ACS Publications. Most Trusted. Most Cited. Most Read
Identification of Novel PAMP-Triggered Phosphorylation and Dephosphorylation Events in Arabidopsis thaliana by Quantitative Phosphoproteomic Analysis
My Activity

Figure 1Loading Img
    Article

    Identification of Novel PAMP-Triggered Phosphorylation and Dephosphorylation Events in Arabidopsis thaliana by Quantitative Phosphoproteomic Analysis
    Click to copy article linkArticle link copied!

    View Author Information
    CNRS, UMR 8587, boulevard François Mitterrand, 91025 Evry, France
    Université Evry Val d’Essonne (UEVE), LAMBE, boulevard François Mitterrand, 91025 Evry, France
    § URGV Plant Genomics, INRA/CNRS/Université d’Evry Val d’Essonne, 2 rue Gaston Crémieux, 91057 Evry, France
    Center for Desert Agriculture, KAUST, 4700 Thuwal, Saudi Arabia
    *Phone: +33 1 60 87 45 08. Fax: +33 1 60 87 45 10. E-mail: [email protected]
    *Phone: +33 1 69 47 76 54. Fax: +33 1 69 47 76 55. E-mail: [email protected]
    Other Access OptionsSupporting Information (77)

    Journal of Proteome Research

    Cite this: J. Proteome Res. 2014, 13, 4, 2137–2151
    Click to copy citationCitation copied!
    https://doi.org/10.1021/pr401268v
    Published March 6, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Signaling cascades rely strongly on protein kinase-mediated substrate phosphorylation. Currently a major challenge in signal transduction research is to obtain high confidence substrate phosphorylation sites and assign them to specific kinases. In response to bacterial flagellin, a pathogen-associated molecular pattern (PAMP), we searched for rapidly phosphorylated proteins in Arabidopsis thaliana by combining multistage activation (MSA) and electron transfer dissociation (ETD) fragmentation modes, which generate complementary spectra and identify phosphopeptide sites with increased reliability. Of a total of 825 phosphopeptides, we identified 58 to be differentially phosphorylated. These peptides harbor kinase motifs of mitogen-activated protein kinases (MAPKs) and calcium-dependent protein kinases (CDPKs), as well as yet unknown protein kinases. Importantly, 12 of the phosphopeptides show reduced phosphorylation upon flagellin treatment. Since protein abundance levels did not change, these results indicate that flagellin induces not only various protein kinases but also protein phosphatases, even though a scenario of inhibited kinase activity may also be possible.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    MassChropQ_parameters.txt. All_FragMixer_outputs_Fsamples_analyses. All_FragMixer_outputs_Msamples_analyses. Supplementary and figures. We also provide ZIP files containing all the annotated MS/MS spectra leading to phosphopeptide identification (at an FDR of 1% estimated by FragMixer), with names such as: F_02_23_B_ETD (for Flg-treated sample, biological replicate “02”, ions of charge states 2 + 3+ selected for MS/MS, B = Blind analysis, ETD fragmentation mode); or M_03_S4_E2_MSA (for Mock-treated sample, biological replicate “03”, ions of charge states ≥4 selected for MS/MS, analysis performed with a 2nd Exclusion list combining the m/z ratios of peptides identified in the two former analyses of the same sample; MSA fragmentation mode). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 42 publications.

    1. Nicholas M. Riley and Joshua J. Coon . The Role of Electron Transfer Dissociation in Modern Proteomics. Analytical Chemistry 2018, 90 (1) , 40-64. https://doi.org/10.1021/acs.analchem.7b04810
    2. Nicholas M. Riley and Joshua J. Coon . Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. Analytical Chemistry 2016, 88 (1) , 74-94. https://doi.org/10.1021/acs.analchem.5b04123
    3. Deepak Bhardwaj, Suvriti Sharma, Akanksha Sharma, Ritu Gill, Sarvajeet Singh Gill, Rachana Verma, Tanushri Kaul, Narendra Tuteja. Decoding the Signaling Triad: Molecular Interactions of G-Proteins, MAP Kinases, and Helicases in Environmental Stress Responses. Plant Science 2025, 13 , 112514. https://doi.org/10.1016/j.plantsci.2025.112514
    4. Jiqiang Yin, Ying Sun, Xinping Miao, Jiaxin Qu, Kunjie Zhang, Xue qing Han, Yichi Li, Jiahui Sun, Fanna Kong. Dynamic changes and transcriptome analyses reveal the microfilament skeleton response to water stress in thalli of Neopyropia yezoensis inhabiting the intertidal zone. Plant Stress 2025, 15 , 100762. https://doi.org/10.1016/j.stress.2025.100762
    5. Moona Rahikainen, Oliver Berkowitz, James Whelan, Saijaliisa Kangasjärvi, Jesús Pascual. Role of aconitase in plant stress response and signaling. Physiologia Plantarum 2025, 177 (1) https://doi.org/10.1111/ppl.70128
    6. Diogo P. Godinho, Romana J.R. Yanez, Paula Duque. Pathogen-responsive alternative splicing in plant immunity. Trends in Plant Science 2024, 54 https://doi.org/10.1016/j.tplants.2024.11.010
    7. Justin M. Watkins, Christian Montes, Natalie M. Clark, Gaoyuan Song, Celio Cabral Oliveira, Bharat Mishra, Libuse Brachova, Clara M. Seifert, Malek S. Mitchell, Jing Yang, Pedro Augusto Braga dos Reis, Daisuke Urano, M. Shahid Muktar, Justin W. Walley, Alan M. Jones. Phosphorylation Dynamics in a flg22-Induced, G Protein–Dependent Network Reveals the AtRGS1 Phosphatase. Molecular & Cellular Proteomics 2024, 23 (2) , 100705. https://doi.org/10.1016/j.mcpro.2023.100705
    8. Anna Siodmak, Federico Martinez-Seidel, Naganand Rayapuram, Jeremie Bazin, Hanna Alhoraibi, Dione Gentry-Torfer, Naheed Tabassum, Arsheed H Sheikh, José Kenyi González Kise, Ikram Blilou, Martin Crespi, Joachim Kopka, Heribert Hirt. Dynamics of ribosome composition and ribosomal protein phosphorylation in immune signaling in Arabidopsis thaliana. Nucleic Acids Research 2023, 51 (21) , 11876-11892. https://doi.org/10.1093/nar/gkad827
    9. Marco Pedretti, Filippo Favretto, Francesca Troilo, Moira Giovannoni, Carolina Conter, Benedetta Mattei, Paola Dominici, Carlo Travaglini-Allocatelli, Adele Di Matteo, Alessandra Astegno. Role of myristoylation in modulating PCaP1 interaction with calmodulin. Plant Physiology and Biochemistry 2023, 203 , 108003. https://doi.org/10.1016/j.plaphy.2023.108003
    10. Anna Siodmak, Umar F. Shahul Hameed, Naganand Rayapuram, Ronny Völz, Marie Boudsocq, Siba Alharbi, Hanna Alhoraibi, Yong‐Hwan Lee, Ikram Blilou, Stefan T. Arold, Heribert Hirt. Essential role of the CD docking motif of MPK4 in plant immunity, growth, and development. New Phytologist 2023, 239 (3) , 1112-1126. https://doi.org/10.1111/nph.18989
    11. Bruno E Rojas, Alberto A Iglesias, . Integrating multiple regulations on enzyme activity: the case of phospho enol pyruvate carboxykinases. AoB PLANTS 2023, 15 (4) https://doi.org/10.1093/aobpla/plad053
    12. Alicia Vallet, Jacqueline Martin-Laffon, Adrien Favier, Benoît Revel, Titouan Bonnot, Claude Vidaud, Jean Armengaud, Jean-Charles Gaillard, Pascale Delangle, Fabienne Devime, Sylvie Figuet, Nelson B.C. Serre, Elisabetta Boeri Erba, Bernhard Brutscher, Stéphane Ravanel, Jacques Bourguignon, Claude Alban. The plasma membrane-associated cation-binding protein PCaP1 of Arabidopsis thaliana is a uranyl-binding protein. Journal of Hazardous Materials 2023, 446 , 130668. https://doi.org/10.1016/j.jhazmat.2022.130668
    13. Yeshveer Singh, Praveen Kumar Verma. Guiding the guards: MPK3/6–VLN3 module regulating stomatal defense. Trends in Plant Science 2022, 27 (6) , 513-515. https://doi.org/10.1016/j.tplants.2022.02.007
    14. Tiffany Yip Delormel, Liliana Avila-Ospina, Marlène Davanture, Michel Zivy, Julien Lang, Nicolas Valentin, Naganand Rayapuram, Heribert Hirt, Jean Colcombet, Marie Boudsocq. In vivo identification of putative CPK5 substrates in Arabidopsis thaliana. Plant Science 2022, 314 , 111121. https://doi.org/10.1016/j.plantsci.2021.111121
    15. Juanjuan Yu, Juan M. Gonzalez, Zhiping Dong, Qianru Shan, Bowen Tan, Jin Koh, Tong Zhang, Ning Zhu, Craig Dufresne, Gregory B. Martin, Sixue Chen. Integrative Proteomic and Phosphoproteomic Analyses of Pattern- and Effector-Triggered Immunity in Tomato. Frontiers in Plant Science 2021, 12 https://doi.org/10.3389/fpls.2021.768693
    16. Minxia Zou, Mengmeng Guo, Zhaoyang Zhou, Bingxiao Wang, Qing Pan, Jiajing Li, Jian-Min Zhou, Jiejie Li. MPK3- and MPK6-mediated VLN3 phosphorylation regulates actin dynamics during stomatal immunity in Arabidopsis. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26827-2
    17. Pratigya Subba, Thottethodi Subrahmanya Keshava Prasad. Plant Phosphoproteomics: Known Knowns, Known Unknowns, and Unknown Unknowns of an Emerging Systems Science Frontier. OMICS: A Journal of Integrative Biology 2021, 25 (12) , 750-769. https://doi.org/10.1089/omi.2021.0192
    18. Moira Giovannoni, Lucia Marti, Simone Ferrari, Natsuki Tanaka‐Takada, Masayoshi Maeshima, Thomas Ott, Giulia De Lorenzo, Benedetta Mattei. The plasma membrane–associated Ca 2+ ‐binding protein, PCaP1, is required for oligogalacturonide and flagellin‐induced priming and immunity. Plant, Cell & Environment 2021, 44 (9) , 3078-3093. https://doi.org/10.1111/pce.14118
    19. Pauline Duminil, Marlène Davanture, Céline Oury, Edouard Boex‐Fontvieille, Guillaume Tcherkez, Michel Zivy, Michael Hodges, Nathalie Glab. Arabidopsis thaliana 2,3‐bisphosphoglycerate‐independent phosphoglycerate mutase 2 activity requires serine 82 phosphorylation. The Plant Journal 2021, 107 (5) , 1478-1489. https://doi.org/10.1111/tpj.15395
    20. Shraddha K. Dahale, Daipayan Ghosh, Kishor D. Ingole, Anup Chugani, Sang Hee Kim, Saikat Bhattacharjee. HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity. International Journal of Molecular Sciences 2021, 22 (14) , 7440. https://doi.org/10.3390/ijms22147440
    21. Melissa Bredow, Kyle W. Bender, Alexandra Johnson Dingee, Danalyn R. Holmes, Alysha Thomson, Danielle Ciren, Cailun A. S. Tanney, Katherine E. Dunning, Marco Trujillo, Steven C. Huber, Jacqueline Monaghan. Phosphorylation-dependent subfunctionalization of the calcium-dependent protein kinase CPK28. Proceedings of the National Academy of Sciences 2021, 118 (19) https://doi.org/10.1073/pnas.2024272118
    22. Tomáš Takáč, Pavel Křenek, George Komis, Pavol Vadovič, Miroslav Ovečka, Ludmila Ohnoutková, Tibor Pechan, Petr Kašpárek, Tereza Tichá, Jasim Basheer, Mark Arick, Jozef Šamaj. TALEN-Based HvMPK3 Knock-Out Attenuates Proteome and Root Hair Phenotypic Responses to flg22 in Barley. Frontiers in Plant Science 2021, 12 https://doi.org/10.3389/fpls.2021.666229
    23. Petr Dvořák, Yuliya Krasylenko, Adam Zeiner, Jozef Šamaj, Tomáš Takáč. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. Frontiers in Plant Science 2021, 11 https://doi.org/10.3389/fpls.2020.618835
    24. Tim Xing, Nora A. Foroud. A Network View of MAP Kinase Pathways in Plant Defense Regulation. 2020, 393-407. https://doi.org/10.1002/9781119541578.ch16
    25. Anburaj Jeyaraj, Tamilselvi Elango, Xinghui Li, Guiyi Guo. Utilization of microRNAs and their regulatory functions for improving biotic stress tolerance in tea plant [ Camellia sinensis (L.) O. Kuntze]. RNA Biology 2020, 17 (10) , 1365-1382. https://doi.org/10.1080/15476286.2020.1774987
    26. Jeremie Bazin, Kiruthiga Mariappan, Yunhe Jiang, Thomas Blein, Ronny Voelz, Martin Crespi, Heribert Hirt, . Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. PLOS Pathogens 2020, 16 (4) , e1008401. https://doi.org/10.1371/journal.ppat.1008401
    27. Yunhe Jiang, Baoda Han, Huoming Zhang, Kiruthiga G Mariappan, Jean Bigeard, Jean Colcombet, Heribert Hirt. MAP 4K4 associates with BIK 1 to regulate plant innate immunity. EMBO reports 2019, 20 (11) https://doi.org/10.15252/embr.201947965
    28. Ronny Völz, Naganand Rayapuram, Heribert Hirt. Phosphorylation regulates the activity of INDETERMINATE-DOMAIN (IDD/BIRD) proteins in response to diverse environmental conditions. Plant Signaling & Behavior 2019, 14 (10) , e1642037. https://doi.org/10.1080/15592324.2019.1642037
    29. Richard Rigo, J�r�mie Bazin, Martin Crespi, C�line Charon. Alternative Splicing in the Regulation of Plant–Microbe Interactions. Plant and Cell Physiology 2019, 60 (9) , 1906-1916. https://doi.org/10.1093/pcp/pcz086
    30. Yasuhiro Kadota, Thomas W. H. Liebrand, Yukihisa Goto, Jan Sklenar, Paul Derbyshire, Frank L. H. Menke, Miguel‐Angel Torres, Antonio Molina, Cyril Zipfel, Gitta Coaker, Ken Shirasu. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector‐ and PAMP‐triggered immunity in plants. New Phytologist 2019, 221 (4) , 2160-2175. https://doi.org/10.1111/nph.15523
    31. Melissa Bredow, Jacqueline Monaghan. Regulation of Plant Immune Signaling by Calcium-Dependent Protein Kinases. Molecular Plant-Microbe Interactions® 2019, 32 (1) , 6-19. https://doi.org/10.1094/MPMI-09-18-0267-FI
    32. Moona Rahikainen, Sara Alegre, Andrea Trotta, Jesús Pascual, Saijaliisa Kangasjärvi. Trans‐methylation reactions in plants: focus on the activated methyl cycle. Physiologia Plantarum 2018, 162 (2) , 162-176. https://doi.org/10.1111/ppl.12619
    33. Naganand Rayapuram, Jean Bigeard, Hanna Alhoraibi, Ludovic Bonhomme, Anne-Marie Hesse, Joëlle Vinh, Heribert Hirt, Delphine Pflieger. Quantitative Phosphoproteomic Analysis Reveals Shared and Specific Targets of Arabidopsis Mitogen-Activated Protein Kinases (MAPKs) MPK3, MPK4, and MPK6. Molecular & Cellular Proteomics 2018, 17 (1) , 61-80. https://doi.org/10.1074/mcp.RA117.000135
    34. Cosette Abdallah, Charlène Lejamtel, Nassima Benzoubir, Serena Battaglia, Nazha Sidahmed-Adrar, Christophe Desterke, Matthieu Lemasson, Arielle R. Rosenberg, Didier Samuel, Christian Bréchot, Delphine Pflieger, François Le Naour, Marie-Françoise Bourgeade. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice. Oncotarget 2017, 8 (34) , 56228-56242. https://doi.org/10.18632/oncotarget.17280
    35. Cédric Przybylski, Juan M. Benito, Véronique Bonnet, Carmen Ortiz Mellet, José M. García Fernández. Toward a suitable structural analysis of gene delivery carrier based on polycationic carbohydrates by electron transfer dissociation tandem mass spectrometry. Analytica Chimica Acta 2016, 948 , 62-72. https://doi.org/10.1016/j.aca.2016.11.001
    36. Benedetta Mattei, Francesco Spinelli, Daniela Pontiggia, Giulia De Lorenzo. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. Frontiers in Plant Science 2016, 7 https://doi.org/10.3389/fpls.2016.01107
    37. Guido Durian, Moona Rahikainen, Sara Alegre, Mikael Brosché, Saijaliisa Kangasjärvi. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. Frontiers in Plant Science 2016, 7 https://doi.org/10.3389/fpls.2016.00812
    38. Michele Perazzolli, Maria Cristina Palmieri, Vittoria Matafora, Angela Bachi, Ilaria Pertot. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine. Journal of Plant Physiology 2016, 195 , 59-72. https://doi.org/10.1016/j.jplph.2016.03.007
    39. Chérif Chetouhi, Johan Panek, Ludovic Bonhomme, Hicham ElAlaoui, Catherine Texier, Thierry Langin, Charissa de Bekker, Serge Urbach, Edith Demettre, Dorothée Missé, Philippe Holzmuller, David P. Hughes, Andreas Zanzoni, Christine Brun, David G. Biron. Cross-talk in host–parasite associations: What do past and recent proteomics approaches tell us?. Infection, Genetics and Evolution 2015, 33 , 84-94. https://doi.org/10.1016/j.meegid.2015.04.015
    40. Jean Bigeard, Jean Colcombet, Heribert Hirt. Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant 2015, 8 (4) , 521-539. https://doi.org/10.1016/j.molp.2014.12.022
    41. William O. Slade, Emily G. Werth, Alex Chao, Leslie M. Hicks. Phosphoproteomics in photosynthetic organisms. ELECTROPHORESIS 2014, 35 (24) , 3441-3451. https://doi.org/10.1002/elps.201400154
    42. Nicolas Frei dit Frey, Ana Victoria Garcia, Jean Bigeard, Rim Zaag, Eduardo Bueso, Marie Garmier, Stéphanie Pateyron, Marie-Ludivine de Tauzia-Moreau, Véronique Brunaud, Sandrine Balzergue, Jean Colcombet, Sébastien Aubourg, Marie-Laure Martin-Magniette, Heribert Hirt. Functional analysis of Arabidopsisimmune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biology 2014, 15 (6) https://doi.org/10.1186/gb-2014-15-6-r87

    Journal of Proteome Research

    Cite this: J. Proteome Res. 2014, 13, 4, 2137–2151
    Click to copy citationCitation copied!
    https://doi.org/10.1021/pr401268v
    Published March 6, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    1766

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.