ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Footprints of Gut Microbial–Mammalian Co-Metabolism

View Author Information
School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
§ Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai 200233, P. R. China
Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London SW7 2AZ, United Kingdom
Wei Jia, Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081. Phone: 1-704-250-5803. Fax: 1-704-250-5809. E-mail: [email protected]. Weiping Jia, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China. Tel: +86-21-6436-9181. Fax: +86-21-6436-8031. E-mail: [email protected]
Cite this: J. Proteome Res. 2011, 10, 12, 5512–5522
Publication Date (Web):October 4, 2011
https://doi.org/10.1021/pr2007945
Copyright © 2011 American Chemical Society

    Article Views

    5271

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Gut microbiota are associated with essential various biological functions in humans through a “network” of microbial–host co-metabolism to process nutrients and drugs and modulate the activities of multiple pathways in organ systems that are linked to different diseases. The microbiome impacts strongly on the metabolic phenotypes of the host, and hence, metabolic readouts can give insights into functional metagenomic activity. We applied an untargeted mass spectrometry (MS) based metabonomics approach to profile normal Wistar rats exposed to a broad spectrum β-lactam antibiotic imipenem/cilastatin sodium, at 50 mg/kg/daily for 4 days followed by a 14-day recovery period. In-depth metabolic phenotyping allowed identification of a panel of 202 urinary and 223 fecal metabolites significantly related to end points of a functional metagenome (p < 0.05 in at least one day), many of which have not been previously reported such as oligopeptides and carbohydrates. This study shows extensive gut microbiota modulation of host systemic metabolism involving short-chain fatty acids, tryptophan, tyrosine metabolism, and possibly a compensatory mechanism of indole–melatonin production. Given the integral nature of the mammalian genome and metagenome, this panel of metabolites will provide a new platform for potential therapeutic markers and mechanistic solutions to complex problems commonly encountered in pathology, toxicology, or drug metabolism studies.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Procedure of urine and feces samples preparation; LC–MS and GC–MS profiling methods; trajectories of different data sets from urine and feces analyzed by LC–MS and GC–MS; heat-maps of all differential metabolites derived in urine and feces; Overview of related metabolites in the whole mammalian metabolome; all of the urinary and fecal metabolites associated with gut microbial–mammalian co-metabolism. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 244 publications.

    1. Sijia Zheng, Wangshu Qin, Tiantian Chen, Runze Ouyang, Xiaolin Wang, Qi Li, Ying Zhao, Xinyu Liu, Difei Wang, Lina Zhou, Guowang Xu. Strategy for Comprehensive Detection and Annotation of Gut Microbiota-Related Metabolites Based on Liquid Chromatography–High-Resolution Mass Spectrometry. Analytical Chemistry 2024, 96 (5) , 2206-2216. https://doi.org/10.1021/acs.analchem.3c05219
    2. Aishwarya Murali, Varun Giri, Franziska Maria Zickgraf, Philipp Ternes, Hunter James Cameron, Saskia Sperber, Volker Haake, Peter Driemert, Hennicke Kamp, Dorothee Funk-Weyer, Shana J. Sturla, Ivonne M.C.M. Rietjens, Bennard van Ravenzwaay. Connecting Gut Microbial Diversity with Plasma Metabolome and Fecal Bile Acid Changes Induced by the Antibiotics Tobramycin and Colistin Sulfate. Chemical Research in Toxicology 2023, 36 (4) , 598-616. https://doi.org/10.1021/acs.chemrestox.2c00316
    3. Andrea Anesi, Kirsten Berding, Gerard Clarke, Catherine Stanton, John F. Cryan, Noel Caplice, R. Paul Ross, Andrea Doolan, Urska Vrhovsek, Fulvio Mattivi. Metabolomic Workflow for the Accurate and High-Throughput Exploration of the Pathways of Tryptophan, Tyrosine, Phenylalanine, and Branched-Chain Amino Acids in Human Biofluids. Journal of Proteome Research 2022, 21 (5) , 1262-1275. https://doi.org/10.1021/acs.jproteome.1c00946
