Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Mass++: A Visualization and Analysis Tool for Mass Spectrometry

View Author Information
Koichi Tanaka Laboratory of Advanced Science and Technology, Shimadzu Corporation, Kyoto 604-8511, Japan
Eisai Product Creation Systems, Eisai Co., Ltd., Tsukuba, Ibaraki 300-2635, Japan
§ iBioTech Co., Tsukuba, Ibaraki 300-0031, Japan
Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
*Phone: +81-75-823-2897. Fax: +81-75-823-2900. E-mail: [email protected]
Cite this: J. Proteome Res. 2014, 13, 8, 3846–3853
Publication Date (Web):June 26, 2014
https://doi.org/10.1021/pr500155z
Copyright © 2014 American Chemical Society

    Article Views

    2675

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We have developed Mass++, a plug-in style visualization and analysis tool for mass spectrometry. Its plug-in style enables users to customize it and to develop original functions. Mass++ has several kinds of plug-ins, including rich viewers and analysis methods for proteomics and metabolomics. Plug-ins for supporting vendors’ raw data are currently available; hence, Mass++ can read several data formats. Mass++ is both a desktop tool and a software development platform. Original functions can be developed without editing the Mass++ source code. Here, we present this tool’s capability to rapidly analyze MS data and develop functions by providing examples of label-free quantitation and implementing plug-ins or scripts. Mass++ is freely available at http://www.first-ms3d.jp/english/.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Plug-in structure, Mass++ menus, supported data formats, peak detection algorithms, normalization methods, peak position determination methods, examples of call types in Mass++, MSB file format, results of performance tests for MSB file format, example of Mass++ plug-in development using C#, table of MS data analysis tools, and table of development environments. This material is available free of charge via the Internet at http://pubs.acs.org. Mass++ runs on 32-bit and 64-bit Windows and can be downloaded free of charge via the Internet at http://www.first-ms3d.jp/english/. A Mass++ community is operated as a Google Group (http://groups.google.com/group/massplusplus/).

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 39 publications.

    1. Seonjeong Lee, Shinyeong Ju, Seok Jin Kim, Jin-Oh Choi, Kihyun Kim, Darae Kim, Eun-Seok Jeon, Cheolju Lee. tipNrich: A Tip-Based N-Terminal Proteome Enrichment Method. Analytical Chemistry 2021, 93 (42) , 14088-14098. https://doi.org/10.1021/acs.analchem.1c01722
    2. Metin Atila, George Katselis, Paulos Chumala, Yu Luo. Characterization of N-Succinylation of L-Lysylphosphatidylglycerol in Bacillus subtilis Using Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2016, 27 (10) , 1606-1613. https://doi.org/10.1007/s13361-016-1455-4
    3. Dmitry M. Avtonomov, Alexander Raskind, and Alexey I. Nesvizhskii . BatMass: a Java Software Platform for LC–MS Data Visualization in Proteomics and Metabolomics. Journal of Proteome Research 2016, 15 (8) , 2500-2509. https://doi.org/10.1021/acs.jproteome.6b00021
    4. Akiyasu C. Yoshizawa, Yuko Fukuyama, Shigeki Kajihara, Hiroki Kuyama, and Koichi Tanaka . Computational Survey of Sequence Specificity for Protein Terminal Tags Covering Nine Organisms and Its Application to Protein Identification. Journal of Proteome Research 2015, 14 (2) , 756-767. https://doi.org/10.1021/pr500793h
    5. Kathrine V. Jokumsen, Valerie H. Huhle, Per M. Hägglund, Michael J. Davies, Luke F. Gamon. Elevated levels of iodide promote peroxidase-mediated protein iodination and inhibit protein chlorination. Free Radical Biology and Medicine 2024, 220 , 207-221. https://doi.org/10.1016/j.freeradbiomed.2024.04.230
    6. Anastasia Chernykh, Jodie L. Abrahams, Oliver C. Grant, Lucas Kambanis, Zeynep Sumer-Bayraktar, Julian Ugonotti, Rebeca Kawahara, Leo Corcilius, Richard J. Payne, Robert J. Woods, Morten Thaysen-Andersen. Position-specific N- and O-glycosylation of the reactive center loop impacts neutrophil elastase–mediated proteolysis of corticosteroid-binding globulin. Journal of Biological Chemistry 2024, 300 (1) , 105519. https://doi.org/10.1016/j.jbc.2023.105519
    7. Md Gezani Bin Md Ghazi, Loong Chuen Lee, Aznor S Samsudin, Hukil Sino. Comparison of decision tree and naïve Bayes algorithms in detecting trace residue of gasoline based on gas chromatography–mass spectrometry data. Forensic Sciences Research 2023, 8 (3) , 249-255. https://doi.org/10.1093/fsr/owad031
    8. Reem Alshaman, Mona Qushawy, Hatem I. Mokhtar, Angie M. Ameen, Rehab M. El-Sayed, Eman Saad Alamri, Lamiaa M. Elabbasy, Ahmed M. N. Helaly, Walid F. Elkhatib, Eidah M. Alyahya, Sawsan A. Zaitone. Marula oil nanoemulsion improves motor function in experimental parkinsonism via mitigation of inflammation and oxidative stress. Frontiers in Pharmacology 2023, 14 https://doi.org/10.3389/fphar.2023.1293306
    9. Zijiang Yang, Hisayuki Arakawa. A double sliding-window method for baseline correction and noise estimation for Raman spectra of microplastics. Marine Pollution Bulletin 2023, 190 , 114887. https://doi.org/10.1016/j.marpolbul.2023.114887
    10. Vincent Wiebach. “What I wish I had known before starting my PhD”. Analytical Science Advances 2023, 4 (1-2) , 6-12. https://doi.org/10.1002/ansa.202200044
    11. Md Gezani Bin Md Ghazi, Loong Chuen Lee, Aznor Sheda Binti Samsudin, Hukil Sino. Evaluation of ensemble data preprocessing strategy on forensic gasoline classification using untargeted GC–MS data and classification and regression tree (CART) algorithm. Microchemical Journal 2022, 182 , 107911. https://doi.org/10.1016/j.microc.2022.107911
    12. Biswapriya B. Misra. Open-Source Software Tools, Databases, and Resources for Single-Cell and Single-Cell-Type Metabolomics. 2020, 191-217. https://doi.org/10.1007/978-1-4939-9831-9_15
    13. Jana Reiter, Anna Maria Hübbers, Frank Albrecht, Lars Ingo Ole Leichert, Alan John Slusarenko. Allicin, a natural antimicrobial defence substance from garlic, inhibits DNA gyrase activity in bacteria. International Journal of Medical Microbiology 2020, 310 (1) , 151359. https://doi.org/10.1016/j.ijmm.2019.151359
    14. Dinesh Kumar, Krishana Thakur, Shruti Sharma, Shiv Kumar. NMR for metabolomics studies of Crataegus rhipidophylla Gand.. Analytical and Bioanalytical Chemistry 2019, 411 (10) , 2149-2159. https://doi.org/10.1007/s00216-019-01646-z
    15. Keita Sato, Takahiro Yamashita, Hideyo Ohuchi, Atsuko Takeuchi, Hitoshi Gotoh, Katsuhiko Ono, Misao Mizuno, Yasuhisa Mizutani, Sayuri Tomonari, Kazumi Sakai, Yasushi Imamoto, Akimori Wada, Yoshinori Shichida. Opn5L1 is a retinal receptor that behaves as a reverse and self-regenerating photoreceptor. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03603-3
    16. Yu Luo, Muhammad Afzal Javed, Harry Deneer. Comparative study on nutrient depletion-induced lipidome adaptations in Staphylococcus haemolyticus and Staphylococcus epidermidis. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-20801-7
    17. Yu Luo, Muhammad Afzal Javed, Harry Deneer, Xialu Chen. Nutrient depletion-induced production of tri-acylated glycerophospholipids in Acinetobacter radioresistens. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-25869-9
    18. Yusuke Masuo, Yuri Ohba, Kohei Yamada, Aya Hasan Al-Shammari, Natsumi Seba, Noritaka Nakamichi, Takuo Ogihara, Munetaka Kunishima, Yukio Kato. Combination Metabolomics Approach for Identifying Endogenous Substrates of Carnitine/Organic Cation Transporter OCTN1. Pharmaceutical Research 2018, 35 (11) https://doi.org/10.1007/s11095-018-2507-1
    19. David J. Harvey. Analysis of carbohydrates and glycoconjugates by matrix‐assisted laser desorption/ionization mass spectrometry: An update for 2013–2014. Mass Spectrometry Reviews 2018, 37 (4) , 353-491. https://doi.org/10.1002/mas.21530
    20. Tobias Kind, Hiroshi Tsugawa, Tomas Cajka, Yan Ma, Zijuan Lai, Sajjan S. Mehta, Gert Wohlgemuth, Dinesh Kumar Barupal, Megan R. Showalter, Masanori Arita, Oliver Fiehn. Identification of small molecules using accurate mass MS/MS search. Mass Spectrometry Reviews 2018, 37 (4) , 513-532. https://doi.org/10.1002/mas.21535
    21. Akinori Nakamura, Naoki Kaneko, Victor L. Villemagne, Takashi Kato, James Doecke, Vincent Doré, Chris Fowler, Qiao-Xin Li, Ralph Martins, Christopher Rowe, Taisuke Tomita, Katsumi Matsuzaki, Kenji Ishii, Kazunari Ishii, Yutaka Arahata, Shinichi Iwamoto, Kengo Ito, Koichi Tanaka, Colin L. Masters, Katsuhiko Yanagisawa. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018, 554 (7691) , 249-254. https://doi.org/10.1038/nature25456
    22. Scott Ficarro, William Alexander, Jarrod Marto. mzStudio: A Dynamic Digital Canvas for User-Driven Interrogation of Mass Spectrometry Data. Proteomes 2017, 5 (4) , 20. https://doi.org/10.3390/proteomes5030020
    23. Unai Segundo, Luis Aldámiz-Echevarría, Javier López-Cuadrado, David Buenestado, Fernando Andrade, Tomás A. Pérez, Raúl Barrena, Eduardo G. Pérez-Yarza, Juan M. Pikatza. Improvement of newborn screening using a fuzzy inference system. Expert Systems with Applications 2017, 78 , 301-318. https://doi.org/10.1016/j.eswa.2017.02.022
    24. Leonardo Perez de Souza, Thomas Naake, Takayuki Tohge, Alisdair R Fernie. From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. GigaScience 2017, 6 (7) https://doi.org/10.1093/gigascience/gix037
    25. Han Hu, Kshitij Khatri, Joseph Zaia. Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrometry Reviews 2017, 36 (4) , 475-498. https://doi.org/10.1002/mas.21487
    26. Amit Rai, Kazuki Saito, Mami Yamazaki. Integrated omics analysis of specialized metabolism in medicinal plants. The Plant Journal 2017, 90 (4) , 764-787. https://doi.org/10.1111/tpj.13485
    27. R. Roushangar, G. I. Mias. MathIOmica-MSViewer: a dynamic viewer for mass spectrometry files for Mathematica. Journal of Mass Spectrometry 2017, 52 (5) , 315-318. https://doi.org/10.1002/jms.3928
    28. Vladimir Sarpe, David C Schriemer. Supporting metabolomics with adaptable software: design architectures for the end-user. Current Opinion in Biotechnology 2017, 43 , 110-117. https://doi.org/10.1016/j.copbio.2016.11.001
    29. Takaaki Nishioka. Progress of MassBank towards the Global Standard of Mass Spectral Database. Journal of Surface Analysis 2017, 24 (1) , 25-35. https://doi.org/10.1384/jsa.24.25
    30. Metin Atila, Yu Luo. Profiling and tandem mass spectrometry analysis of aminoacylated phospholipids in Bacillus subtilis . F1000Research 2016, 5 , 121. https://doi.org/10.12688/f1000research.7842.1
    31. Yu Luo. Alanylated lipoteichoic acid primer in Bacillus subtilis. F1000Research 2016, 5 , 155. https://doi.org/10.12688/f1000research.8007.1
    32. Biswapriya B. Misra, Justin J. J. van der Hooft. Updates in metabolomics tools and resources: 2014–2015. ELECTROPHORESIS 2016, 37 (1) , 86-110. https://doi.org/10.1002/elps.201500417
    33. Kie Kasuga, Takahiro Suga, Nariyasu Mano. Bioanalytical insights into mediator lipidomics. Journal of Pharmaceutical and Biomedical Analysis 2015, 113 , 151-162. https://doi.org/10.1016/j.jpba.2015.02.011
    34. Kentaro Morimoto, Takashi Nishikaze, Akiyasu C. Yoshizawa, Shigeki Kajihara, Ken Aoshima, Yoshiya Oda, Koichi Tanaka. GlycanAnalysis Plug-in: a database search tool for N -glycan structures using mass spectrometry. Bioinformatics 2015, 31 (13) , 2217-2219. https://doi.org/10.1093/bioinformatics/btv110
    35. Papawee Suabjakyong, Ryotaro Saiki, Leo J. L. D. Van Griensven, Kyohei Higashi, Kazuhiro Nishimura, Kazuei Igarashi, Toshihiko Toida, . Polyphenol Extract from Phellinus igniarius Protects against Acrolein Toxicity In Vitro and Provides Protection in a Mouse Stroke Model. PLOS ONE 2015, 10 (3) , e0122733. https://doi.org/10.1371/journal.pone.0122733
    36. Sean R. Johnson, Bernd Markus Lange. Open-Access Metabolomics Databases for Natural Product Research: Present Capabilities and Future Potential. Frontiers in Bioengineering and Biotechnology 2015, 3 https://doi.org/10.3389/fbioe.2015.00022
    37. Jürgen Hartler. MassBank. 2015, 1-3. https://doi.org/10.1007/978-94-007-7864-1_12-1
    38. Ken Aoshima, Kentaro Takahashi, Masayuki Ikawa, Takayuki Kimura, Mitsuru Fukuda, Satoshi Tanaka, Howell E Parry, Yuichiro Fujita, Akiyasu C Yoshizawa, Shin-ichi Utsunomiya, Shigeki Kajihara, Koichi Tanaka, Yoshiya Oda. A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry. BMC Bioinformatics 2014, 15 (1) https://doi.org/10.1186/s12859-014-0376-0
    39. Jingwen Yao, Shin-ichi Utsunomiya, Shigeki Kajihara, Tsuyoshi Tabata, Ken Aoshima, Yoshiya Oda, Koichi Tanaka. Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry. Mass Spectrometry 2014, 3 (1) , A0030-A0030. https://doi.org/10.5702/massspectrometry.A0030