ACS Publications. Most Trusted. Most Cited. Most Read
Side-Chain Type Ferrocene Macrocycles
My Activity

Figure 1Loading Img
  • Open Access
Article

Side-Chain Type Ferrocene Macrocycles
Click to copy article linkArticle link copied!

  • Bin Lan
    Bin Lan
    Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    More by Bin Lan
  • Jindong Xu
    Jindong Xu
    Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    More by Jindong Xu
  • Lingyun Zhu
    Lingyun Zhu
    Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    More by Lingyun Zhu
  • Xinyu Chen
    Xinyu Chen
    Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    More by Xinyu Chen
  • Hideya Kono
    Hideya Kono
    Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
    More by Hideya Kono
  • Peihan Wang
    Peihan Wang
    School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
    More by Peihan Wang
  • Xin Zuo
    Xin Zuo
    Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    More by Xin Zuo
  • Jianfeng Yan
    Jianfeng Yan
    Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    More by Jianfeng Yan
  • Akiko Yagi
    Akiko Yagi
    Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
    More by Akiko Yagi
  • Yongshen Zheng
    Yongshen Zheng
    School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
  • Songhua Chen*
    Songhua Chen
    College of Chemistry and Material Science, Longyan University, Longyan 364012, China
    *E-mail: [email protected]
    More by Songhua Chen
  • Yaofeng Yuan*
    Yaofeng Yuan
    Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    *E-mail: [email protected]
    More by Yaofeng Yuan
  • Kenichiro Itami*
    Kenichiro Itami
    Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
    *E-mail: [email protected]
  • Yuanming Li*
    Yuanming Li
    Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    *E-mail: [email protected]
    More by Yuanming Li
Open PDFSupporting Information (4)

Precision Chemistry

Cite this: Precis. Chem. 2024, 2, 4, 143–150
Click to copy citationCitation copied!
https://doi.org/10.1021/prechem.3c00121
Published March 13, 2024

Copyright © 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

A class of side-chain type ferrocene macrocycles with a radially conjugated system is introduced in this study. The stereo configurations of these ferrocene rings were determined through single-crystal X-ray diffraction analysis. Notably, in the solid state, the ferrocene rings exhibit a distinctive herringbone stacking pattern imposed by a ferrocene-to-ring host–guest interaction. Through UV–vis absorption spectroscopy, electrochemical measurements, and theoretical calculations, valuable insights into the electronic properties of these rings were obtained. In addition, the single crystal of macrocycle A2B demonstrates a second-order nonlinear optical response. As a class of organometallic nanorings, this work holds great potential for further exploration in the fields of organometallic chemistry, molecular electronics, and host–guest chemistry.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society

Introduction

Click to copy section linkSection link copied!

Ferrocene-based polymers are attractive materials for potential use in optoelectronic devices (Figure 1a). (1−6) Symmetrical conjugated cyclic structures not only are aesthetically captivating, but also add unique properties, such as enhanced π-conjugation, solubility, and host–guest interaction, when compared to their noncyclic counterparts. (7−17) Among these structures, ferrocene-based macrocycles have garnered significant attention in the fields of molecular machinery, (18,19) molecular electronics, (20−22) and redox-active supramolecular systems. (23−26) Drawing inspiration from the paradigm of ferrocene-based polymers, (26−28) ferrocene-based π-conjugated macrocycles can be categorized into two types: main-chain macrocycles and side-chain macrocycles (Figure 1b). In main-chain macrocycles, the transition metal is an integral component of the macrocycle, whereas in side-chain macrocycles, the transition metal is coordinated to the backbone of the macrocycle.

Figure 1

Figure 1. Conceptual representation of (a) ferrocene-based π-conjugated polymers; (b) main-chain and side-chain type ferrocene π-conjugated macrocycles; (c) representative examples of main-chain ferrocene π-conjugated macrocycles; (d) this work: side-chain type radially π-conjugated macrocycles.

To date, the main-chain macrocycles incorporating ferrocene units usually feature 1,1′-disubstituted ferrocene units (29,30) and conjugated linkages, such as pyrene (31,32) or 1,3-diethynylbenzene (33−35) (Figure 1c). The inherent rotation of the cyclopentadienyl (Cp) ring in ferrocene likely contributes to the formation of these twisted systems by reducing the strain. These strainless rings exhibit mixed-valence properties, as well as high solubility. We noted that the side-chain macrocyclic species with 1,2- (36) or 1,3-disubstituted (37,38) ferrocene modules are much rarer. Macrocycles of this type typically exhibit varied stereoisomerism due to the different orientations of the CpFe group. To fundamentally understand the relationship between organometallic fragment orientation and electronic structure, side-chained ferrocene macrocycles are considered as suitable candidates. In addition, the dissociation of CpFe fragments from the incorporated ferrocenes in side-chain type macrocycles can lead to Cp-embedded macrocycles, (39−41) which would be a new coordination platform for different metals as a curved π-conjugated macrocyclic ligands. (42,43) This encouraged us to pursue the synthesis of side-chain type ferrocene rings.
The electrochemical, (25) aromatic, (30) and supramolecular properties exhibited by these macrocycles are closely associated with their shape, as well as the number, proximity, and connectivity of their redox centers. (26) Accordingly, to enrich the functional landscape of side-chain type ferrocene-based conjugated macrocycles, we now introduce two nanosized conjugated macrocycles with different stereoisomerism by incorporating three or four 1,3-ferrocenylene units and paraphenylenes as linkage to give a new class of organometallic rings, (44−52) which feature radial conjugation, restricted conformation, and enhanced π-conjugation. The unique ferrocene-to-ring host–guest interaction of these macrocycles was determined through single-crystal X-ray diffraction analysis.

Results and Discussion

Click to copy section linkSection link copied!

Synthesis

The synthesis of the target macrocycles was achieved by the Pt-mediated coupling strategy developed by Bäuerle, (53,54) Yamago, (55) and Isobe et al. (Scheme 1). (56,57) Initially, 1,3-diiodoferrocene 1 was prepared according to the method established by Weissensteiner and co-workers. (58) Subsequently, the macrocyclic precursor diboronic ester 3 was obtained through the Suzuki–Miyaura coupling reaction, followed by Miyaura borylation in 45% total yield. In addition, crystals of compound 2 were obtained by slow evaporation from a solution of the complex in a CH2Cl2/n-hexane mixture (see Figure S1 for detailed structure information). The transmetalation of compound 3 with Pt(cod)Cl2 in 1,2-dichloroethane (DCE) heated at reflux in the presence of cesium fluoride for 48 h afforded the macrocyclic platinum intermediate. Without further purification, the resultant mixture was subjected to reductive elimination conditions to give the target macrocycles, namely, cyclotrimers (A2B and A3) and cyclotetramers (Fc4).

Scheme 1

Scheme 1. Synthetic Route to Side-Chain Type Ferrocene Rings
As anticipated, the incorporation of 1,3-disubstituted ferrocene into the side-chain type macrocycle introduced geometrical isomerism. For the cyclotrimers, the ratio of two possible stereoisomers, A2B and A3, was determined to be 5:2 by using 1H NMR spectroscopy (Figure S53). Both stereoisomers could be separated through repeated silica gel column chromatography, yielding A3 in 7% yield and A2B in 16% yield. The stereoisomers of the cyclotetramers could not be separated using either silica gel column chromatography or gel permeation chromatography (GPC). However, Fc4 was confirmed by MALDI FT-ICR MS. Additionally, a linear dimer A2 was also isolated in 0.2% yield.
The 1H NMR spectra of A2B, A3, A2, and Fc4 were compared to reveal interesting signal shifts of the hydrogen atoms of Cp rings (Figure 2). A3 exhibited a set of ferrocenyl signals, consistent with the theoretically high C3 V symmetry, while A2B displayed two sets of signals corresponding to CS symmetry. Upon comparison with A2, it was observed that the ferrocenyl units in the macrocyclic products exhibited tilting, resulting in progressive upfield shifts of the hydrogen atom signals (Ha and Hb) on Cp embedded in the ring. Specifically, the signal of Ha showed a significant shift of 1.54 ppm for A3, 1.58 and 1.60 ppm for A2B, respectively. This upfield shift phenomenon is more pronounced than in main-chain type ferrocene rings. (29) In contrast, the chemical shift of Hc shifted downfield as the conformationally flexible Cp rings moved away from the shielding region. Notably, for Fc4, an increasing ring size led to a gradual convergence of the corresponding signals toward those observed in linear congeners.

Figure 2

Figure 2. Partial 1H NMR spectra of A2, A3, A2B, and Fc4 in CDCl3.

X-ray Crystal Structures

Click to copy section linkSection link copied!

Single crystals of A2B and A3, suitable for X-ray diffraction analysis, were obtained by slow diffusion of dichloromethane into an n-hexane solution, allowing for the unambiguous determination of the stereoconfiguration of the cyclotrimers. As shown in Figure 3b, all three ferrocenyl units are in the same orientation, with respect to the ring plane in A3. In A2B, two ferrocenyl units are in a syn orientation with each other, while the third ferrocenyl unit is in an anti-orientation relative to them. These distinct configurations result in different space groups, P212121 (A2B) and P21/c (A3). The average diameter of both macrocycles is approximately 12 Å. In A2B, the rotational angle between the macrocycle plane and the embeded Fc plane is 31.62° for the anti ferrocenyl unit, while for the syn ferrocenyl units, the angles are 40.17° and 42.59°, respectively. In the case of A3, these values are close, which are 44.26°, 39.58°, and 42.14°, respectively (see Figures S5 and S10 for detailed measurement reference information). Regarding the tilting of FeCp groups, the angles are 3.49°, 2.56° and 1.68° for A3, and 3.69° (anti), 1.52° (syn) and 0.62° (syn) for A2B. Due to tripod-like shape of A3, reminiscent of ancient Chinese cauldrons, ceremonial vessels known as “ding”, A3 was aptly named “dingarene”.

Figure 3

Figure 3. X-ray crystal structures of (a) A2B and (b) A3 (thermal ellipsoids are shown at 50% probability; solvent molecules have been omitted for clarity). (c) Crystal stacking along the a-axis of A2B and distances between the hydrogen atoms and the aromatic plane (iron atoms, purple).

Furthermore, both A2B (Figure 3c) and A3 (Figure S9) displayed a distinctive herringbone stacking pattern imposed by a ferrocene-to-ring host–guest interaction. The ferrocenyl unit in each ring is effectively nestled within the cavity of the neighboring rings, primarily driven by Cp-H-π interactions. In the case of A2B (A3 see Figure S12), the distance between hydrogen atoms and aromatic planes (dPLN), the distance between the carbon atoms and the center of the aromatic planes (dC–X), and the angle at the hydrogen (∠C–H–X) (X represents the centroid of the phenyl) are measured to be 3.1 4.0, and 147.2°, respectively. These values align perfectly with the established C–H−π criteria, demonstrating the presence of these interactions. (59,60) Notably, this observation is consistent with the host–guest complexes of Fc⊂[8]cycloparaphenylenes (CPP) that have been recently reported. (61)

Redox and Photophysical Properties

Click to copy section linkSection link copied!

For multiferrocenyl cyclic systems, electrochemistry serves as a conventional tool for assessing the electronic communication between redox sites. (62,63) In this regard, the redox properties of A2B and A3 were investigated by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Initially, the CV of A2B and A3 in 0.1 M [n-Bu4N][PF6]/CH2Cl2 were examined, revealing a single reversible redox wave for both compounds (Figure S13). In an attempt to enhance the splitting of the redox potentials, we substituted the electrolyte with [n-Bu4N][BArF] (BArF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), as BArF exhibits a weak ion-pairing ability and increased electrostatic interaction. (64,65) However, this modification also resulted in only one unresolved wave in the CV (Figure S14). Finally, by further replacing the cations with Na+, two unresolved waves were observed in 0.01 M [Na][BArF]/CH2Cl2 (Figure 4). (66,67) The lack of a clear splitting between the oxidation waves suggests weak electronic communication between ferrocenyl units, (68,69) which is likely due to the large iron–iron geometric distance. (70) The lack of electronic interactions was verified further by the absence of any detectable intervalence charge transfer band in redox titrations (Figures S32 and S33).

Figure 4

Figure 4. Cyclic voltammetry (CV, top) and differential pulse voltammetry (DPV, bottom) were recorded in 0.01 M [Na][BArF]/CH2Cl2.

The UV–vis absorption spectra of A2, A2B and A3 recorded in CH2Cl2 are shown in Figure 5. A2B exhibits a maximum absorption at 318 nm and a weaker absorption at 280 nm, which is similar to A2 but with higher intensity observed. A3 displays a highly overlapping absorption spectrum with that of A2B. The dependence of the electronic structure on the syn/anti relationship of the ferrocenyl fragments appears insignificant, which is in agreement with the reported results for the ferrocene-dehydroannulenes. (36) To further investigate the ring-size effect, the absorption spectrum of mixture Fc4 was obtained and showed a similar absorption pattern. Additionally, the much weaker absorption bands (around 450 nm) observed in these ferrocenyl compounds were attributed to ferrocene d-d transition. (71,72) Likely because ferrocene is commonly known as a luminescence quencher, no detectable fluorescence was observed from these four compounds in a CH2Cl2 solution.

Figure 5

Figure 5. UV–vis absorption spectra of A2B, A3, A2, and Fc4 recorded in (10–5–10–6 M) CH2Cl2.

In addition, we note that A2B may have nonlinear optically relevant properties, (73,74) with the noncentrosymmetric space group (P212121) that is required for second harmonic generation. As the excitation power remains constant, nonlinear optical (NLO) spectra of A2B show clear second-harmonic generation (SHG) responses in a broad scope of pump wavelengths swept from 860 to 1040 nm (Figure 6a), with the incidence and detection angles set at 45° with respect to the surface normal. The largest SHG signal can be pumped at approximately 1040 nm for A2B. The quadratic correlation plot of the SHG intensity versus the incident laser power for the A2B crystal at an 880 nm incident wavelength has a linear fitting slope of 1.99 (Figure S17). Next, the polarization dependence of the NLO signal is investigated (Figure 6b). The maximum value of the SHG response of the crystal occurs when the excitation beam is polarized in directions of 50° and 230°.

Figure 6

Figure 6. (a) NLO spectra of A2B single crystals pumped at different wavelengths from 860 to 1040 nm. (b) Polarization dependence plot of the SHG signal of the A2B single crystal with an incident wavelength of 1040 nm.

Frontier Molecular Orbitals

Click to copy section linkSection link copied!

To further understand the effect of the orientation of ferrocenyl units in macrocycles, density functional theory (DFT) calculations were carried out. Geometry optimizations for the structures of A3 and A2B were performed at the PBE0-D3(BJ)/Def2-SVP level of theory (Figure S18). It was found that A2B is thermodynamically more stable than A3, with a difference of about 2.3 kcal mol–1. Furthermore, time-dependent (TD)-DFT calculations were performed at the PBE0-D3(BJ)/Def2-SVP level of theory. A2B and A3 exhibit similar orbital distributions (Figures S25 and 26), with the highest occupied molecular orbital (HOMO) delocalized along the entire backbone and the lowest unoccupied molecular orbital (LUMO) predominantly delocalized on the biphenyl moieties, indicating the formation of a π-conjugate system. Both compounds have HOMO levels of −5.63 eV, while the LUMO levels are −1.22 and −1.26 eV for A2B and A3, respectively (Table S2). The simulated UV–vis absorption spectra of A2B and A3, obtained through TD-DFT, are consistent with the experimental results. In both cases, the HOMO to LUMO transition is forbidden. In addition, the major absorption peaks (318 nm) originate from HOMO–1 to LUMO and HOMO to LUMO+1 transitions (f = 1.06), as well as from HOMO–2 to LUMO and HOMO to LUMO+2 (f = 0.90) (Figure 7), while the higher energy absorption peak (280 nm) is more complicated (see Tables S3 and S4).

Figure 7

Figure 7. Qualitative energy diagram and frontier molecular orbitals of A2B, calculated at the PBE0-D3(BJ)/Def2-SVP level of theory.

The strain energies of A2B and A3 were evaluated using homodesmotic reactions, (75) revealing that A2B is slightly less strained (43 kcal mol–1) than A3 (45 kcal mol–1) (Scheme S1). This finding suggests that the main product being A2B is likely due to its lower strain. These values are also much lower than that [9]CPP (66 kcal mol–1). (75) To further analyze the strain distribution (Figure 8a), we employed the StrainViz program developed by Jasti et al. (76) The results indicate that A3 has more strain than A2B in various aspects (Table S6).

Figure 8

Figure 8. (a) Molecular strain energy for A2B and A3 calculated and visualized using StrainViz and (b) relative Gibbs free energy diagram of the ferrocenyl rotational barriers in A3 (B3LYP/SDD, 6-31g(d); Transition State: Ts; Metastable State: Ms.).

In addition, the barriers of flipping three types of ferrocenyl units in A2B and A3 were investigated. In all cases, two transition states (Ts) and one metastable state were identified. For example, in A3 (Figure 8b), the energy difference required to transition from the most stable structure to Ms1 is approximately 2.92 kcal mol–1. The Ts2, with an energy barrier of 36.1 kcal mol–1, is associated with a change in the orientation of the ferrocenyl unit. This energy barrier suggests that the ferrocenyl unit is unlikely to cross at room temperature (see Figure S20–21 for detailed information on the energy barrier for A2B).
In terms of future application, some insight into side-chain type ferrocene rings’ coordination organometallic chemistry has been provided. The dissociation of ferrocene in main-chain ferrocene macrocycles leads to ring-opened linear products. (39−41) However, side-chain ferrocene macrocycles can form macrocycles embedded in Cp, which are more attractive for subsequent modification due to the metal coordination chemistry of the Cp unit. For example, Garbicz et al. recently reported that the Cp unit in side-chain macrocycle acts as a synthon for the construction of meso-tetraaryl-21-carbaporphyrin. (38) Notably, we observed signals of macrocyclic species shedding CpFe by MALDI FT-ICR MS (Figures S34–S36), which demonstrated that the side-chain ferrocene rings could be promising macrocyclic ligands for exploring organometallic chemistry in a well-defined curved radially conjugated macrocyclic environment.

Conclusions

Click to copy section linkSection link copied!

In summary, new side-chain type ferrocene-based π-conjugated macrocycles have been successfully synthesized and analyzed in detail. The stereo configuration of the two cyclotrimers was unambiguously confirmed through single crystal X-ray diffraction. Notably, both macrocycles exhibit unique herringbone packing induced by ferrocene-to-ring host–guest interactions, suggesting potential applications in host–guest chemistry. UV–vis absorption spectroscopy and theoretical calculation indicate that the orientation of ferrocenyl units (syn/anti) has no significant effect on the electronic structure of these cyclic conjugated systems. Electrochemical measurements support these findings and also reveal a weak interaction between the redox centers. A2B single crystals demonstrated second-order nonlinear optical properties. In addition, these rings have the potential to generate Cp-containing macrocycles, formed after Cp-FeCp breaking. Further studies are underway to exploit the coordination ability of the Cp-containing macrocycle as a curved π-conjugated macrocyclic ligands. Considering the recent advances in single-molecule electronics with conjugated cyclic structures, (77−79) the study of electronic transport performance of these new type macrocycles is ongoing as well.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/prechem.3c00121.

  • Experimental procedures and characterization data for all compounds; electrochemistry, NLO measurements, UV–vis-NIR, VT-NMR experimental details, and computational results (PDF)

  • Crystallographic data for 2 (CIF)

  • Crystallographic data for A2B (CIF)

  • Crystallographic data for A3 (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Songhua Chen - College of Chemistry and Material Science, Longyan University, Longyan 364012, China Email: [email protected]
    • Yaofeng Yuan - Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China Email: [email protected]
    • Kenichiro Itami - Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, JapanOrcidhttps://orcid.org/0000-0001-5227-7894 Email: [email protected]
    • Yuanming Li - Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaKey Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaOrcidhttps://orcid.org/0000-0003-3180-1305 Email: [email protected]
  • Authors
    • Bin Lan - Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    • Jindong Xu - Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    • Lingyun Zhu - Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    • Xinyu Chen - Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    • Hideya Kono - Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
    • Peihan Wang - School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
    • Xin Zuo - Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    • Jianfeng Yan - Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
    • Akiko Yagi - Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
    • Yongshen Zheng - School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
  • Author Contributions

    Bin Lan planned the experiments, synthesized and characterized the compounds with the help of Jindong Xu and Xin Zuo. Xinyu Chen, Hideya Kono, and Lingyun Zhu performed the DFT calculations. Peihan Wang, Yongshen Zheng, and Songhua Chen performed the nonlinear optical studies. Jianfeng Yan aided in interpreting the results and worked on the manuscript. Bin Lan wrote the original draft with input from all the coauthors. All authors discussed the results and contributed to the final manuscript. Yuanming Li, Kenichiro Itami, Yaofeng Yuan, and Akiko Yagi were involved in planning and supervised the project.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This work was supported from National Natural Science Foundation of China (No. 22071025) and the Natural Science Fund of Fujian Province, China (No.2022J011152). We thank Prof. Xinxiong Li and Prof. Weiguo Huang for the single crystal measurement, Prof. Chaolumen, Prof. Jialiang Xu, Prof. Xiang Li, Prof. Ye Sha, and Xiangzhao Zhu for constructive criticism of the manuscript, and Professor Tan Yu for naming side-chain type ferrocene macrocycles.

References

Click to copy section linkSection link copied!

This article references 79 other publications.

  1. 1
    Williams, K. A.; Boydston, A. J.; Bielawski, C. W. Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev. 2007, 36, 729744,  DOI: 10.1039/b601574n
  2. 2
    Hudson, R. D. A. Ferrocene polymers: current architectures, syntheses and utility. J. Organomet. Chem. 2001, 637–639, 4769,  DOI: 10.1016/S0022-328X(01)01142-1
  3. 3
    Pietschnig, R. Polymers with pendant ferrocenes. Chem. Soc. Rev. 2016, 45, 52165231,  DOI: 10.1039/C6CS00196C
  4. 4
    Musgrave, R. A.; Russell, A. D.; Hayward, D. W.; Whittell, G. R.; Lawrence, P. G.; Gates, P. J.; Green, J. C.; Manners, I. Main-chain metallopolymers at the static–dynamic boundary based on nickelocene. Nat. Chem. 2017, 9, 743750,  DOI: 10.1038/nchem.2743
  5. 5
    Hudson, Z. M.; Lunn, D. J.; Winnik, M. A.; Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 2014, 5, 3372,  DOI: 10.1038/ncomms4372
  6. 6
    Masson, G.; Herbert, D. E.; Whittell, G. R.; Holland, J. P.; Lough, A. J.; Green, J. C.; Manners, I. Synthesis and Reactivity of a Strained Silicon-Bridged [1]Ferrocenophanium Ion. Angew. Chem., Int. Ed. 2009, 48, 49614964,  DOI: 10.1002/anie.200901213
  7. 7
    Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 2015, 44, 22212304,  DOI: 10.1039/C4CS00366G
  8. 8
    Darzi, E. R.; Jasti, R. The dynamic, size-dependent properties of [5]–[12]cycloparaphenylenes. Chem. Soc. Rev. 2015, 44, 64016410,  DOI: 10.1039/C5CS00143A
  9. 9
    Hermann, M.; Wassy, D.; Esser, B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero- or Polycyclic Aromatics. Angew. Chem., Int. Ed. 2021, 60, 1574315766,  DOI: 10.1002/anie.202007024
  10. 10
    Li, Y.; Kono, H.; Maekawa, T.; Segawa, Y.; Yagi, A.; Itami, K. Chemical Synthesis of Carbon Nanorings and Nanobelts. Acc. Mater. Res. 2021, 2, 681691,  DOI: 10.1021/accountsmr.1c00105
  11. 11
    Wang, J.; Zhang, X.; Jia, H.; Wang, S.; Du, P. Large π-Extended and Curved Carbon Nanorings as Carbon Nanotube Segments. Acc. Chem. Res. 2021, 54, 41784190,  DOI: 10.1021/acs.accounts.1c00505
  12. 12
    Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis of a carbon nanobelt. Science 2017, 356, 172175,  DOI: 10.1126/science.aam8158
  13. 13
    Cheung, K. Y.; Gui, S.; Deng, C.; Liang, H.; Xia, Z.; Liu, Z.; Chi, L.; Miao, Q. Synthesis of Armchair and Chiral Carbon Nanobelts. Chem. 2019, 5, 838847,  DOI: 10.1016/j.chempr.2019.01.004
  14. 14
    Luan, Y.; Cong, H. Recent Synthetic Advances on π-Extended Carbon Nanohoops. Synlett. 2017, 28, 13831388,  DOI: 10.1055/s-0036-1588978
  15. 15
    Esser, B.; Hermann, M. Buckling up zigzag nanobelts. Nat. Chem. 2021, 13, 209211,  DOI: 10.1038/s41557-021-00642-0
  16. 16
    Kaiser, K.; Scriven, L. M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H. L. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 2019, 365, 12991301,  DOI: 10.1126/science.aay1914
  17. 17
    Scriven, L. M.; Kaiser, K.; Schulz, F.; Sterling, A. J.; Woltering, S. L.; Gawel, P.; Christensen, K. E.; Anderson, H. L.; Gross, L. Synthesis of Cyclo[18]carbon via Debromination of C18Br6. J. Am. Chem. Soc. 2020, 142, 1292112924,  DOI: 10.1021/jacs.0c05033
  18. 18
    Muraoka, T.; Kinbara, K.; Kobayashi, Y.; Aida, T. Light-Driven Open–Close Motion of Chiral Molecular Scissors. J. Am. Chem. Soc. 2003, 125, 56125613,  DOI: 10.1021/ja034994f
  19. 19
    Muraoka, T.; Kinbara, K.; Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 2006, 440, 512515,  DOI: 10.1038/nature04635
  20. 20
    Aragonès, A. C.; Darwish, N.; Ciampi, S.; Jiang, L.; Roesch, R.; Ruiz, E.; Nijhuis, C. A.; Díez-Pérez, I. Control over Near-Ballistic Electron Transport through Formation of Parallel Pathways in a Single-Molecule Wire. J. Am. Chem. Soc. 2019, 141, 240250,  DOI: 10.1021/jacs.8b09086
  21. 21
    Moneo, A.; González-Orive, A.; Bock, S.; Fenero, M.; Herrer, I. L.; Milan, D. C.; Lorenzoni, M.; Nichols, R. J.; Cea, P.; Perez-Murano, F.; Low, P. J.; Martin, S. Towards molecular electronic devices based on ‘all-carbon’ wires. Nanoscale. 2018, 10, 1412814138,  DOI: 10.1039/C8NR02347F
  22. 22
    Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Inkpen, M. S.; Lovat, G.; Fung, E. D.; Roy, X.; Venkataraman, L.; Evers, F. Mechanically Tunable Quantum Interference in Ferrocene-Based Single-Molecule Junctions. Nano Lett. 2020, 20, 63816386,  DOI: 10.1021/acs.nanolett.0c01956
  23. 23
    Xiao, C.; Wu, W.; Liang, W.; Zhou, D.; Kanagaraj, K.; Cheng, G.; Su, D.; Zhong, Z.; Chruma, J. J.; Yang, C. Redox-Triggered Chirality Switching and Guest-Capture/Release with a Pillar[6]arene-Based Molecular Universal Joint. Angew. Chem., Int. Ed. 2020, 59, 80948098,  DOI: 10.1002/anie.201916285
  24. 24
    Xu, L.; Wang, Y.-X.; Chen, L.-J.; Yang, H.-B. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: from structure to functions. Chem. Soc. Rev. 2015, 44, 21482167,  DOI: 10.1039/C5CS00022J
  25. 25
    Grossmann, B.; Heinze, J.; Herdtweck, E.; Köhler, F. H.; Nöth, H.; Schwenk, H.; Spiegler, M.; Wachter, W.; Weber, B. Seven Doubly Bridged Ferrocene Units in a Cycle. Angew. Chem., Int. Ed. 1997, 36, 387389,  DOI: 10.1002/anie.199703871
  26. 26
    Herbert, D. E.; Gilroy, J. B.; Chan, W. Y.; Chabanne, L.; Staubitz, A.; Lough, A. J.; Manners, I. Redox-Active Metallomacrocycles and Cyclic Metallopolymers: Photocontrolled Ring-Opening Oligomerization and Polymerization of Silicon-Bridged [1]Ferrocenophanes Using Substitutionally-Labile Lewis Bases as Initiators. J. Am. Chem. Soc. 2009, 131, 1495814968,  DOI: 10.1021/ja904928c
  27. 27
    Chan, W. Y.; Lough, A. J.; Manners, I. Organometallic Macrocycles and Cyclic Polymers by the Bipyridine-Initiated Photolytic Ring Opening of a Silicon-Bridged [1]Ferrocenophane. Angew. Chem., Int. Ed. 2007, 46, 90699072,  DOI: 10.1002/anie.200703430
  28. 28
    Winter, T.; Haider, W.; Schießer, A.; Presser, V.; Gallei, M.; Schäfer, A. Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene. Macromol. Rapid Commun. 2021, 42, 2000738,  DOI: 10.1002/marc.202000738
  29. 29
    Inkpen, M. S.; Scheerer, S.; Linseis, M.; White, A. J. P.; Winter, R. F.; Albrecht, T.; Long, N. J. Oligomeric ferrocene rings. Nat. Chem. 2016, 8, 825830,  DOI: 10.1038/nchem.2553
  30. 30
    Simkowa, I.; Latos-Grażyński, L.; Stępień, M. π Conjugation Transmitted across a d-Electron Metallocene in Ferrocenothiaporphyrin Macrocycles. Angew. Chem., Int. Ed. 2010, 49, 76657669,  DOI: 10.1002/anie.201004015
  31. 31
    Metzelaars, M.; Schleicher, S.; Hattori, T.; Borca, B.; Matthes, F.; Sanz, S.; Bürgler, D. E.; Rawson, J.; Schneider, C. M.; Kögerler, P. Cyclophane with eclipsed pyrene units enables construction of spin interfaces with chemical accuracy. Chem. Sci. 2021, 12, 84308437,  DOI: 10.1039/D1SC01036K
  32. 32
    Metzelaars, M.; Sanz, S.; Rawson, J.; Hartmann, R.; Schneider, C. M.; Kögerler, P. Fusing pyrene and ferrocene into a chiral, redox-active triangle. Chem. Commun. 2021, 57, 66606663,  DOI: 10.1039/D1CC02191E
  33. 33
    Wilson, L. E.; Hassenrück, C.; Winter, R. F.; White, A. J. P.; Albrecht, T.; Long, N. J. Ferrocene- and Biferrocene-Containing Macrocycles towards Single-Molecule Electronics. Angew. Chem., Int. Ed. 2017, 56, 68386842,  DOI: 10.1002/anie.201702006
  34. 34
    Hoffmann, V.; le Pleux, L.; Häussinger, D.; Unke, O. T.; Prescimone, A.; Mayor, M. Deltoid versus Rhomboid: Controlling the Shape of Bis-ferrocene Macrocycles by the Bulkiness of the Substituents. Organometallics. 2017, 36, 858866,  DOI: 10.1021/acs.organomet.6b00909
  35. 35
    Sheppard, S. A.; Bennett, T. L. R.; Long, N. J. Development and Characterisation of Highly Conjugated Functionalised Ferrocenylene Macrocycles. Eur. J. Inorg. Chem. 2022, 2022, e202200055,  DOI: 10.1002/ejic.202200055
  36. 36
    Bunz, U. H. F.; Roidl, G.; Altmann, M.; Enkelmann, V.; Shimizu, K. D. Synthesis and Structural Characterization of Novel Organometallic Dehydroannulenes with Fused CpCo-Cyclobutadiene and Ferrocene Units Including a Cyclic Fullerenyne Segment. J. Am. Chem. Soc. 1999, 121, 1071910726,  DOI: 10.1021/ja992262a
  37. 37
    Hisatome, M.; Tachikawa, O.; Sasho̅, M.; Yamakawa, K. Organometallic compounds: XXXII. Syntheses of 1,3-disubstituted ferrocenes and intermolecular (1,3)ferrocenophanes. J. Organomet. Chem. 1981, 217, C17C20,  DOI: 10.1016/S0022-328X(00)86033-7
  38. 38
    Garbicz, M.; Latos-Grażyński, L. A meso-Tetraaryl-21-carbaporphyrin: Incorporation of a Cyclopentadiene Unit into a Porphyrin Architecture. Angew. Chem., Int. Ed. 2019, 58, 60896093,  DOI: 10.1002/anie.201901808
  39. 39
    Di Giannantonio, M.; Ayer, M. A.; Verde-Sesto, E.; Lattuada, M.; Weder, C.; Fromm, K. M. Triggered Metal Ion Release and Oxidation: Ferrocene as a Mechanophore in Polymers. Angew. Chem., Int. Ed. 2018, 57, 1144511450,  DOI: 10.1002/anie.201803524
  40. 40
    Sha, Y.; Zhang, Y.; Xu, E.; Wang, Z.; Zhu, T.; Craig, S. L.; Tang, C. Quantitative and Mechanistic Mechanochemistry in Ferrocene Dissociation. ACS Macro Lett. 2018, 7, 11741179,  DOI: 10.1021/acsmacrolett.8b00625
  41. 41
    Zhang, Y.; Wang, Z.; Kouznetsova, T. B.; Sha, Y.; Xu, E.; Shannahan, L.; Fermen-Coker, M.; Lin, Y.; Tang, C.; Craig, S. L. Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 2021, 13, 5662,  DOI: 10.1038/s41557-020-00600-2
  42. 42
    Katz, T. J.; Pesti, J. The synthesis of a helical ferrocene. J. Am. Chem. Soc. 1982, 104, 346347,  DOI: 10.1021/ja00365a087
  43. 43
    Amaya, T.; Takahashi, Y.; Moriuchi, T.; Hirao, T. Sumanenyl Metallocenes: Synthesis and Structure of Mono- and Trinuclear Zirconocene Complexes. J. Am. Chem. Soc. 2014, 136, 1279412798,  DOI: 10.1021/ja5072459
  44. 44
    Jiang, H.-W.; Tanaka, T.; Mori, H.; Park, K. H.; Kim, D.; Osuka, A. Cyclic 2,12-Porphyrinylene Nanorings as a Porphyrin Analogue of Cycloparaphenylenes. J. Am. Chem. Soc. 2015, 137, 22192222,  DOI: 10.1021/ja513102m
  45. 45
    Jiang, H.-W.; Tanaka, T.; Kim, T.; Sung, Y. M.; Mori, H.; Kim, D.; Osuka, A. Synthesis of [n]Cyclo-5,15-porphyrinylene-4,4′-biphenylenes Displaying Size-Dependent Excitation-Energy Hopping. Angew. Chem., Int. Ed. 2015, 54, 1519715201,  DOI: 10.1002/anie.201507822
  46. 46
    Xu, Y.; Gsänger, S.; Minameyer, M. B.; Imaz, I.; Maspoch, D.; Shyshov, O.; Schwer, F.; Ribas, X.; Drewello, T.; Meyer, B.; von Delius, M. Highly Strained, Radially π-Conjugated Porphyrinylene Nanohoops. J. Am. Chem. Soc. 2019, 141, 1850018507,  DOI: 10.1021/jacs.9b08584
  47. 47
    Stawski, W.; Van Raden, J. M.; Patrick, C. W.; Horton, P. N.; Coles, S. J.; Anderson, H. L. Strained Porphyrin Tape–Cycloparaphenylene Hybrid Nanorings. Org. Lett. 2023, 25, 378383,  DOI: 10.1021/acs.orglett.2c04089
  48. 48
    Kubota, N.; Segawa, Y.; Itami, K. η6-Cycloparaphenylene Transition Metal Complexes: Synthesis, Structure, Photophysical Properties, and Application to the Selective Monofunctionalization of Cycloparaphenylenes. J. Am. Chem. Soc. 2015, 137, 13561361,  DOI: 10.1021/ja512271p
  49. 49
    Kayahara, E.; Patel, V. K.; Mercier, A.; Kündig, E. P.; Yamago, S. Regioselective Synthesis and Characterization of Multinuclear Convex-Bound Ruthenium-[n]Cycloparaphenylene (n = 5 and 6) Complexes. Angew. Chem., Int. Ed. 2016, 55, 302306,  DOI: 10.1002/anie.201508003
  50. 50
    Van Raden, J. M.; Louie, S.; Zakharov, L. N.; Jasti, R. 2,2′-Bipyridyl-Embedded Cycloparaphenylenes as a General Strategy To Investigate Nanohoop-Based Coordination Complexes. J. Am. Chem. Soc. 2017, 139, 29362939,  DOI: 10.1021/jacs.7b00359
  51. 51
    Majewski, M. A.; Stawski, W.; Van Raden, J. M.; Clarke, M.; Hart, J.; O’Shea, J. N.; Saywell, A.; Anderson, H. L. Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring**. Angew. Chem., Int. Ed. 2023, 62, e202302114,  DOI: 10.1002/anie.202302114
  52. 52
    Heras Ojea, M. J.; Van Raden, J. M.; Louie, S.; Collins, R.; Pividori, D.; Cirera, J.; Meyer, K.; Jasti, R.; Layfield, R. A. Spin-Crossover Properties of an Iron(II) Coordination Nanohoop. Angew. Chem., Int. Ed. 2021, 60, 35153518,  DOI: 10.1002/anie.202013374
  53. 53
    Fuhrmann, G.; Debaerdemaeker, T.; Bäuerle, P. C–C bond formation through oxidatively induced elimination of platinum complexes─A novel approach towards conjugated macrocycles. Chem. Commun. 2003, 948949,  DOI: 10.1039/b300542a
  54. 54
    Zhang, F.; Götz, G.; Winkler, H. D. F.; Schalley, C. A.; Bäuerle, P. Giant Cyclo[n]thiophenes with Extended π Conjugation. Angew. Chem., Int. Ed. 2009, 48, 66326635,  DOI: 10.1002/anie.200900101
  55. 55
    Yamago, S.; Watanabe, Y.; Iwamoto, T. Synthesis of [8]Cycloparaphenylene from a Square-Shaped Tetranuclear Platinum Complex. Angew. Chem., Int. Ed. 2010, 49, 757759,  DOI: 10.1002/anie.200905659
  56. 56
    Hitosugi, S.; Nakanishi, W.; Yamasaki, T.; Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun. 2011, 2, 492,  DOI: 10.1038/ncomms1505
  57. 57
    Zhao, H.; Ma, Y.-C.; Cao, L.; Huang, S.; Zhang, J.-P.; Yan, X. Synthesis and Photophysical Properties of Chalcophenes-Embedded Cycloparaphenylenes. J. Org. Chem. 2019, 84, 52305235,  DOI: 10.1021/acs.joc.9b00207
  58. 58
    Zirakzadeh, A.; Herlein, A.; Groß, M. A.; Mereiter, K.; Wang, Y.; Weissensteiner, W. Halide-Mediated Ortho-Deprotonation Reactions Applied to the Synthesis of 1,2- and 1,3-Disubstituted Ferrocene Derivatives. Organometallics. 2015, 34, 38203832,  DOI: 10.1021/acs.organomet.5b00464
  59. 59
    Brandl, M.; Weiss, M. S.; Jabs, A.; Sühnel, J.; Hilgenfeld, R. C-h···π-interactions in proteins. J. Mol. Biol. 2001, 307, 357377,  DOI: 10.1006/jmbi.2000.4473
  60. 60
    Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. The CH/π interaction: Significance in molecular recognition. Tetrahedron. 1995, 51, 86658701,  DOI: 10.1016/0040-4020(94)01066-9
  61. 61
    Kwon, H.; Newell, B. S.; Bruns, C. J. Redox-switchable host–guest complexes of metallocenes and [8]cycloparaphenylene. Nanoscale 2022, 14, 1427614285,  DOI: 10.1039/D2NR03852H
  62. 62
    Liu, C. Y.; Meng, M. Introduction and Fundamentals of Mixed-Valence Chemistry. Mixed-Valence Systems 2023, 143,  DOI: 10.1002/9783527835287.ch1
  63. 63
    Santi, S.; Orian, L.; Donoli, A.; Bisello, A.; Scapinello, M.; Benetollo, F.; Ganis, P.; Ceccon, A. Synthesis of the Prototypical Cyclic Metallocene Triad: Mixed-Valence Properties of [(FeCp)3(trindenyl)] Isomers. Angew. Chem., Int. Ed. 2008, 47, 53315334,  DOI: 10.1002/anie.200801124
  64. 64
    Hildebrandt, A.; Miesel, D.; Lang, H. Electrostatic interactions within mixed-valent compounds. Coord. Chem. Rev. 2018, 371, 5666,  DOI: 10.1016/j.ccr.2018.05.017
  65. 65
    Geiger, W. E.; Barrière, F. Organometallic Electrochemistry Based on Electrolytes Containing Weakly-Coordinating Fluoroarylborate Anions. Acc. Chem. Res. 2010, 43, 10301039,  DOI: 10.1021/ar1000023
  66. 66
    Barrière, F.; Geiger, W. E. Use of Weakly Coordinating Anions to Develop an Integrated Approach to the Tuning of ΔE1/2 Values by Medium Effects. J. Am. Chem. Soc. 2006, 128, 39803989,  DOI: 10.1021/ja058171x
  67. 67
    LeSuer, R. J.; Buttolph, C.; Geiger, W. E. Comparison of the Conductivity Properties of the Tetrabutylammonium Salt of Tetrakis(pentafluorophenyl)borate Anion with Those of Traditional Supporting Electrolyte Anions in Nonaqueous Solvents. Anal. Chem. 2004, 76, 63956401,  DOI: 10.1021/ac040087x
  68. 68
    D’Alessandro, D. M.; Keene, F. R. Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions. Chem. Soc. Rev. 2006, 35, 424440,  DOI: 10.1039/b514590m
  69. 69
    Hildebrandt, A.; Lang, H. (Multi)ferrocenyl Five-Membered Heterocycles: Excellent Connecting Units for Electron Transfer Studies. Organometallics 2013, 32, 56405653,  DOI: 10.1021/om400453m
  70. 70
    Santi, S.; Orian, L.; Durante, C.; Bencze, E. Z.; Bisello, A.; Donoli, A.; Ceccon, A.; Benetollo, F.; Crociani, L. Metal–Metal Electronic Coupling in syn and anti Stereoisomers of Mixed-Valent (FeCp)2-, (RhL2)2-, and (FeCp)(RhL2)-as-Indacenediide Ions. Chem.─Eur. J. 2007, 13, 79337947,  DOI: 10.1002/chem.200700052
  71. 71
    Gray, H. B.; Sohn, Y. S.; Hendrickson, N. Electronic structure of metallocenes. J. Am. Chem. Soc. 1971, 93, 36033612,  DOI: 10.1021/ja00744a011
  72. 72
    Cuffe, L.; Hudson, R. D. A.; Gallagher, J. F.; Jennings, S.; McAdam, C. J.; Connelly, R. B. T.; Manning, A. R.; Robinson, B. H.; Simpson, J. Synthesis, Structure, and Redox Chemistry of Ethenyl and Ethynyl Ferrocene Polyaromatic Dyads. Organometallics. 2005, 24, 20512060,  DOI: 10.1021/om0492653
  73. 73
    Kaur, S.; Kaur, M.; Kaur, P.; Clays, K.; Singh, K. Ferrocene chromophores continue to inspire. Fine-tuning and switching of the second-order nonlinear optical response. Coord. Chem. Rev. 2017, 343, 185219,  DOI: 10.1016/j.ccr.2017.05.008
  74. 74
    Shi, R.; Han, X.; Cheng, P.; Xin, M.; Xu, J. Self-Assembled Nonlinear Optical Crystals Based on an Asymmetric Fluorenone Derivative. Cryst. Growth Des. 2022, 22, 39984004,  DOI: 10.1021/acs.cgd.2c00342
  75. 75
    Segawa, Y.; Omachi, H.; Itami, K. Theoretical Studies on the Structures and Strain Energies of Cycloparaphenylenes. Org. Lett. 2010, 12, 22622265,  DOI: 10.1021/ol1006168
  76. 76
    Colwell, C. E.; Price, T. W.; Stauch, T.; Jasti, R. Strain visualization for strained macrocycles. Chem. Sci. 2020, 11, 39233930,  DOI: 10.1039/D0SC00629G
  77. 77
    Lin, J.; Lv, Y.; Song, K.; Song, X.; Zang, H.; Du, P.; Zang, Y.; Zhu, D. Cleavage of non-polar C(sp2)–C(sp2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution. Nat. Commun. 2023, 14, 293,  DOI: 10.1038/s41467-022-35686-4
  78. 78
    Lv, Y.; Lin, J.; Song, K.; Song, X.; Zang, H.; Zang, Y.; Zhu, D. Single cycloparaphenylene molecule devices: Achieving large conductance modulation via tuning radial π-conjugation. Sci. Adv. 2021, 7, eabk3095,  DOI: 10.1126/sciadv.abk3095
  79. 79
    Lin, J.; Wang, S.; Zhang, F.; Yang, B.; Du, P.; Chen, C.; Zang, Y.; Zhu, D. Highly efficient charge transport across carbon nanobelts. Sci. Adv. 2022, 8, eade4692,  DOI: 10.1126/sciadv.ade4692

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 5 publications.

  1. Remigiusz B. Kręcijasz, Juraj Malinčík, Simon Mathew, Peter Štacko, Tomáš Šolomek. Strain-Induced Photochemical Opening of Ferrocene[6]cycloparaphenylene: Uncaging of Fe2+ with Green Light. Journal of the American Chemical Society 2025, 147 (12) , 10231-10237. https://doi.org/10.1021/jacs.4c15818
  2. Ruiying Zhang, Xinyu Chen, Lingyun Zhu, Yanxia Huang, Zi'ang Zhai, Qiang Wang, Lingding Wang, Taosong Wang, Wei-Zhen Wang, Ke-Yin Ye, Yuanming Li. Thiophene-backbone arcuate graphene nanoribbons: shotgun synthesis and length dependent properties. Chemical Science 2025, 16 (17) , 7366-7373. https://doi.org/10.1039/D4SC08353A
  3. Kang Wei, Zaitian Cheng, Xinyu Zhang, Qiang Huang, Pingwu Du. Direct π-extension of a conjugated carbon nanohoop using a zipper method. Chemical Communications 2024, 60 (96) , 14248-14251. https://doi.org/10.1039/D4CC04976D
  4. Jindong Xu, Bin Lan, Lingyun Zhu, Hui Xu, Xinyu Chen, Wenjuan Li, Yaofeng Yuan, Jianfeng Yan, Yuanming Li. Synthesis and Properties of Ferrocene Conjugated Macrocycles with Illusory Topology of the Penrose Stairs. Chemical Research in Chinese Universities 2024, 40 (5) , 881-886. https://doi.org/10.1007/s40242-024-4134-1
  5. Lingyun Zhu, Jingdong Xu, Bin Lan, Xinyu Chen, Hideya Kono, Hui Xu, Jianfeng Yan, Wenjuan Li, Akiko Yagi, Yaofeng Yuan, Kenichiro Itami, Yuanming Li. Ferrocene-based conjugated macrocycles: shotgun synthesis, size-dependent properties and tunable fluorescence intensity. Organic Chemistry Frontiers 2024, 11 (18) , 5130-5137. https://doi.org/10.1039/D4QO01079E

Precision Chemistry

Cite this: Precis. Chem. 2024, 2, 4, 143–150
Click to copy citationCitation copied!
https://doi.org/10.1021/prechem.3c00121
Published March 13, 2024

Copyright © 2024 The Authors. Co-published by University of Science and Technology of China and American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

2542

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Conceptual representation of (a) ferrocene-based π-conjugated polymers; (b) main-chain and side-chain type ferrocene π-conjugated macrocycles; (c) representative examples of main-chain ferrocene π-conjugated macrocycles; (d) this work: side-chain type radially π-conjugated macrocycles.

    Scheme 1

    Scheme 1. Synthetic Route to Side-Chain Type Ferrocene Rings

    Figure 2

    Figure 2. Partial 1H NMR spectra of A2, A3, A2B, and Fc4 in CDCl3.

    Figure 3

    Figure 3. X-ray crystal structures of (a) A2B and (b) A3 (thermal ellipsoids are shown at 50% probability; solvent molecules have been omitted for clarity). (c) Crystal stacking along the a-axis of A2B and distances between the hydrogen atoms and the aromatic plane (iron atoms, purple).

    Figure 4

    Figure 4. Cyclic voltammetry (CV, top) and differential pulse voltammetry (DPV, bottom) were recorded in 0.01 M [Na][BArF]/CH2Cl2.

    Figure 5

    Figure 5. UV–vis absorption spectra of A2B, A3, A2, and Fc4 recorded in (10–5–10–6 M) CH2Cl2.

    Figure 6

    Figure 6. (a) NLO spectra of A2B single crystals pumped at different wavelengths from 860 to 1040 nm. (b) Polarization dependence plot of the SHG signal of the A2B single crystal with an incident wavelength of 1040 nm.

    Figure 7

    Figure 7. Qualitative energy diagram and frontier molecular orbitals of A2B, calculated at the PBE0-D3(BJ)/Def2-SVP level of theory.

    Figure 8

    Figure 8. (a) Molecular strain energy for A2B and A3 calculated and visualized using StrainViz and (b) relative Gibbs free energy diagram of the ferrocenyl rotational barriers in A3 (B3LYP/SDD, 6-31g(d); Transition State: Ts; Metastable State: Ms.).

  • References


    This article references 79 other publications.

    1. 1
      Williams, K. A.; Boydston, A. J.; Bielawski, C. W. Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev. 2007, 36, 729744,  DOI: 10.1039/b601574n
    2. 2
      Hudson, R. D. A. Ferrocene polymers: current architectures, syntheses and utility. J. Organomet. Chem. 2001, 637–639, 4769,  DOI: 10.1016/S0022-328X(01)01142-1
    3. 3
      Pietschnig, R. Polymers with pendant ferrocenes. Chem. Soc. Rev. 2016, 45, 52165231,  DOI: 10.1039/C6CS00196C
    4. 4
      Musgrave, R. A.; Russell, A. D.; Hayward, D. W.; Whittell, G. R.; Lawrence, P. G.; Gates, P. J.; Green, J. C.; Manners, I. Main-chain metallopolymers at the static–dynamic boundary based on nickelocene. Nat. Chem. 2017, 9, 743750,  DOI: 10.1038/nchem.2743
    5. 5
      Hudson, Z. M.; Lunn, D. J.; Winnik, M. A.; Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 2014, 5, 3372,  DOI: 10.1038/ncomms4372
    6. 6
      Masson, G.; Herbert, D. E.; Whittell, G. R.; Holland, J. P.; Lough, A. J.; Green, J. C.; Manners, I. Synthesis and Reactivity of a Strained Silicon-Bridged [1]Ferrocenophanium Ion. Angew. Chem., Int. Ed. 2009, 48, 49614964,  DOI: 10.1002/anie.200901213
    7. 7
      Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 2015, 44, 22212304,  DOI: 10.1039/C4CS00366G
    8. 8
      Darzi, E. R.; Jasti, R. The dynamic, size-dependent properties of [5]–[12]cycloparaphenylenes. Chem. Soc. Rev. 2015, 44, 64016410,  DOI: 10.1039/C5CS00143A
    9. 9
      Hermann, M.; Wassy, D.; Esser, B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero- or Polycyclic Aromatics. Angew. Chem., Int. Ed. 2021, 60, 1574315766,  DOI: 10.1002/anie.202007024
    10. 10
      Li, Y.; Kono, H.; Maekawa, T.; Segawa, Y.; Yagi, A.; Itami, K. Chemical Synthesis of Carbon Nanorings and Nanobelts. Acc. Mater. Res. 2021, 2, 681691,  DOI: 10.1021/accountsmr.1c00105
    11. 11
      Wang, J.; Zhang, X.; Jia, H.; Wang, S.; Du, P. Large π-Extended and Curved Carbon Nanorings as Carbon Nanotube Segments. Acc. Chem. Res. 2021, 54, 41784190,  DOI: 10.1021/acs.accounts.1c00505
    12. 12
      Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis of a carbon nanobelt. Science 2017, 356, 172175,  DOI: 10.1126/science.aam8158
    13. 13
      Cheung, K. Y.; Gui, S.; Deng, C.; Liang, H.; Xia, Z.; Liu, Z.; Chi, L.; Miao, Q. Synthesis of Armchair and Chiral Carbon Nanobelts. Chem. 2019, 5, 838847,  DOI: 10.1016/j.chempr.2019.01.004
    14. 14
      Luan, Y.; Cong, H. Recent Synthetic Advances on π-Extended Carbon Nanohoops. Synlett. 2017, 28, 13831388,  DOI: 10.1055/s-0036-1588978
    15. 15
      Esser, B.; Hermann, M. Buckling up zigzag nanobelts. Nat. Chem. 2021, 13, 209211,  DOI: 10.1038/s41557-021-00642-0
    16. 16
      Kaiser, K.; Scriven, L. M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H. L. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 2019, 365, 12991301,  DOI: 10.1126/science.aay1914
    17. 17
      Scriven, L. M.; Kaiser, K.; Schulz, F.; Sterling, A. J.; Woltering, S. L.; Gawel, P.; Christensen, K. E.; Anderson, H. L.; Gross, L. Synthesis of Cyclo[18]carbon via Debromination of C18Br6. J. Am. Chem. Soc. 2020, 142, 1292112924,  DOI: 10.1021/jacs.0c05033
    18. 18
      Muraoka, T.; Kinbara, K.; Kobayashi, Y.; Aida, T. Light-Driven Open–Close Motion of Chiral Molecular Scissors. J. Am. Chem. Soc. 2003, 125, 56125613,  DOI: 10.1021/ja034994f
    19. 19
      Muraoka, T.; Kinbara, K.; Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 2006, 440, 512515,  DOI: 10.1038/nature04635
    20. 20
      Aragonès, A. C.; Darwish, N.; Ciampi, S.; Jiang, L.; Roesch, R.; Ruiz, E.; Nijhuis, C. A.; Díez-Pérez, I. Control over Near-Ballistic Electron Transport through Formation of Parallel Pathways in a Single-Molecule Wire. J. Am. Chem. Soc. 2019, 141, 240250,  DOI: 10.1021/jacs.8b09086
    21. 21
      Moneo, A.; González-Orive, A.; Bock, S.; Fenero, M.; Herrer, I. L.; Milan, D. C.; Lorenzoni, M.; Nichols, R. J.; Cea, P.; Perez-Murano, F.; Low, P. J.; Martin, S. Towards molecular electronic devices based on ‘all-carbon’ wires. Nanoscale. 2018, 10, 1412814138,  DOI: 10.1039/C8NR02347F
    22. 22
      Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Inkpen, M. S.; Lovat, G.; Fung, E. D.; Roy, X.; Venkataraman, L.; Evers, F. Mechanically Tunable Quantum Interference in Ferrocene-Based Single-Molecule Junctions. Nano Lett. 2020, 20, 63816386,  DOI: 10.1021/acs.nanolett.0c01956
    23. 23
      Xiao, C.; Wu, W.; Liang, W.; Zhou, D.; Kanagaraj, K.; Cheng, G.; Su, D.; Zhong, Z.; Chruma, J. J.; Yang, C. Redox-Triggered Chirality Switching and Guest-Capture/Release with a Pillar[6]arene-Based Molecular Universal Joint. Angew. Chem., Int. Ed. 2020, 59, 80948098,  DOI: 10.1002/anie.201916285
    24. 24
      Xu, L.; Wang, Y.-X.; Chen, L.-J.; Yang, H.-B. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: from structure to functions. Chem. Soc. Rev. 2015, 44, 21482167,  DOI: 10.1039/C5CS00022J
    25. 25
      Grossmann, B.; Heinze, J.; Herdtweck, E.; Köhler, F. H.; Nöth, H.; Schwenk, H.; Spiegler, M.; Wachter, W.; Weber, B. Seven Doubly Bridged Ferrocene Units in a Cycle. Angew. Chem., Int. Ed. 1997, 36, 387389,  DOI: 10.1002/anie.199703871
    26. 26
      Herbert, D. E.; Gilroy, J. B.; Chan, W. Y.; Chabanne, L.; Staubitz, A.; Lough, A. J.; Manners, I. Redox-Active Metallomacrocycles and Cyclic Metallopolymers: Photocontrolled Ring-Opening Oligomerization and Polymerization of Silicon-Bridged [1]Ferrocenophanes Using Substitutionally-Labile Lewis Bases as Initiators. J. Am. Chem. Soc. 2009, 131, 1495814968,  DOI: 10.1021/ja904928c
    27. 27
      Chan, W. Y.; Lough, A. J.; Manners, I. Organometallic Macrocycles and Cyclic Polymers by the Bipyridine-Initiated Photolytic Ring Opening of a Silicon-Bridged [1]Ferrocenophane. Angew. Chem., Int. Ed. 2007, 46, 90699072,  DOI: 10.1002/anie.200703430
    28. 28
      Winter, T.; Haider, W.; Schießer, A.; Presser, V.; Gallei, M.; Schäfer, A. Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene. Macromol. Rapid Commun. 2021, 42, 2000738,  DOI: 10.1002/marc.202000738
    29. 29
      Inkpen, M. S.; Scheerer, S.; Linseis, M.; White, A. J. P.; Winter, R. F.; Albrecht, T.; Long, N. J. Oligomeric ferrocene rings. Nat. Chem. 2016, 8, 825830,  DOI: 10.1038/nchem.2553
    30. 30
      Simkowa, I.; Latos-Grażyński, L.; Stępień, M. π Conjugation Transmitted across a d-Electron Metallocene in Ferrocenothiaporphyrin Macrocycles. Angew. Chem., Int. Ed. 2010, 49, 76657669,  DOI: 10.1002/anie.201004015
    31. 31
      Metzelaars, M.; Schleicher, S.; Hattori, T.; Borca, B.; Matthes, F.; Sanz, S.; Bürgler, D. E.; Rawson, J.; Schneider, C. M.; Kögerler, P. Cyclophane with eclipsed pyrene units enables construction of spin interfaces with chemical accuracy. Chem. Sci. 2021, 12, 84308437,  DOI: 10.1039/D1SC01036K
    32. 32
      Metzelaars, M.; Sanz, S.; Rawson, J.; Hartmann, R.; Schneider, C. M.; Kögerler, P. Fusing pyrene and ferrocene into a chiral, redox-active triangle. Chem. Commun. 2021, 57, 66606663,  DOI: 10.1039/D1CC02191E
    33. 33
      Wilson, L. E.; Hassenrück, C.; Winter, R. F.; White, A. J. P.; Albrecht, T.; Long, N. J. Ferrocene- and Biferrocene-Containing Macrocycles towards Single-Molecule Electronics. Angew. Chem., Int. Ed. 2017, 56, 68386842,  DOI: 10.1002/anie.201702006
    34. 34
      Hoffmann, V.; le Pleux, L.; Häussinger, D.; Unke, O. T.; Prescimone, A.; Mayor, M. Deltoid versus Rhomboid: Controlling the Shape of Bis-ferrocene Macrocycles by the Bulkiness of the Substituents. Organometallics. 2017, 36, 858866,  DOI: 10.1021/acs.organomet.6b00909
    35. 35
      Sheppard, S. A.; Bennett, T. L. R.; Long, N. J. Development and Characterisation of Highly Conjugated Functionalised Ferrocenylene Macrocycles. Eur. J. Inorg. Chem. 2022, 2022, e202200055,  DOI: 10.1002/ejic.202200055
    36. 36
      Bunz, U. H. F.; Roidl, G.; Altmann, M.; Enkelmann, V.; Shimizu, K. D. Synthesis and Structural Characterization of Novel Organometallic Dehydroannulenes with Fused CpCo-Cyclobutadiene and Ferrocene Units Including a Cyclic Fullerenyne Segment. J. Am. Chem. Soc. 1999, 121, 1071910726,  DOI: 10.1021/ja992262a
    37. 37
      Hisatome, M.; Tachikawa, O.; Sasho̅, M.; Yamakawa, K. Organometallic compounds: XXXII. Syntheses of 1,3-disubstituted ferrocenes and intermolecular (1,3)ferrocenophanes. J. Organomet. Chem. 1981, 217, C17C20,  DOI: 10.1016/S0022-328X(00)86033-7
    38. 38
      Garbicz, M.; Latos-Grażyński, L. A meso-Tetraaryl-21-carbaporphyrin: Incorporation of a Cyclopentadiene Unit into a Porphyrin Architecture. Angew. Chem., Int. Ed. 2019, 58, 60896093,  DOI: 10.1002/anie.201901808
    39. 39
      Di Giannantonio, M.; Ayer, M. A.; Verde-Sesto, E.; Lattuada, M.; Weder, C.; Fromm, K. M. Triggered Metal Ion Release and Oxidation: Ferrocene as a Mechanophore in Polymers. Angew. Chem., Int. Ed. 2018, 57, 1144511450,  DOI: 10.1002/anie.201803524
    40. 40
      Sha, Y.; Zhang, Y.; Xu, E.; Wang, Z.; Zhu, T.; Craig, S. L.; Tang, C. Quantitative and Mechanistic Mechanochemistry in Ferrocene Dissociation. ACS Macro Lett. 2018, 7, 11741179,  DOI: 10.1021/acsmacrolett.8b00625
    41. 41
      Zhang, Y.; Wang, Z.; Kouznetsova, T. B.; Sha, Y.; Xu, E.; Shannahan, L.; Fermen-Coker, M.; Lin, Y.; Tang, C.; Craig, S. L. Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 2021, 13, 5662,  DOI: 10.1038/s41557-020-00600-2
    42. 42
      Katz, T. J.; Pesti, J. The synthesis of a helical ferrocene. J. Am. Chem. Soc. 1982, 104, 346347,  DOI: 10.1021/ja00365a087
    43. 43
      Amaya, T.; Takahashi, Y.; Moriuchi, T.; Hirao, T. Sumanenyl Metallocenes: Synthesis and Structure of Mono- and Trinuclear Zirconocene Complexes. J. Am. Chem. Soc. 2014, 136, 1279412798,  DOI: 10.1021/ja5072459
    44. 44
      Jiang, H.-W.; Tanaka, T.; Mori, H.; Park, K. H.; Kim, D.; Osuka, A. Cyclic 2,12-Porphyrinylene Nanorings as a Porphyrin Analogue of Cycloparaphenylenes. J. Am. Chem. Soc. 2015, 137, 22192222,  DOI: 10.1021/ja513102m
    45. 45
      Jiang, H.-W.; Tanaka, T.; Kim, T.; Sung, Y. M.; Mori, H.; Kim, D.; Osuka, A. Synthesis of [n]Cyclo-5,15-porphyrinylene-4,4′-biphenylenes Displaying Size-Dependent Excitation-Energy Hopping. Angew. Chem., Int. Ed. 2015, 54, 1519715201,  DOI: 10.1002/anie.201507822
    46. 46
      Xu, Y.; Gsänger, S.; Minameyer, M. B.; Imaz, I.; Maspoch, D.; Shyshov, O.; Schwer, F.; Ribas, X.; Drewello, T.; Meyer, B.; von Delius, M. Highly Strained, Radially π-Conjugated Porphyrinylene Nanohoops. J. Am. Chem. Soc. 2019, 141, 1850018507,  DOI: 10.1021/jacs.9b08584
    47. 47
      Stawski, W.; Van Raden, J. M.; Patrick, C. W.; Horton, P. N.; Coles, S. J.; Anderson, H. L. Strained Porphyrin Tape–Cycloparaphenylene Hybrid Nanorings. Org. Lett. 2023, 25, 378383,  DOI: 10.1021/acs.orglett.2c04089
    48. 48
      Kubota, N.; Segawa, Y.; Itami, K. η6-Cycloparaphenylene Transition Metal Complexes: Synthesis, Structure, Photophysical Properties, and Application to the Selective Monofunctionalization of Cycloparaphenylenes. J. Am. Chem. Soc. 2015, 137, 13561361,  DOI: 10.1021/ja512271p
    49. 49
      Kayahara, E.; Patel, V. K.; Mercier, A.; Kündig, E. P.; Yamago, S. Regioselective Synthesis and Characterization of Multinuclear Convex-Bound Ruthenium-[n]Cycloparaphenylene (n = 5 and 6) Complexes. Angew. Chem., Int. Ed. 2016, 55, 302306,  DOI: 10.1002/anie.201508003
    50. 50
      Van Raden, J. M.; Louie, S.; Zakharov, L. N.; Jasti, R. 2,2′-Bipyridyl-Embedded Cycloparaphenylenes as a General Strategy To Investigate Nanohoop-Based Coordination Complexes. J. Am. Chem. Soc. 2017, 139, 29362939,  DOI: 10.1021/jacs.7b00359
    51. 51
      Majewski, M. A.; Stawski, W.; Van Raden, J. M.; Clarke, M.; Hart, J.; O’Shea, J. N.; Saywell, A.; Anderson, H. L. Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring**. Angew. Chem., Int. Ed. 2023, 62, e202302114,  DOI: 10.1002/anie.202302114
    52. 52
      Heras Ojea, M. J.; Van Raden, J. M.; Louie, S.; Collins, R.; Pividori, D.; Cirera, J.; Meyer, K.; Jasti, R.; Layfield, R. A. Spin-Crossover Properties of an Iron(II) Coordination Nanohoop. Angew. Chem., Int. Ed. 2021, 60, 35153518,  DOI: 10.1002/anie.202013374
    53. 53
      Fuhrmann, G.; Debaerdemaeker, T.; Bäuerle, P. C–C bond formation through oxidatively induced elimination of platinum complexes─A novel approach towards conjugated macrocycles. Chem. Commun. 2003, 948949,  DOI: 10.1039/b300542a
    54. 54
      Zhang, F.; Götz, G.; Winkler, H. D. F.; Schalley, C. A.; Bäuerle, P. Giant Cyclo[n]thiophenes with Extended π Conjugation. Angew. Chem., Int. Ed. 2009, 48, 66326635,  DOI: 10.1002/anie.200900101
    55. 55
      Yamago, S.; Watanabe, Y.; Iwamoto, T. Synthesis of [8]Cycloparaphenylene from a Square-Shaped Tetranuclear Platinum Complex. Angew. Chem., Int. Ed. 2010, 49, 757759,  DOI: 10.1002/anie.200905659
    56. 56
      Hitosugi, S.; Nakanishi, W.; Yamasaki, T.; Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun. 2011, 2, 492,  DOI: 10.1038/ncomms1505
    57. 57
      Zhao, H.; Ma, Y.-C.; Cao, L.; Huang, S.; Zhang, J.-P.; Yan, X. Synthesis and Photophysical Properties of Chalcophenes-Embedded Cycloparaphenylenes. J. Org. Chem. 2019, 84, 52305235,  DOI: 10.1021/acs.joc.9b00207
    58. 58
      Zirakzadeh, A.; Herlein, A.; Groß, M. A.; Mereiter, K.; Wang, Y.; Weissensteiner, W. Halide-Mediated Ortho-Deprotonation Reactions Applied to the Synthesis of 1,2- and 1,3-Disubstituted Ferrocene Derivatives. Organometallics. 2015, 34, 38203832,  DOI: 10.1021/acs.organomet.5b00464
    59. 59
      Brandl, M.; Weiss, M. S.; Jabs, A.; Sühnel, J.; Hilgenfeld, R. C-h···π-interactions in proteins. J. Mol. Biol. 2001, 307, 357377,  DOI: 10.1006/jmbi.2000.4473
    60. 60
      Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. The CH/π interaction: Significance in molecular recognition. Tetrahedron. 1995, 51, 86658701,  DOI: 10.1016/0040-4020(94)01066-9
    61. 61
      Kwon, H.; Newell, B. S.; Bruns, C. J. Redox-switchable host–guest complexes of metallocenes and [8]cycloparaphenylene. Nanoscale 2022, 14, 1427614285,  DOI: 10.1039/D2NR03852H
    62. 62
      Liu, C. Y.; Meng, M. Introduction and Fundamentals of Mixed-Valence Chemistry. Mixed-Valence Systems 2023, 143,  DOI: 10.1002/9783527835287.ch1
    63. 63
      Santi, S.; Orian, L.; Donoli, A.; Bisello, A.; Scapinello, M.; Benetollo, F.; Ganis, P.; Ceccon, A. Synthesis of the Prototypical Cyclic Metallocene Triad: Mixed-Valence Properties of [(FeCp)3(trindenyl)] Isomers. Angew. Chem., Int. Ed. 2008, 47, 53315334,  DOI: 10.1002/anie.200801124
    64. 64
      Hildebrandt, A.; Miesel, D.; Lang, H. Electrostatic interactions within mixed-valent compounds. Coord. Chem. Rev. 2018, 371, 5666,  DOI: 10.1016/j.ccr.2018.05.017
    65. 65
      Geiger, W. E.; Barrière, F. Organometallic Electrochemistry Based on Electrolytes Containing Weakly-Coordinating Fluoroarylborate Anions. Acc. Chem. Res. 2010, 43, 10301039,  DOI: 10.1021/ar1000023
    66. 66
      Barrière, F.; Geiger, W. E. Use of Weakly Coordinating Anions to Develop an Integrated Approach to the Tuning of ΔE1/2 Values by Medium Effects. J. Am. Chem. Soc. 2006, 128, 39803989,  DOI: 10.1021/ja058171x
    67. 67
      LeSuer, R. J.; Buttolph, C.; Geiger, W. E. Comparison of the Conductivity Properties of the Tetrabutylammonium Salt of Tetrakis(pentafluorophenyl)borate Anion with Those of Traditional Supporting Electrolyte Anions in Nonaqueous Solvents. Anal. Chem. 2004, 76, 63956401,  DOI: 10.1021/ac040087x
    68. 68
      D’Alessandro, D. M.; Keene, F. R. Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions. Chem. Soc. Rev. 2006, 35, 424440,  DOI: 10.1039/b514590m
    69. 69
      Hildebrandt, A.; Lang, H. (Multi)ferrocenyl Five-Membered Heterocycles: Excellent Connecting Units for Electron Transfer Studies. Organometallics 2013, 32, 56405653,  DOI: 10.1021/om400453m
    70. 70
      Santi, S.; Orian, L.; Durante, C.; Bencze, E. Z.; Bisello, A.; Donoli, A.; Ceccon, A.; Benetollo, F.; Crociani, L. Metal–Metal Electronic Coupling in syn and anti Stereoisomers of Mixed-Valent (FeCp)2-, (RhL2)2-, and (FeCp)(RhL2)-as-Indacenediide Ions. Chem.─Eur. J. 2007, 13, 79337947,  DOI: 10.1002/chem.200700052
    71. 71
      Gray, H. B.; Sohn, Y. S.; Hendrickson, N. Electronic structure of metallocenes. J. Am. Chem. Soc. 1971, 93, 36033612,  DOI: 10.1021/ja00744a011
    72. 72
      Cuffe, L.; Hudson, R. D. A.; Gallagher, J. F.; Jennings, S.; McAdam, C. J.; Connelly, R. B. T.; Manning, A. R.; Robinson, B. H.; Simpson, J. Synthesis, Structure, and Redox Chemistry of Ethenyl and Ethynyl Ferrocene Polyaromatic Dyads. Organometallics. 2005, 24, 20512060,  DOI: 10.1021/om0492653
    73. 73
      Kaur, S.; Kaur, M.; Kaur, P.; Clays, K.; Singh, K. Ferrocene chromophores continue to inspire. Fine-tuning and switching of the second-order nonlinear optical response. Coord. Chem. Rev. 2017, 343, 185219,  DOI: 10.1016/j.ccr.2017.05.008
    74. 74
      Shi, R.; Han, X.; Cheng, P.; Xin, M.; Xu, J. Self-Assembled Nonlinear Optical Crystals Based on an Asymmetric Fluorenone Derivative. Cryst. Growth Des. 2022, 22, 39984004,  DOI: 10.1021/acs.cgd.2c00342
    75. 75
      Segawa, Y.; Omachi, H.; Itami, K. Theoretical Studies on the Structures and Strain Energies of Cycloparaphenylenes. Org. Lett. 2010, 12, 22622265,  DOI: 10.1021/ol1006168
    76. 76
      Colwell, C. E.; Price, T. W.; Stauch, T.; Jasti, R. Strain visualization for strained macrocycles. Chem. Sci. 2020, 11, 39233930,  DOI: 10.1039/D0SC00629G
    77. 77
      Lin, J.; Lv, Y.; Song, K.; Song, X.; Zang, H.; Du, P.; Zang, Y.; Zhu, D. Cleavage of non-polar C(sp2)–C(sp2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution. Nat. Commun. 2023, 14, 293,  DOI: 10.1038/s41467-022-35686-4
    78. 78
      Lv, Y.; Lin, J.; Song, K.; Song, X.; Zang, H.; Zang, Y.; Zhu, D. Single cycloparaphenylene molecule devices: Achieving large conductance modulation via tuning radial π-conjugation. Sci. Adv. 2021, 7, eabk3095,  DOI: 10.1126/sciadv.abk3095
    79. 79
      Lin, J.; Wang, S.; Zhang, F.; Yang, B.; Du, P.; Chen, C.; Zang, Y.; Zhu, D. Highly efficient charge transport across carbon nanobelts. Sci. Adv. 2022, 8, eade4692,  DOI: 10.1126/sciadv.ade4692
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/prechem.3c00121.

    • Experimental procedures and characterization data for all compounds; electrochemistry, NLO measurements, UV–vis-NIR, VT-NMR experimental details, and computational results (PDF)

    • Crystallographic data for 2 (CIF)

    • Crystallographic data for A2B (CIF)

    • Crystallographic data for A3 (CIF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.