    4. Guoxiang Xie, Lu Wang, Tianlu Chen, Kejun Zhou, Zechuan Zhang, Jiufeng Li, Beicheng Sun, Yike Guo, Xiaoning Wang, Yixing Wang, Hua Zhang, Ping Liu, Jeremy K. Nicholson, Weihong Ge, Wei Jia. A Metabolite Array Technology for Precision Medicine. Analytical Chemistry 2021, 93 (14) , 5709-5717. https://doi.org/10.1021/acs.analchem.0c04686
    5. Bi-Feng Yuan, Quan-Fei Zhu, Ning Guo, Shu-Jian Zheng, Ya-Lan Wang, Jie Wang, Jing Xu, Shi-Jie Liu, Ke He, Ting Hu, Ying-Wei Zheng, Fu-Qiang Xu, Yu-Qi Feng. Comprehensive Profiling of Fecal Metabolome of Mice by Integrated Chemical Isotope Labeling-Mass Spectrometry Analysis. Analytical Chemistry 2018, 90 (5) , 3512-3520. https://doi.org/10.1021/acs.analchem.7b05355
    6. Tianlu Chen, Yijun You, Guoxiang Xie, Xiaojiao Zheng, Aihua Zhao, Jiajian Liu, Qing Zhao, Shouli Wang, Fengjie Huang, Cynthia Rajani, Congcong Wang, Shaoqiu Chen, Yan Ni, Herbert Yu, Youping Deng, Xiaoyan Wang, and Wei Jia . Strategy for an Association Study of the Intestinal Microbiome and Brain Metabolome Across the Lifespan of Rats. Analytical Chemistry 2018, 90 (4) , 2475-2483. https://doi.org/10.1021/acs.analchem.7b02859
    7. Linjing Zhao, Yan Ni, Mingming Su, Hongsen Li, Fangcong Dong, Wenlian Chen, Runmin Wei, Lulu Zhang, Seu Ping Guiraud, Francois-Pierre Martin, Cynthia Rajani, Guoxiang Xie, and Wei Jia . High Throughput and Quantitative Measurement of Microbial Metabolome by Gas Chromatography/Mass Spectrometry Using Automated Alkyl Chloroformate Derivatization. Analytical Chemistry 2017, 89 (10) , 5565-5577. https://doi.org/10.1021/acs.analchem.7b00660
    8. Xiaoling Zang, María Eugenia Monge, Nael A. McCarty, Arlene A. Stecenko, and Facundo M. Fernández . Feasibility of Early Detection of Cystic Fibrosis Acute Pulmonary Exacerbations by Exhaled Breath Condensate Metabolomics: A Pilot Study. Journal of Proteome Research 2017, 16 (2) , 550-558. https://doi.org/10.1021/acs.jproteome.6b00675
    9. Lee Cheng Phua, Clive H. Wilder-Smith, Yee Min Tan, Theebarina Gopalakrishnan, Reuben K. Wong, Xinhua Li, Mary E. Kan, Jia Lu, Ali Keshavarzian, and Eric Chun Yong Chan . Gastrointestinal Symptoms and Altered Intestinal Permeability Induced by Combat Training Are Associated with Distinct Metabotypic Changes. Journal of Proteome Research 2015, 14 (11) , 4734-4742. https://doi.org/10.1021/acs.jproteome.5b00603
    10. Julie Vanden Bussche, Massimo Marzorati, Debby Laukens, and Lynn Vanhaecke . Validated High Resolution Mass Spectrometry-Based Approach for Metabolomic Fingerprinting of the Human Gut Phenotype. Analytical Chemistry 2015, 87 (21) , 10927-10934. https://doi.org/10.1021/acs.analchem.5b02688
    11. Yanan Xu, Xiaojiao Zheng, Yunping Qiu, Wei Jia, Jiadong Wang, and Shankai Yin . Distinct Metabolomic Profiles of Papillary Thyroid Carcinoma and Benign Thyroid Adenoma. Journal of Proteome Research 2015, 14 (8) , 3315-3321. https://doi.org/10.1021/acs.jproteome.5b00351
    12. Sandi Yen, Julie A. K. McDonald, Kathleen Schroeter, Kaitlyn Oliphant, Stanislav Sokolenko, Eric J. M. Blondeel, Emma Allen-Vercoe, and Marc G. Aucoin . Metabolomic Analysis of Human Fecal Microbiota: A Comparison of Feces-Derived Communities and Defined Mixed Communities. Journal of Proteome Research 2015, 14 (3) , 1472-1482. https://doi.org/10.1021/pr5011247
    13. Francis K. Yoshimoto, Hwei-Ming Peng, Haoming Zhang, Sean M. Anderson, and Richard J. Auchus . Epoxidation Activities of Human Cytochromes P450c17 and P450c21. Biochemistry 2014, 53 (48) , 7531-7540. https://doi.org/10.1021/bi5011865
    14. Alma Villaseñor, James M. Kinross, Jia V. Li, Nicholas Penney, Richard H. Barton, Jeremy K. Nicholson, Ara Darzi, Coral Barbas, and Elaine Holmes . 1H NMR Global Metabolic Phenotyping of Acute Pancreatitis in the Emergency Unit. Journal of Proteome Research 2014, 13 (12) , 5362-5375. https://doi.org/10.1021/pr500161w
    15. Xue Li, Guangyue Hou, Junpeng Xing, Fengrui Song, Zhiqiang Liu, Shuying Liu. Direct Analysis in Real Time-Mass Spectrometry for the Rapid Detection of Metabolites of Aconite Alkaloids in Intestinal Bacteria. Journal of the American Society for Mass Spectrometry 2014, 25 (12) , 2181-2184. https://doi.org/10.1007/s13361-014-0991-z
    16. Guoxiang Xie, Xiaojing Ma, Aihua Zhao, Congrong Wang, Yinan Zhang, David Nieman, Jeremy K. Nicholson, Wei Jia, Yuqian Bao, and Weiping Jia . The Metabolite Profiles of the Obese Population Are Gender-Dependent. Journal of Proteome Research 2014, 13 (9) , 4062-4073. https://doi.org/10.1021/pr500434s
    17. József Lénárt, Erika Bujna, Béla Kovács, Eszter Békefi, Leonóra Száraz, and Mihály Dernovics . Metabolomic Approach Assisted High Resolution LC–ESI-MS Based Identification of a Xenobiotic Derivative of Fenhexamid Produced by Lactobacillus casei. Journal of Agricultural and Food Chemistry 2013, 61 (37) , 8969-8975. https://doi.org/10.1021/jf4022493
    18. Ying Zhao, Junfang Wu, Jia V. Li, Ning-Yi Zhou, Huiru Tang, and Yulan Wang . Gut Microbiota Composition Modifies Fecal Metabolic Profiles in Mice. Journal of Proteome Research 2013, 12 (6) , 2987-2999. https://doi.org/10.1021/pr400263n
    19. Guoxiang Xie, Xin Li, Houkai Li, and Wei Jia . Toward Personalized Nutrition: Comprehensive Phytoprofiling and Metabotyping. Journal of Proteome Research 2013, 12 (4) , 1547-1559. https://doi.org/10.1021/pr301222b
    20. Vladimir Havlicek, Karel Lemr, and Kevin A. Schug . Current Trends in Microbial Diagnostics Based on Mass Spectrometry. Analytical Chemistry 2013, 85 (2) , 790-797. https://doi.org/10.1021/ac3031866
    21. Francois-Pierre J. Martin, Ivan Montoliu, Kornél Nagy, Sofia Moco, Sebastiano Collino, Philippe Guy, Karine Redeuil, Max Scherer, Serge Rezzi, and Sunil Kochhar . Specific Dietary Preferences Are Linked to Differing Gut Microbial Metabolic Activity in Response to Dark Chocolate Intake. Journal of Proteome Research 2012, 11 (12) , 6252-6263. https://doi.org/10.1021/pr300915z
    22. Sven-Bastiaan Haange, Andreas Oberbach, Nadine Schlichting, Floor Hugenholtz, Hauke Smidt, Martin von Bergen, Holger Till, and Jana Seifert . Metaproteome Analysis and Molecular Genetics of Rat Intestinal Microbiota Reveals Section and Localization Resolved Species Distribution and Enzymatic Functionalities. Journal of Proteome Research 2012, 11 (11) , 5406-5417. https://doi.org/10.1021/pr3006364
    23. Guoxiang Xie, Aihua Zhao, Linjing Zhao, Tianlu Chen, Huiyuan Chen, Xin Qi, Xiaojiao Zheng, Yan Ni, Yu Cheng, Ke Lan, Chun Yao, Mingfeng Qiu, and Wei Jia . Metabolic Fate of Tea Polyphenols in Humans. Journal of Proteome Research 2012, 11 (6) , 3449-3457. https://doi.org/10.1021/pr300318m
    24. Hannah E. Laue, Julia A. Bauer, Wimal Pathmasiri, Susan C. J. Sumner, Susan McRitchie, Thomas J. Palys, Anne G. Hoen, Juliette C. Madan, Margaret R. Karagas. Patterns of infant fecal metabolite concentrations and social behavioral development in toddlers. Pediatric Research 2024, 171 https://doi.org/10.1038/s41390-024-03129-z
    25. Lesley Hoyles. Gut Microbiome and Hepatic Steatosis (Steatotic Liver Disease). 2024, 1-21. https://doi.org/10.1007/978-3-031-08115-6_7-1
    26. 鑫 申. Research Progress of Intestinal Flora and Their Metabolites in Radiation Enteritis. Advances in Clinical Medicine 2024, 14 (01) , 1571-1578. https://doi.org/10.12677/ACM.2024.141226
    27. Lesley Hoyles. Gut Microbiome and Hepatic Steatosis (Steatotic Liver Disease). 2024, 177-197. https://doi.org/10.1007/978-3-031-35064-1_7
    28. Samuel S. Minot, Bailey Garb, Alennie Roldan, Alice S. Tang, Tomiko T. Oskotsky, Christopher Rosenthal, Noah G. Hoffman, Marina Sirota, Jonathan L. Golob. MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies. Cell Reports Methods 2023, 3 (11) , 100639. https://doi.org/10.1016/j.crmeth.2023.100639
    29. Kejin Zhuang, Weihong Meng, Xin Shu, Defu Liang, Lidong Wang, Dongjie Zhang. Fecal metabonomics combined with 16S rDNA sequencing to analyze the changes of gut microbiota in rats fed with different protein source diets. European Journal of Nutrition 2023, 62 (6) , 2687-2703. https://doi.org/10.1007/s00394-023-03168-y
    30. Xialu Sheng, Lixia Wang, Ping Zhan, Wanying He, Honglei Tian, Jianshu Liu. Thyme (Thymus quinquecostatus Celak) Polyphenol-Rich Extract (TPE) Alleviates HFD-Induced Liver Injury in Mice by Inactivating the TLR4/NF-κB Signaling Pathway through the Gut–Liver Axis. Foods 2023, 12 (16) , 3074. https://doi.org/10.3390/foods12163074
    31. Karly E. Masse, Van B. Lu. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Frontiers in Endocrinology 2023, 14 https://doi.org/10.3389/fendo.2023.1169624
    32. Yan Zhang, Rui Chen, DuoDuo Zhang, Shuang Qi, Yan Liu. Metabolite interactions between host and microbiota during health and disease: Which feeds the other?. Biomedicine & Pharmacotherapy 2023, 160 , 114295. https://doi.org/10.1016/j.biopha.2023.114295
    33. Chuan Zhang, Leilei Yu, Qixiao Zhai, Ruohan Zhao, Jianxin Zhao, Hao Zhang, Wei Chen, Fengwei Tian. In vitro fermentation of heparin by the human gut microbiota: Changes in the microbiota community and metabolic functions. Food Chemistry 2023, 406 , 135010. https://doi.org/10.1016/j.foodchem.2022.135010
    34. Patrick Niekamp, Chang H. Kim. Microbial Metabolite Dysbiosis and Colorectal Cancer. Gut and Liver 2023, 17 (2) , 190-203. https://doi.org/10.5009/gnl220260
    35. Loïc Mervant, Marie Tremblay‐Franco, Maïwenn Olier, Emilien Jamin, Jean‐Francois Martin, Lidwine Trouilh, Charline Buisson, Nathalie Naud, Claire Maslo, Cécile Héliès‐Toussaint, Edwin Fouché, Emmanuelle Kesse‐Guyot, Serge Hercberg, Pilar Galan, Mélanie Deschasaux‐Tanguy, Mathilde Touvier, Fabrice Pierre, Laurent Debrauwer, Francoise Guéraud. Urinary Metabolome Analysis Reveals Potential Microbiota Alteration and Electrophilic Burden Induced by High Red Meat Diet: Results from the French NutriNet‐Santé Cohort and an In Vivo Intervention Study in Rats. Molecular Nutrition & Food Research 2023, 67 (5) https://doi.org/10.1002/mnfr.202200432
    36. Tiffany M. Newman, Kenysha Y. J. Clear, Adam S. Wilson, David R. Soto-Pantoja, Heather M. Ochs-Balcom, Katherine L. Cook. Early-life dietary exposures mediate persistent shifts in the gut microbiome and visceral fat metabolism. American Journal of Physiology-Cell Physiology 2023, 324 (3) , C644-C657. https://doi.org/10.1152/ajpcell.00380.2021
    37. Arong Wang, Panpan Li, Fenglian Ma, Xinling Li, Guangqing Mu, Yanfeng Tuo. Mixed Lactiplantibacillus plantarum strains alleviated DSS-induced intestinal inflammation of Balb/c mice via the 5-HT/5-HT7R/NF-κB signaling pathway. Journal of Functional Foods 2023, 102 , 105435. https://doi.org/10.1016/j.jff.2023.105435
    38. Shristi Upadhyay Banskota, Sydney A. Skupa, Dalia El-Gamal, Christopher R. D’Angelo. Defining the Role of the Gut Microbiome in the Pathogenesis and Treatment of Lymphoid Malignancies. International Journal of Molecular Sciences 2023, 24 (3) , 2309. https://doi.org/10.3390/ijms24032309
    39. Matteo Puccetti, Marilena Pariano, Paulina Wojtylo, Aurélie Schoubben, Stefano Giovagnoli, Maurizio Ricci. Turning Microbial AhR Agonists into Therapeutic Agents via Drug Delivery Systems. Pharmaceutics 2023, 15 (2) , 506. https://doi.org/10.3390/pharmaceutics15020506
    40. Simon McArthur. Regulation of Physiological Barrier Function by the Commensal Microbiota. Life 2023, 13 (2) , 396. https://doi.org/10.3390/life13020396
    41. Elena L. Paley. Protein synthesis inhibition in neuronal activities. 2023, 355-369. https://doi.org/10.1016/B978-0-443-19122-0.00001-7
    42. Elena L. Paley. Rosacea and associated medical disorders. 2023, 371-444. https://doi.org/10.1016/B978-0-443-19122-0.00009-1
    43. Elena L. Paley. Ocular changes resulting from reading and writing on smartphone and computer: Computer vision syndrome, dry eye disease, meibomian gland dysfunction, chalazion, occupational overuse syndrome. 2023, 481-492. https://doi.org/10.1016/B978-0-443-19122-0.00010-8
    44. Elena L. Paley. Viral-bacterial interactions in diseases. 2023, 49-63. https://doi.org/10.1016/B978-0-443-19122-0.00012-1
    45. Tianfei Lu, Qing Li, Weiwei Lin, Xianzhe Zhao, Fu Li, Jianmei Ji, Yu Zhang, Ning Xu. Gut Microbiota-Derived Glutamine Attenuates Liver Ischemia/Reperfusion Injury via Macrophage Metabolic Reprogramming. Cellular and Molecular Gastroenterology and Hepatology 2023, 15 (5) , 1255-1275. https://doi.org/10.1016/j.jcmgh.2023.01.004
    46. Margaret R. Karagas, Susan McRitchie, Anne G. Hoen, Cindy Takigawa, Brian Jackson, Emily R. Baker, Juliette Madan, Susan J. Sumner, Wimal Pathmasiri. Alterations in Microbial-Associated Fecal Metabolites in Relation to Arsenic Exposure Among Infants. Exposure and Health 2022, 14 (4) , 941-949. https://doi.org/10.1007/s12403-022-00468-2
    47. Alex E. Mohr, Paniz Jasbi, Kiley B. Vander Wyst, Irene van Woerden, Xiaojian Shi, Haiwei Gu, Corrie M. Whisner, Meg Bruening. Association of food insecurity on gut microbiome and metabolome profiles in a diverse college-based sample. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-18515-y
    48. Ning Meng, Yun Lyu, Xiaoyu Zhang, Xin Chai, Kefeng Li, Yuefei Wang. The exciting and magical journey of components from compound formulae to where they fight. Acupuncture and Herbal Medicine 2022, 2 (4) , 240-252. https://doi.org/10.1097/HM9.0000000000000047
    49. Mengjun Wu, Sanling Zuo, Giuseppe Maiorano, Przemysław Kosobucki, Katarzyna Stadnicka. How to employ metabolomic analysis to research on functions of prebiotics and probiotics in poultry gut health?. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.1040434
    50. Yinzhong Lu, Kejia Xu, Dongyang Lin, Shuyan Wang, Rao Fu, Xiaobei Deng, Giorgia Croppi, Junjie Zhang. Multi-omics analysis reveals neuroinflammation, activated glial signaling, and dysregulated synaptic signaling and metabolism in the hippocampus of aged mice. Frontiers in Aging Neuroscience 2022, 14 https://doi.org/10.3389/fnagi.2022.964429
    51. Waijiao Tang, Mengfei Yuan, Zewen Li, Qi Lin, Yan Zhen, Zhuang Li, Hongwei Zhou, Fangbo Xia. Polyphenol-Rich Liupao Tea Extract Prevents High-Fat Diet-Induced MAFLD by Modulating the Gut Microbiota. Nutrients 2022, 14 (22) , 4930. https://doi.org/10.3390/nu14224930
    52. Dini Hu, Yujun Tang, Chen Wang, Yingjie Qi, Make Ente, Xuefeng Li, Dong Zhang, Kai Li, Hongjun Chu. The Role of Intestinal Microbial Metabolites in the Immunity of Equine Animals Infected With Horse Botflies. Frontiers in Veterinary Science 2022, 9 https://doi.org/10.3389/fvets.2022.832062
    53. Anna-Lisa V. Nguyen, Dominic Haas, Mégane Bouchard, Bradley S. Quon. Metabolomic Biomarkers to Predict and Diagnose Cystic Fibrosis Pulmonary Exacerbations: A Systematic Review. Frontiers in Pediatrics 2022, 10 https://doi.org/10.3389/fped.2022.896439
    54. Zhengqi Liu, Chunhong Yan, Xinping Lin, Chunqing Ai, Xiuping Dong, Li Shao, Songtao Wang, Shuang Song, Beiwei Zhu. Responses of the gut microbiota and metabolite profiles to sulfated polysaccharides from sea cucumber in humanized microbiota mice. Food & Function 2022, 13 (7) , 4171-4183. https://doi.org/10.1039/D1FO04443E
    55. Hai Wang, Xingyu Rong, Gan Zhao, Yifan Zhou, Yi Xiao, Ding Ma, Xi Jin, Yonglin Wu, Yuchen Yan, Hao Yang, Yuan Zhou, Manning Qian, Chen Niu, Xin Hu, Da-Qiang Li, Qingyun Liu, Yumei Wen, Yi-Zhou Jiang, Chao Zhao, Zhi-Ming Shao. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metabolism 2022, 34 (4) , 581-594.e8. https://doi.org/10.1016/j.cmet.2022.02.010
    56. Inmaculada Acuña, Alicia Ruiz, Tomás Cerdó, Samuel Cantarero, Ana López‐Moreno, Margarita Aguilera, Cristina Campoy, Antonio Suárez. Rapid and simultaneous determination of histidine metabolism intermediates in human and mouse microbiota and biomatrices. BioFactors 2022, 48 (2) , 315-328. https://doi.org/10.1002/biof.1766
    57. Haihua Liu, Huiying Liu, Chang Liu, Mengxue Shang, Tianfu Wei, Peiyuan Yin. Gut Microbiome and the Role of Metabolites in the Study of Graves’ Disease. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.841223
    58. Tao Sun, Mengci Li, Xiangtian Yu, Dandan Liang, Guoxiang Xie, Chao Sang, Wei Jia, Tianlu Chen, . 3MCor: an integrative web server for metabolome–microbiome-metadata correlation analysis. Bioinformatics 2022, 38 (5) , 1378-1384. https://doi.org/10.1093/bioinformatics/btab818
    59. Yuezhen Ouyang, Dan Liu, Lizhu Zhang, Xiaoqing Li, Xinhua Chen, Chao Zhao. Green Alga Enteromorpha prolifera Oligosaccharide Ameliorates Ageing and Hyperglycemia through Gut–Brain Axis in Age‐Matched Diabetic Mice. Molecular Nutrition & Food Research 2022, 66 (4) https://doi.org/10.1002/mnfr.202100564
    60. Zhiguo Wang, Baofeng Yang. Polypharmacology and Polypharmacokinetics. 2022, 647-659. https://doi.org/10.1007/978-3-031-04998-9_16
    61. Meng Yu, Hong-Mei Jia, Ling-Ling Qin, Zhong-Mei Zou. Gut microbiota and gut tissue metabolites involved in development and prevention of depression. Journal of Affective Disorders 2022, 297 , 8-17. https://doi.org/10.1016/j.jad.2021.10.016
    62. B.R. Rushing, S. McRitchie, L. Arbeeva, A.E. Nelson, M.A. Azcarate-Peril, Y.-Y. Li, Y. Qian, W. Pathmasiri, S.C.J. Sumner, R.F. Loeser. Fecal metabolomics reveals products of dysregulated proteolysis and altered microbial metabolism in obesity-related osteoarthritis. Osteoarthritis and Cartilage 2022, 30 (1) , 81-91. https://doi.org/10.1016/j.joca.2021.10.006
    63. Wenju Sun, Yuqing Cui, Xiaojuan Zhang, Yuze Wang, Zihao Zhang, Xianfei Ding, Huoyan Liang, Dong Wang, Yali Sun, Shaohua Liu, Xiaoguang Duan, Yibin Lu, Tongwen Sun. Effects of Gabexate Mesylate on the Gut Microbiota and Metabolomics in Rats with Sepsis. Journal of Inflammation Research 2022, Volume 15 , 6581-6594. https://doi.org/10.2147/JIR.S392060
    64. Asmita Madatali Abuwani, Shweta Priyadarshini Dash, Raja Ganesan, Kaviyarasi Renu, Balachandar Vellingiri, Sabariswaran Kandasamy, Sundara Rajan C.R., Abilash Valsala Gopalakrishnan. Gut microbiome and metabolic response in non-alcoholic fatty liver disease. Clinica Chimica Acta 2021, 523 , 304-314. https://doi.org/10.1016/j.cca.2021.10.014
    65. Bénédict Yanibada, Ulli Hohenester, Mélanie Pétéra, Cécile Canlet, Stéphanie Durand, Fabien Jourdan, Anne Ferlay, Diego P. Morgavi, Hamid Boudra. Milk metabolome reveals variations on enteric methane emissions from dairy cows fed a specific inhibitor of the methanogenesis pathway. Journal of Dairy Science 2021, 104 (12) , 12553-12566. https://doi.org/10.3168/jds.2021-20477
    66. Yuhan Zhou, Wenjuan Ma, Yu Zeng, Chonghuai Yan, Yingya Zhao, Pengpeng Wang, Huijing Shi, Wenwei Lu, Yunhui Zhang. Intrauterine antibiotic exposure affected neonatal gut bacteria and infant growth speed. Environmental Pollution 2021, 289 , 117901. https://doi.org/10.1016/j.envpol.2021.117901
    67. Wanru Zhang, Yaping An, Xiali Qin, Xuemei Wu, Xinyu Wang, Huiqin Hou, Xueli Song, Tianyu Liu, Bangmao Wang, Xuan Huang, Hailong Cao. Gut Microbiota-Derived Metabolites in Colorectal Cancer: The Bad and the Challenges. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.739648
    68. Zhengqi Liu, Yujiao Zhang, Chunqing Ai, Chengrong Wen, Xiuping Dong, Xiaona Sun, Cui Cao, Xueqian Zhang, Beiwei Zhu, Shuang Song. Gut microbiota response to sulfated sea cucumber polysaccharides in a differential manner using an in vitro fermentation model. Food Research International 2021, 148 , 110562. https://doi.org/10.1016/j.foodres.2021.110562
    69. Lina Zhou, Di Yu, Sijia Zheng, Runze Ouyang, Yuting Wang, Guowang Xu. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. TrAC Trends in Analytical Chemistry 2021, 143 , 116375. https://doi.org/10.1016/j.trac.2021.116375
    70. Anne G. Hoen, Modupe O. Coker, Juliette C. Madan, Wimal Pathmasiri, Susan McRitchie, Erika F. Dade, Brett T. Doherty, Susan Sumner, Margaret R. Karagas. Association of Cesarean Delivery and Formula Supplementation with the Stool Metabolome of 6-Week-Old Infants. Metabolites 2021, 11 (10) , 702. https://doi.org/10.3390/metabo11100702
    71. Patrick C. Barko, David A. Williams, . Untargeted analysis of the serum metabolome in cats with exocrine pancreatic insufficiency. PLOS ONE 2021, 16 (9) , e0257856. https://doi.org/10.1371/journal.pone.0257856
    72. Shuo Xu, Chunjie Xiang, Juan Wu, Yuhao Teng, Zhenfeng Wu, Ruiping Wang, Bin Lu, Zhen Zhan, Huangan Wu, Junfeng Zhang. Tongue Coating Bacteria as a Potential Stable Biomarker for Gastric Cancer Independent of Lifestyle. Digestive Diseases and Sciences 2021, 66 (9) , 2964-2980. https://doi.org/10.1007/s10620-020-06637-0
    73. Yi Yang, Changchao Sun, Feng Li, Anshan Shan, Baoming Shi. Characteristics of faecal bacterial flora and volatile fatty acids in Min pig, Landrace pig, and Yorkshire pig. Electronic Journal of Biotechnology 2021, 53 , 33-43. https://doi.org/10.1016/j.ejbt.2021.05.002
    74. Ankita Banerjee, Lilesh Kumar Pradhan, Pradyumna Kumar Sahoo, Kautilya Kumar Jena, Nishant Ranjan Chauhan, Santosh Chauhan, Saroj Kumar Das. Unravelling the potential of gut microbiota in sustaining brain health and their current prospective towards development of neurotherapeutics. Archives of Microbiology 2021, 203 (6) , 2895-2910. https://doi.org/10.1007/s00203-021-02276-9
    75. Pan Huang, Anqi Jiang, Xuxin Wang, Yan Zhou, Weihong Tang, Caifang Ren, Xin Qian, Zhengrong Zhou, Aihua Gong. NMN Maintains Intestinal Homeostasis by Regulating the Gut Microbiota. Frontiers in Nutrition 2021, 8 https://doi.org/10.3389/fnut.2021.714604
    76. Qingyao Fu, Zhen Tan, Liguang Shi, Wenjuan Xun. Resveratrol Attenuates Diquat-Induced Oxidative Stress by Regulating Gut Microbiota and Metabolome Characteristics in Piglets. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.695155
    77. Yang Peng, Jiwon Hong, Daniel Raftery, Qing Xia, Dan Du. Metabolomic-based clinical studies and murine models for acute pancreatitis disease: A review. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2021, 1867 (7) , 166123. https://doi.org/10.1016/j.bbadis.2021.166123
    78. Zhen-Huan Yang, Fang Liu, Xiao-Ran Zhu, Fei-Ya Suo, Zi-jun Jia, Shu-Kun Yao. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis. World Journal of Gastroenterology 2021, 27 (24) , 3609-3629. https://doi.org/10.3748/wjg.v27.i24.3609
    79. Shi-Jun Yue, Yi-Feng Qin, An Kang, Hui-Juan Tao, Gui-Sheng Zhou, Yan-Yan Chen, Jian-Qin Jiang, Yu-Ping Tang, Jin-Ao Duan. Total Flavonoids of Glycyrrhiza uralensis Alleviates Irinotecan-Induced Colitis via Modification of Gut Microbiota and Fecal Metabolism. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.628358
    80. Jing Li, Xinchun Yang, Xin Zhou, Jun Cai. The Role and Mechanism of Intestinal Flora in Blood Pressure Regulation and Hypertension Development. Antioxidants & Redox Signaling 2021, 34 (10) , 811-830. https://doi.org/10.1089/ars.2020.8104
    81. Madhur Wyatt, K. Leigh Greathouse. Targeting Dietary and Microbial Tryptophan-Indole Metabolism as Therapeutic Approaches to Colon Cancer. Nutrients 2021, 13 (4) , 1189. https://doi.org/10.3390/nu13041189
    82. Aishwarya Murali, Varun Giri, Hunter James Cameron, Christina Behr, Saskia Sperber, Hennicke Kamp, Tilmann Walk, Bennard van Ravenzwaay. Elucidating the Relations between Gut Bacterial Composition and the Plasma and Fecal Metabolomes of Antibiotic Treated Wistar Rats. Microbiology Research 2021, 12 (1) , 82-122. https://doi.org/10.3390/microbiolres12010008
    83. Paulina Trzeciak, Mariola Herbet. Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression. Nutrients 2021, 13 (3) , 927. https://doi.org/10.3390/nu13030927
    84. . References. 2021, 217-268. https://doi.org/10.1016/B978-0-12-823485-3.00040-3
    85. Kothandapani Sundar, T. Ramachandira Prabu. Microbial metabolites in nutrition and healthcare. 2021, 235-256. https://doi.org/10.1016/B978-0-12-824523-1.00012-2
    86. . References. 2021, 243-287. https://doi.org/10.1016/B978-0-323-88445-7.16001-4
    87. Guodong Yang, Xiaoying Zhang. TMAO promotes apoptosis and oxidative stress of pancreatic acinar cells by mediating IRE1α-XBP-1 pathway. Saudi Journal of Gastroenterology 2021, 27 (6) , 361. https://doi.org/10.4103/sjg.sjg_12_21
    88. Michael A. Malfatti, Edward A. Kuhn, Deepa K. Murugesh, Melanie E. Mendez, Nicholas Hum, James B. Thissen, Crystal J. Jaing, Gabriela G. Loots. Manipulation of the Gut Microbiome Alters Acetaminophen Biodisposition in Mice. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-60982-8
    89. Markku Tapani Saarinen, Olli Kärkkäinen, Kati Hanhineva, Kirsti Tiihonen, Ashley Hibberd, Kari Antero Mäkelä, Ghulam Shere Raza, Karl-Heinz Herzig, Heli Anglenius. Metabolomics analysis of plasma and adipose tissue samples from mice orally administered with polydextrose and correlations with cecal microbiota. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-78484-y
    90. Oleg V. Bukharin, Natalia B. Perunova. The role of microbiota in the regulation of homeostasis in the human body during infection. Journal of microbiology, epidemiology and immunobiology 2020, 97 (5) , 458-467. https://doi.org/10.36233/0372-9311-2020-97-5-8
    91. Elle C. Lindsay, Neil B. Metcalfe, Martin S. Llewellyn, . The potential role of the gut microbiota in shaping host energetics and metabolic rate. Journal of Animal Ecology 2020, 89 (11) , 2415-2426. https://doi.org/10.1111/1365-2656.13327
    92. Limin Wei, Bo Zeng, Siyuan Zhang, Feng Li, Fanli Kong, Haixia Ran, Hong-Jiang Wei, Jiangchao Zhao, Mingzhou Li, Ying Li. Inbreeding Alters the Gut Microbiota of the Banna Minipig. Animals 2020, 10 (11) , 2125. https://doi.org/10.3390/ani10112125
    93. Likhita Shaik, Rahul Kashyap, Sahith Reddy Thotamgari, Romil Singh, Sahil Khanna. Gut-Brain Axis and its Neuro-Psychiatric Effects: A Narrative Review. Cureus 2020, 15 https://doi.org/10.7759/cureus.11131
    94. Ankita Jena, Carlos A. Montoya, Jane A. Mullaney, Ryan N. Dilger, Wayne Young, Warren C. McNabb, Nicole C. Roy. Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. Frontiers in Integrative Neuroscience 2020, 14 https://doi.org/10.3389/fnint.2020.00044
    95. Agneta Rannug. How the AHR Became Important in Intestinal Homeostasis—A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. International Journal of Molecular Sciences 2020, 21 (16) , 5681. https://doi.org/10.3390/ijms21165681
    96. Matteo Puccetti, Styliani Xiroudaki, Maurizio Ricci, Stefano Giovagnoli. Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline?. Pharmaceutics 2020, 12 (7) , 624. https://doi.org/10.3390/pharmaceutics12070624
    97. Véronique de Bruijn, Christina Behr, Saskia Sperber, Tilmann Walk, Philipp Ternes, Markus Slopianka, Volker Haake, Karsten Beekmann, Bennard van Ravenzwaay. Antibiotic-Induced Changes in Microbiome-Related Metabolites and Bile Acids in Rat Plasma. Metabolites 2020, 10 (6) , 242. https://doi.org/10.3390/metabo10060242
    98. Yi Zhang, Jian-Wei Lou, An Kang, Qiao Zhang, Shi-Kang Zhou, Bei-Hua Bao, Yu-Dan Cao, Wei-Feng Yao, Yu-Ping Tang, Li Zhang. Kansuiphorin C and Kansuinin A ameliorate malignant ascites by modulating gut microbiota and related metabolic functions. Journal of Ethnopharmacology 2020, 249 , 112423. https://doi.org/10.1016/j.jep.2019.112423
    99. Rohan M. Shah, Elizabeth J. McKenzie, Magda T. Rosin, Snehal R. Jadhav, Shakuntla V. Gondalia, Douglas Rosendale, David J. Beale. An Integrated Multi-Disciplinary Perspective for Addressing Challenges of the Human Gut Microbiome. Metabolites 2020, 10 (3) , 94. https://doi.org/10.3390/metabo10030094
    100. Meng Yu, Hong-Mei Jia, Tao Zhang, Hai Shang, Hong-Wu Zhang, Li-Yan Ma, Zhong-Mei Zou. Gut Microbiota Is the Key to the Antidepressant Effect of Chaihu-Shu-Gan-San. Metabolites 2020, 10 (2) , 63. https://doi.org/10.3390/metabo10020063
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect