative validation of 24-h urinary hippuric acid excretion as a biomarker for dietary flavonoid intake from fruit and vegetables in healthy adolescents. European Journal of Nutrition 2017, 56 (2) , 757-766. https://doi.org/10.1007/s00394-015-1121-9
    46. Isabel Garcia-Perez, Joram M Posma, Rachel Gibson, Edward S Chambers, Tue H Hansen, Henrik Vestergaard, Torben Hansen, Manfred Beckmann, Oluf Pedersen, Paul Elliott, Jeremiah Stamler, Jeremy K Nicholson, John Draper, John C Mathers, Elaine Holmes, Gary Frost. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. The Lancet Diabetes & Endocrinology 2017, 5 (3) , 184-195. https://doi.org/10.1016/S2213-8587(16)30419-3
    47. William Cheung, Pekka Keski-Rahkonen, Nada Assi, Pietro Ferrari, Heinz Freisling, Sabina Rinaldi, Nadia Slimani, Raul Zamora-Ros, Milena Rundle, Gary Frost, Helena Gibbons, Eibhlin Carr, Lorraine Brennan, Amanda J Cross, Valeria Pala, Salvatore Panico, Carlotta Sacerdote, Domenico Palli, Rosario Tumino, Tilman Kühn, Rudolf Kaaks, Heiner Boeing, Anna Floegel, Francesca Mancini, Marie-Christine Boutron-Ruault, Laura Baglietto, Antonia Trichopoulou, Androniki Naska, Philippos Orfanos, Augustin Scalbert. A metabolomic study of biomarkers of meat and fish intake ,. The American Journal of Clinical Nutrition 2017, 105 (3) , 600-608. https://doi.org/10.3945/ajcn.116.146639
    48. Elizabeth J. Reverri, Carolyn M. Slupsky, Darya O. Mishchuk, Francene M. Steinberg. Metabolomics reveals differences between three daidzein metabolizing phenotypes in adults with cardiometabolic risk factors. Molecular Nutrition & Food Research 2017, 61 (1) https://doi.org/10.1002/mnfr.201600132
    49. Sandi Navarro, Marian Neuhouser, Ting-Yuan Cheng, Lesley Tinker, James Shikany, Linda Snetselaar, Jessica Martinez, Ikuko Kato, Shirley Beresford, Robert Chapkin, Johanna Lampe. The Interaction between Dietary Fiber and Fat and Risk of Colorectal Cancer in the Women’s Health Initiative. Nutrients 2016, 8 (12) , 779. https://doi.org/10.3390/nu8120779
    50. Kirill S. Smirnov, Tanja V. Maier, Alesia Walker, Silke S. Heinzmann, Sara Forcisi, Inés Martinez, Jens Walter, Philippe Schmitt-Kopplin. Challenges of metabolomics in human gut microbiota research. International Journal of Medical Microbiology 2016, 306 (5) , 266-279. https://doi.org/10.1016/j.ijmm.2016.03.006
    51. Ryan B. Gil, Rainer Lehmann, Philippe Schmitt-Kopplin, Silke S. Heinzmann. 1H NMR-based metabolite profiling workflow to reduce inter-sample chemical shift variations in urine samples for improved biomarker discovery. Analytical and Bioanalytical Chemistry 2016, 408 (17) , 4683-4691. https://doi.org/10.1007/s00216-016-9552-6
    52. Abigail J. O’Connor, Georges M. Halpern, Rosemary L. Walzem. Nonalcoholic Components of Wine and Atherosclerotic Cardiovascular Disease. 2016, 83-99. https://doi.org/10.1007/978-3-319-23672-8_6
    53. Jessica A. Martinez, Hector C. Keun, Alexandros P. Siskos. Effects of Mediterranean Diet on the Metabolome. 2016, 121-137. https://doi.org/10.1007/978-3-319-27969-5_10
    54. Joost P. Schanstra, Bernd Mayer, Christoph Aufricht. Omics Tools for Exploration of Renal Disorders. 2016, 165-183. https://doi.org/10.1007/978-3-662-52972-0_6
    55. L.M. Oude Griep, E. Chekmeneva, J. Stamler, L. Van Horn, Q. Chan, T.M.D. Ebbels, E. Holmes, G.S. Frost, P. Elliott. Urinary hippurate and proline betaine relative to fruit intake, blood pressure, and body mass index. Proceedings of the Nutrition Society 2016, 75 (OCE3) https://doi.org/10.1017/S0029665116001932
    56. Gary D Wu, Charlene Compher, Eric Z Chen, Sarah A Smith, Rachana D Shah, Kyle Bittinger, Christel Chehoud, Lindsey G Albenberg, Lisa Nessel, Erin Gilroy, Julie Star, Aalim M Weljie, Harry J Flint, David C Metz, Michael J Bennett, Hongzhe Li, Frederic D Bushman, James D Lewis. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2016, 65 (1) , 63-72. https://doi.org/10.1136/gutjnl-2014-308209
    57. I Jane Cox, Abil E Aliev, Mary ME Crossey, Mahvish Dawood, Mamun Al-Mahtab, Sheikh M Akbar, Salimur Rahman, Antonio Riva, Roger Williams, Simon D Taylor-Robinson. Urinary nuclear magnetic resonance spectroscopy of a Bangladeshi cohort with hepatitis-B hepatocellular carcinoma: A biomarker corroboration study. World Journal of Gastroenterology 2016, 22 (16) , 4191. https://doi.org/10.3748/wjg.v22.i16.4191
    58. Natalie Bordag, Sebastian Klie, Kathrin Jürchott, Janine Vierheller, Hajo Schiewe, Valerie Albrecht, Jörg-Christian Tonn, Christoph Schwartz, Christian Schichor, Joachim Selbig. Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep15954
    59. M. S. Ahmad, H. Ashrafian, M. Alsaleh, E. Holmes. Role of metabolic phenotyping in understanding obesity and related conditions in G ulf C o‐operation C ouncil countries. Clinical Obesity 2015, 5 (6) , 302-311. https://doi.org/10.1111/cob.12121
    60. Marie Austdal, Line Tangerås, Ragnhild Skråstad, Kjell Salvesen, Rigmor Austgulen, Ann-Charlotte Iversen, Tone Bathen. First Trimester Urine and Serum Metabolomics for Prediction of Preeclampsia and Gestational Hypertension: A Prospective Screening Study. International Journal of Molecular Sciences 2015, 16 (9) , 21520-21538. https://doi.org/10.3390/ijms160921520
    61. Ilias Lagkouvardos, Karoline Kläring, Silke S. Heinzmann, Stefanie Platz, Birgit Scholz, Karl‐Heinz Engel, Philippe Schmitt‐Kopplin, Dirk Haller, Sascha Rohn, Thomas Skurk, Thomas Clavel. Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Molecular Nutrition & Food Research 2015, 59 (8) , 1614-1628. https://doi.org/10.1002/mnfr.201500125
    62. Rosa Vázquez-Fresno, Rafael Llorach, Mireia Urpi-Sarda, Olha Khymenets, Mònica Bulló, Dolores Corella, Montserrat Fitó, Miguel Angel Martínez-González, Ramon Estruch, Cristina Andres-Lacueva. An NMR metabolomics approach reveals a combined-biomarkers model in a wine interventional trial with validation in free-living individuals of the PREDIMED study. Metabolomics 2015, 11 (4) , 797-806. https://doi.org/10.1007/s11306-014-0735-x
    63. Alessia Trimigno, Flaminia Cesare Marincola, Nicolò Dellarosa, Gianfranco Picone, Luca Laghi. Definition of food quality by NMR-based foodomics. Current Opinion in Food Science 2015, 4 , 99-104. https://doi.org/10.1016/j.cofs.2015.06.008
    64. Karani S Vimaleswaran, Caroline Ivanne Le Roy, Sandrine Paule Claus. Foodomics for personalized nutrition: how far are we?. Current Opinion in Food Science 2015, 4 , 129-135. https://doi.org/10.1016/j.cofs.2015.07.001
    65. Patrick A Gladding, Alasdair Patrick, Paul Manley, Laura Mash, Phillip Shepherd, Rinki Murphy, Silas Vilas-Boas, Todd T Schlegel. Personalized hypertension management in practice. Personalized Medicine 2015, 12 (3) , 297-311. https://doi.org/10.2217/pme.14.83
    66. Joost P. Schanstra, Harald Mischak. Proteomic urinary biomarker approach in renal disease: from discovery to implementation. Pediatric Nephrology 2015, 30 (5) , 713-725. https://doi.org/10.1007/s00467-014-2790-y
    67. Paul Elliott, Joram M. Posma, Queenie Chan, Isabel Garcia-Perez, Anisha Wijeyesekera, Magda Bictash, Timothy M. D. Ebbels, Hirotsugu Ueshima, Liancheng Zhao, Linda van Horn, Martha Daviglus, Jeremiah Stamler, Elaine Holmes, Jeremy K. Nicholson. Urinary metabolic signatures of human adiposity. Science Translational Medicine 2015, 7 (285) https://doi.org/10.1126/scitranslmed.aaa5680
    68. Mette S. Schmedes, Christian C. Yde, Ulla Svensson, Janet Håkansson, Sanmohan Baby, Hanne C. Bertram. Impact of a 6-week very low-calorie diet and weight reduction on the serum and fecal metabolome of overweight subjects. European Food Research and Technology 2015, 240 (3) , 583-594. https://doi.org/10.1007/s00217-014-2359-9
    69. Mireia Urpi-Sarda, Enrique Almanza-Aguilera, Sara Tulipani, Francisco J. Tinahones, Jordi Salas-Salvadó, Cristina Andres-Lacueva. Metabolomics for Biomarkers of Type 2 Diabetes Mellitus: Advances and Nutritional Intervention Trends. Current Cardiovascular Risk Reports 2015, 9 (3) https://doi.org/10.1007/s12170-015-0440-y
    70. S.E. Richards, E. Holmes. Metabolic profiling as a tool in nutritional research. 2015, 17-35. https://doi.org/10.1016/B978-1-78242-084-2.00002-2
    71. Yemeng Li, Qiongfeng Liao, Manna Lin, Danmin Zhong, Lin Wei, Bo Han, Hui Miao, Meicun Yao, Zhiyong Xie. An integrated metabonomics and microbiology analysis of host-microbiota metabolic interactions in rats with Coptis chinensis-induced diarrhea. RSC Advances 2015, 5 (97) , 79329-79341. https://doi.org/10.1039/C5RA16338B
    72. Tao Wu, Ming Yang, Tao Liu, Lili Yang, Guang Ji. A Metabolomics Approach to Stratify Patients Diagnosed with Diabetes Mellitus into Excess or Deficiency Syndromes. Evidence-Based Complementary and Alternative Medicine 2015, 2015 , 1-8. https://doi.org/10.1155/2015/350703
    73. Jasmohan S. Bajaj, I. Jane Cox, Naga S. Betrapally, Douglas M. Heuman, Mitchell L. Schubert, Maiyuran Ratneswaran, Phillip B. Hylemon, Melanie B. White, Kalyani Daita, Nicole A. Noble, Masoumeh Sikaroodi, Roger Williams, Mary M. E. Crossey, Simon D. Taylor-Robinson, Patrick M. Gillevet. Systems biology analysis of omeprazole therapy in cirrhosis demonstrates significant shifts in gut microbiota composition and function. American Journal of Physiology-Gastrointestinal and Liver Physiology 2014, 307 (10) , G951-G957. https://doi.org/10.1152/ajpgi.00268.2014
    74. Tomislav Ticak, Duncan J. Kountz, Kimberly E. Girosky, Joseph A. Krzycki, Donald J. Ferguson. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proceedings of the National Academy of Sciences 2014, 111 (43) https://doi.org/10.1073/pnas.1409642111
    75. Nimzing G. Ladep, Anthony C. Dona, Matthew R. Lewis, Mary M.E. Crossey, Maud Lemoine, Edith Okeke, Yusuke Shimakawa, Mary Duguru, Harr F. Njai, Haddy K.S. Fye, Makie Taal, John Chetwood, Ben Kasstan, Shahid A. Khan, Deborah A. Garside, Anisha Wijeyesekera, Andrew V. Thillainayagam, Edmund Banwat, Mark R. Thursz, Jeremy K. Nicholson, Ramou Njie, Elaine Holmes, Simon D. Taylor-Robinson. Discovery and validation of urinary metabotypes for the diagnosis of hepatocellular carcinoma in West Africans. Hepatology 2014, 60 (4) , 1291-1301. https://doi.org/10.1002/hep.27264
    76. Noha A. Yousri, Gabi Kastenmüller, Christian Gieger, So-Youn Shin, Idil Erte, Cristina Menni, Annette Peters, Christa Meisinger, Robert P. Mohney, Thomas Illig, Jerzy Adamski, Nicole Soranzo, Tim D. Spector, Karsten Suhre. Long term conservation of human metabolic phenotypes and link to heritability. Metabolomics 2014, 10 (5) , 1005-1017. https://doi.org/10.1007/s11306-014-0629-y
    77. Szymon Filip, Claudia Pontillo, Joost Peter Schanstra, Antonia Vlahou, Harald Mischak, Julie Klein. Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases. Expert Review of Proteomics 2014, 11 (5) , 535-548. https://doi.org/10.1586/14789450.2014.926224
    78. Alessandra Bordoni, Francesco Capozzi. Foodomics for healthy nutrition. Current Opinion in Clinical Nutrition and Metabolic Care 2014, 17 (5) , 418-424. https://doi.org/10.1097/MCO.0000000000000089
    79. Augustin Scalbert, Lorraine Brennan, Claudine Manach, Cristina Andres-Lacueva, Lars O Dragsted, John Draper, Stephen M Rappaport, Justin JJ van der Hooft, David S Wishart. The food metabolome: a window over dietary exposure. The American Journal of Clinical Nutrition 2014, 99 (6) , 1286-1308. https://doi.org/10.3945/ajcn.113.076133
    80. James Kinross, Jia V. Li, Laura J. Muirhead, Jeremy Nicholson. Nutritional modulation of the metabonome. Current Opinion in Gastroenterology 2014, 30 (2) , 196-207. https://doi.org/10.1097/MOG.0000000000000036
    81. Charlotte Simmler, José G Napolitano, James B McAlpine, Shao-Nong Chen, Guido F Pauli. Universal quantitative NMR analysis of complex natural samples. Current Opinion in Biotechnology 2014, 25 , 51-59. https://doi.org/10.1016/j.copbio.2013.08.004
    82. Kyoungmi Kim, Christine Mall, Sandra L. Taylor, Stacie Hitchcock, Chen Zhang, Hiromi I. Wettersten, A. Daniel Jones, Arlene Chapman, Robert H. Weiss, . Mealtime, Temporal, and Daily Variability of the Human Urinary and Plasma Metabolomes in a Tightly Controlled Environment. PLoS ONE 2014, 9 (1) , e86223. https://doi.org/10.1371/journal.pone.0086223
    83. Lydie Nadal-Desbarats, Nacima Aïdoud, Patrick Emond, Hélène Blasco, Isabelle Filipiak, Pierre Sarda, Frédérique Bonnet-Brilhault, Sylvie Mavel, Christian R. Andres. Combined 1 H-NMR and 1 H– 13 C HSQC-NMR to improve urinary screening in autism spectrum disorders. The Analyst 2014, 139 (13) , 3460-3468. https://doi.org/10.1039/C4AN00552J
    84. Rong You, Qihua Pang, Lin Li. A Metabolic Phenotyping Approach to Characterize the Effects of Cantonese Herbal Tea on Restraint Stressed Rats. Biological and Pharmaceutical Bulletin 2014, 37 (9) , 1466-1474. https://doi.org/10.1248/bpb.b14-00203
    85. Alesia Walker, Silke S Heinzmann, Philippe Schmitt-Kopplin. Metabolomics in GI disease and the influence of the gut microbiome on host metabolism. 2014, 84-95. https://doi.org/10.4155/ebo.13.566
    86. Marilyn C. Cornelis, Frank B. Hu. Systems Epidemiology: A New Direction in Nutrition and Metabolic Disease Research. Current Nutrition Reports 2013, 2 (4) , 225-235. https://doi.org/10.1007/s13668-013-0052-4
    87. Serge Rezzi, Sebastiano Collino, Laurence Goulet, François-Pierre Martin. Metabonomic approaches to nutrient metabolism and future molecular nutrition. TrAC Trends in Analytical Chemistry 2013, 52 , 112-119. https://doi.org/10.1016/j.trac.2013.09.004
    88. Sunny Eloot, Wim Van Biesen, Griet Glorieux, Nathalie Neirynck, Annemieke Dhondt, Raymond Vanholder, . Does the Adequacy Parameter Kt/Vurea Reflect Uremic Toxin Concentrations in Hemodialysis Patients?. PLoS ONE 2013, 8 (11) , e76838. https://doi.org/10.1371/journal.pone.0076838
    89. Francesco Savorani, Morten Arendt Rasmussen, Mette Skau Mikkelsen, Søren Balling Engelsen. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Research International 2013, 54 (1) , 1131-1145. https://doi.org/10.1016/j.foodres.2012.12.025
    90. Nurhafzan A. Ismail, Joram M. Posma, Gary Frost, Elaine Holmes, Isabel Garcia‐Perez. The role of metabonomics as a tool for augmenting nutritional information in epidemiological studies. ELECTROPHORESIS 2013, 34 (19) , 2776-2786. https://doi.org/10.1002/elps.201300066
    91. Agnieszka Baranska, Ettje Tigchelaar, Agnieszka Smolinska, Jan W Dallinga, Edwin J C Moonen, Jackie A M Dekens, Cisca Wijmenga, Alexandra Zhernakova, Frederik J van Schooten. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet. Journal of Breath Research 2013, 7 (3) , 037104. https://doi.org/10.1088/1752-7155/7/3/037104
    92. Christopher P. Wild, Augustin Scalbert, Zdenko Herceg. Measuring the exposome: A powerful basis for evaluating environmental exposures and cancer risk. Environmental and Molecular Mutagenesis 2013, 54 (7) , 480-499. https://doi.org/10.1002/em.21777
    93. Manfred Beckmann, Amanda J. Lloyd, Sumanto Haldar, Gaëlle Favé, Chris J. Seal, Kirsten Brandt, John C. Mathers, John Draper. Dietary exposure biomarker-lead discovery based on metabolomics analysis of urine samples. Proceedings of the Nutrition Society 2013, 72 (3) , 352-361. https://doi.org/10.1017/S0029665113001237
    94. Yan Zheng, Bing Yu, Danny Alexander, Thomas H. Mosley, Gerardo Heiss, Jennifer A. Nettleton, Eric Boerwinkle. Metabolomics and Incident Hypertension Among Blacks. Hypertension 2013, 62 (2) , 398-403. https://doi.org/10.1161/HYPERTENSIONAHA.113.01166
    95. Johanna W. Lampe, Sandi L. Navarro, Meredith A. J. Hullar, Ali Shojaie. Inter-individual differences in response to dietary intervention: integrating omics platforms towards personalised dietary recommendations. Proceedings of the Nutrition Society 2013, 72 (2) , 207-218. https://doi.org/10.1017/S0029665113000025
    96. Ivan Montoliu, Ulrich Genick, Mirko Ledda, Sebastiano Collino, François-Pierre Martin, Johannes le Coutre, Serge Rezzi. Current status on genome–metabolome-wide associations: an opportunity in nutrition research. Genes & Nutrition 2013, 8 (1) , 19-27. https://doi.org/10.1007/s12263-012-0313-7
    97. P.D. Whitfield, M.K. Doherty. Human samples for health assessments. 2013, 83-105. https://doi.org/10.1533/9780857098818.2.83
    98. Robin Haring. Perspectives for metabolomics in testosterone replacement therapy. Journal of Endocrinology 2012, 215 (1) , 3-16. https://doi.org/10.1530/JOE-12-0119
    99. Isabel Rubio-Aliaga, Sunil Kochhar, Irma Silva-Zolezzi. Biomarkers of Nutrient Bioactivity and Efficacy. Journal of Clinical Gastroenterology 2012, 46 (7) , 545-554. https://doi.org/10.1097/MCG.0b013e3182548df2
    100. Gabriel M. Simon, Jiye Cheng, Jeffrey I. Gordon. Quantitative assessment of the impact of the gut microbiota on lysine ε-acetylation of host proteins using gnotobiotic mice. Proceedings of the National Academy of Sciences 2012, 109 (28) , 11133-11138. https://doi.org/10.1073/pnas.1208669109
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect