Side-Chain Type Ferrocene MacrocyclesClick to copy article linkArticle link copied!
- Bin LanBin LanKey Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaMore by Bin Lan
- Jindong XuJindong XuKey Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaMore by Jindong Xu
- Lingyun ZhuLingyun ZhuKey Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaMore by Lingyun Zhu
- Xinyu ChenXinyu ChenKey Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaMore by Xinyu Chen
- Hideya KonoHideya KonoInstitute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, JapanMore by Hideya Kono
- Peihan WangPeihan WangSchool of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, ChinaMore by Peihan Wang
- Xin ZuoXin ZuoKey Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaMore by Xin Zuo
- Jianfeng YanJianfeng YanKey Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaMore by Jianfeng Yan
- Akiko YagiAkiko YagiInstitute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, JapanMore by Akiko Yagi
- Yongshen ZhengYongshen ZhengSchool of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, ChinaMore by Yongshen Zheng
- Songhua Chen*Songhua Chen*E-mail: [email protected]College of Chemistry and Material Science, Longyan University, Longyan 364012, ChinaMore by Songhua Chen
- Yaofeng Yuan*Yaofeng Yuan*E-mail: [email protected]Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaMore by Yaofeng Yuan
- Kenichiro Itami*Kenichiro Itami*E-mail: [email protected]Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, JapanMore by Kenichiro Itami
- Yuanming Li*Yuanming Li*E-mail: [email protected]Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaKey Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, ChinaMore by Yuanming Li
Abstract
A class of side-chain type ferrocene macrocycles with a radially conjugated system is introduced in this study. The stereo configurations of these ferrocene rings were determined through single-crystal X-ray diffraction analysis. Notably, in the solid state, the ferrocene rings exhibit a distinctive herringbone stacking pattern imposed by a ferrocene-to-ring host–guest interaction. Through UV–vis absorption spectroscopy, electrochemical measurements, and theoretical calculations, valuable insights into the electronic properties of these rings were obtained. In addition, the single crystal of macrocycle A2B demonstrates a second-order nonlinear optical response. As a class of organometallic nanorings, this work holds great potential for further exploration in the fields of organometallic chemistry, molecular electronics, and host–guest chemistry.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Introduction
Figure 1
Figure 1. Conceptual representation of (a) ferrocene-based π-conjugated polymers; (b) main-chain and side-chain type ferrocene π-conjugated macrocycles; (c) representative examples of main-chain ferrocene π-conjugated macrocycles; (d) this work: side-chain type radially π-conjugated macrocycles.
Results and Discussion
Synthesis
Scheme 1
Figure 2
Figure 2. Partial 1H NMR spectra of A2, A3, A2B, and Fc4 in CDCl3.
X-ray Crystal Structures
Figure 3
Figure 3. X-ray crystal structures of (a) A2B and (b) A3 (thermal ellipsoids are shown at 50% probability; solvent molecules have been omitted for clarity). (c) Crystal stacking along the a-axis of A2B and distances between the hydrogen atoms and the aromatic plane (iron atoms, purple).
Redox and Photophysical Properties
Figure 4
Figure 4. Cyclic voltammetry (CV, top) and differential pulse voltammetry (DPV, bottom) were recorded in 0.01 M [Na][BArF]/CH2Cl2.
Figure 5
Figure 5. UV–vis absorption spectra of A2B, A3, A2, and Fc4 recorded in (10–5–10–6 M) CH2Cl2.
Figure 6
Figure 6. (a) NLO spectra of A2B single crystals pumped at different wavelengths from 860 to 1040 nm. (b) Polarization dependence plot of the SHG signal of the A2B single crystal with an incident wavelength of 1040 nm.
Frontier Molecular Orbitals
Figure 7
Figure 7. Qualitative energy diagram and frontier molecular orbitals of A2B, calculated at the PBE0-D3(BJ)/Def2-SVP level of theory.
Figure 8
Figure 8. (a) Molecular strain energy for A2B and A3 calculated and visualized using StrainViz and (b) relative Gibbs free energy diagram of the ferrocenyl rotational barriers in A3 (B3LYP/SDD, 6-31g(d); Transition State: Ts; Metastable State: Ms.).
Conclusions
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/prechem.3c00121.
Experimental procedures and characterization data for all compounds; electrochemistry, NLO measurements, UV–vis-NIR, VT-NMR experimental details, and computational results (PDF)
Crystallographic data for 2 (CIF)
Crystallographic data for A2B (CIF)
Crystallographic data for A3 (CIF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
This work was supported from National Natural Science Foundation of China (No. 22071025) and the Natural Science Fund of Fujian Province, China (No.2022J011152). We thank Prof. Xinxiong Li and Prof. Weiguo Huang for the single crystal measurement, Prof. Chaolumen, Prof. Jialiang Xu, Prof. Xiang Li, Prof. Ye Sha, and Xiangzhao Zhu for constructive criticism of the manuscript, and Professor Tan Yu for naming side-chain type ferrocene macrocycles.
References
This article references 79 other publications.
- 1Williams, K. A.; Boydston, A. J.; Bielawski, C. W. Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev. 2007, 36, 729– 744, DOI: 10.1039/b601574nGoogle ScholarThere is no corresponding record for this reference.
- 2Hudson, R. D. A. Ferrocene polymers: current architectures, syntheses and utility. J. Organomet. Chem. 2001, 637–639, 47– 69, DOI: 10.1016/S0022-328X(01)01142-1Google ScholarThere is no corresponding record for this reference.
- 3Pietschnig, R. Polymers with pendant ferrocenes. Chem. Soc. Rev. 2016, 45, 5216– 5231, DOI: 10.1039/C6CS00196CGoogle ScholarThere is no corresponding record for this reference.
- 4Musgrave, R. A.; Russell, A. D.; Hayward, D. W.; Whittell, G. R.; Lawrence, P. G.; Gates, P. J.; Green, J. C.; Manners, I. Main-chain metallopolymers at the static–dynamic boundary based on nickelocene. Nat. Chem. 2017, 9, 743– 750, DOI: 10.1038/nchem.2743Google ScholarThere is no corresponding record for this reference.
- 5Hudson, Z. M.; Lunn, D. J.; Winnik, M. A.; Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 2014, 5, 3372, DOI: 10.1038/ncomms4372Google ScholarThere is no corresponding record for this reference.
- 6Masson, G.; Herbert, D. E.; Whittell, G. R.; Holland, J. P.; Lough, A. J.; Green, J. C.; Manners, I. Synthesis and Reactivity of a Strained Silicon-Bridged [1]Ferrocenophanium Ion. Angew. Chem., Int. Ed. 2009, 48, 4961– 4964, DOI: 10.1002/anie.200901213Google ScholarThere is no corresponding record for this reference.
- 7Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 2015, 44, 2221– 2304, DOI: 10.1039/C4CS00366GGoogle ScholarThere is no corresponding record for this reference.
- 8Darzi, E. R.; Jasti, R. The dynamic, size-dependent properties of [5]–[12]cycloparaphenylenes. Chem. Soc. Rev. 2015, 44, 6401– 6410, DOI: 10.1039/C5CS00143AGoogle ScholarThere is no corresponding record for this reference.
- 9Hermann, M.; Wassy, D.; Esser, B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero- or Polycyclic Aromatics. Angew. Chem., Int. Ed. 2021, 60, 15743– 15766, DOI: 10.1002/anie.202007024Google ScholarThere is no corresponding record for this reference.
- 10Li, Y.; Kono, H.; Maekawa, T.; Segawa, Y.; Yagi, A.; Itami, K. Chemical Synthesis of Carbon Nanorings and Nanobelts. Acc. Mater. Res. 2021, 2, 681– 691, DOI: 10.1021/accountsmr.1c00105Google ScholarThere is no corresponding record for this reference.
- 11Wang, J.; Zhang, X.; Jia, H.; Wang, S.; Du, P. Large π-Extended and Curved Carbon Nanorings as Carbon Nanotube Segments. Acc. Chem. Res. 2021, 54, 4178– 4190, DOI: 10.1021/acs.accounts.1c00505Google ScholarThere is no corresponding record for this reference.
- 12Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis of a carbon nanobelt. Science 2017, 356, 172– 175, DOI: 10.1126/science.aam8158Google ScholarThere is no corresponding record for this reference.
- 13Cheung, K. Y.; Gui, S.; Deng, C.; Liang, H.; Xia, Z.; Liu, Z.; Chi, L.; Miao, Q. Synthesis of Armchair and Chiral Carbon Nanobelts. Chem. 2019, 5, 838– 847, DOI: 10.1016/j.chempr.2019.01.004Google ScholarThere is no corresponding record for this reference.
- 14Luan, Y.; Cong, H. Recent Synthetic Advances on π-Extended Carbon Nanohoops. Synlett. 2017, 28, 1383– 1388, DOI: 10.1055/s-0036-1588978Google ScholarThere is no corresponding record for this reference.
- 15Esser, B.; Hermann, M. Buckling up zigzag nanobelts. Nat. Chem. 2021, 13, 209– 211, DOI: 10.1038/s41557-021-00642-0Google ScholarThere is no corresponding record for this reference.
- 16Kaiser, K.; Scriven, L. M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H. L. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 2019, 365, 1299– 1301, DOI: 10.1126/science.aay1914Google ScholarThere is no corresponding record for this reference.
- 17Scriven, L. M.; Kaiser, K.; Schulz, F.; Sterling, A. J.; Woltering, S. L.; Gawel, P.; Christensen, K. E.; Anderson, H. L.; Gross, L. Synthesis of Cyclo[18]carbon via Debromination of C18Br6. J. Am. Chem. Soc. 2020, 142, 12921– 12924, DOI: 10.1021/jacs.0c05033Google ScholarThere is no corresponding record for this reference.
- 18Muraoka, T.; Kinbara, K.; Kobayashi, Y.; Aida, T. Light-Driven Open–Close Motion of Chiral Molecular Scissors. J. Am. Chem. Soc. 2003, 125, 5612– 5613, DOI: 10.1021/ja034994fGoogle ScholarThere is no corresponding record for this reference.
- 19Muraoka, T.; Kinbara, K.; Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 2006, 440, 512– 515, DOI: 10.1038/nature04635Google ScholarThere is no corresponding record for this reference.
- 20Aragonès, A. C.; Darwish, N.; Ciampi, S.; Jiang, L.; Roesch, R.; Ruiz, E.; Nijhuis, C. A.; Díez-Pérez, I. Control over Near-Ballistic Electron Transport through Formation of Parallel Pathways in a Single-Molecule Wire. J. Am. Chem. Soc. 2019, 141, 240– 250, DOI: 10.1021/jacs.8b09086Google ScholarThere is no corresponding record for this reference.
- 21Moneo, A.; González-Orive, A.; Bock, S.; Fenero, M.; Herrer, I. L.; Milan, D. C.; Lorenzoni, M.; Nichols, R. J.; Cea, P.; Perez-Murano, F.; Low, P. J.; Martin, S. Towards molecular electronic devices based on ‘all-carbon’ wires. Nanoscale. 2018, 10, 14128– 14138, DOI: 10.1039/C8NR02347FGoogle ScholarThere is no corresponding record for this reference.
- 22Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Inkpen, M. S.; Lovat, G.; Fung, E. D.; Roy, X.; Venkataraman, L.; Evers, F. Mechanically Tunable Quantum Interference in Ferrocene-Based Single-Molecule Junctions. Nano Lett. 2020, 20, 6381– 6386, DOI: 10.1021/acs.nanolett.0c01956Google ScholarThere is no corresponding record for this reference.
- 23Xiao, C.; Wu, W.; Liang, W.; Zhou, D.; Kanagaraj, K.; Cheng, G.; Su, D.; Zhong, Z.; Chruma, J. J.; Yang, C. Redox-Triggered Chirality Switching and Guest-Capture/Release with a Pillar[6]arene-Based Molecular Universal Joint. Angew. Chem., Int. Ed. 2020, 59, 8094– 8098, DOI: 10.1002/anie.201916285Google ScholarThere is no corresponding record for this reference.
- 24Xu, L.; Wang, Y.-X.; Chen, L.-J.; Yang, H.-B. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: from structure to functions. Chem. Soc. Rev. 2015, 44, 2148– 2167, DOI: 10.1039/C5CS00022JGoogle ScholarThere is no corresponding record for this reference.
- 25Grossmann, B.; Heinze, J.; Herdtweck, E.; Köhler, F. H.; Nöth, H.; Schwenk, H.; Spiegler, M.; Wachter, W.; Weber, B. Seven Doubly Bridged Ferrocene Units in a Cycle. Angew. Chem., Int. Ed. 1997, 36, 387– 389, DOI: 10.1002/anie.199703871Google ScholarThere is no corresponding record for this reference.
- 26Herbert, D. E.; Gilroy, J. B.; Chan, W. Y.; Chabanne, L.; Staubitz, A.; Lough, A. J.; Manners, I. Redox-Active Metallomacrocycles and Cyclic Metallopolymers: Photocontrolled Ring-Opening Oligomerization and Polymerization of Silicon-Bridged [1]Ferrocenophanes Using Substitutionally-Labile Lewis Bases as Initiators. J. Am. Chem. Soc. 2009, 131, 14958– 14968, DOI: 10.1021/ja904928cGoogle ScholarThere is no corresponding record for this reference.
- 27Chan, W. Y.; Lough, A. J.; Manners, I. Organometallic Macrocycles and Cyclic Polymers by the Bipyridine-Initiated Photolytic Ring Opening of a Silicon-Bridged [1]Ferrocenophane. Angew. Chem., Int. Ed. 2007, 46, 9069– 9072, DOI: 10.1002/anie.200703430Google ScholarThere is no corresponding record for this reference.
- 28Winter, T.; Haider, W.; Schießer, A.; Presser, V.; Gallei, M.; Schäfer, A. Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene. Macromol. Rapid Commun. 2021, 42, 2000738, DOI: 10.1002/marc.202000738Google ScholarThere is no corresponding record for this reference.
- 29Inkpen, M. S.; Scheerer, S.; Linseis, M.; White, A. J. P.; Winter, R. F.; Albrecht, T.; Long, N. J. Oligomeric ferrocene rings. Nat. Chem. 2016, 8, 825– 830, DOI: 10.1038/nchem.2553Google ScholarThere is no corresponding record for this reference.
- 30Simkowa, I.; Latos-Grażyński, L.; Stępień, M. π Conjugation Transmitted across a d-Electron Metallocene in Ferrocenothiaporphyrin Macrocycles. Angew. Chem., Int. Ed. 2010, 49, 7665– 7669, DOI: 10.1002/anie.201004015Google ScholarThere is no corresponding record for this reference.
- 31Metzelaars, M.; Schleicher, S.; Hattori, T.; Borca, B.; Matthes, F.; Sanz, S.; Bürgler, D. E.; Rawson, J.; Schneider, C. M.; Kögerler, P. Cyclophane with eclipsed pyrene units enables construction of spin interfaces with chemical accuracy. Chem. Sci. 2021, 12, 8430– 8437, DOI: 10.1039/D1SC01036KGoogle ScholarThere is no corresponding record for this reference.
- 32Metzelaars, M.; Sanz, S.; Rawson, J.; Hartmann, R.; Schneider, C. M.; Kögerler, P. Fusing pyrene and ferrocene into a chiral, redox-active triangle. Chem. Commun. 2021, 57, 6660– 6663, DOI: 10.1039/D1CC02191EGoogle ScholarThere is no corresponding record for this reference.
- 33Wilson, L. E.; Hassenrück, C.; Winter, R. F.; White, A. J. P.; Albrecht, T.; Long, N. J. Ferrocene- and Biferrocene-Containing Macrocycles towards Single-Molecule Electronics. Angew. Chem., Int. Ed. 2017, 56, 6838– 6842, DOI: 10.1002/anie.201702006Google ScholarThere is no corresponding record for this reference.
- 34Hoffmann, V.; le Pleux, L.; Häussinger, D.; Unke, O. T.; Prescimone, A.; Mayor, M. Deltoid versus Rhomboid: Controlling the Shape of Bis-ferrocene Macrocycles by the Bulkiness of the Substituents. Organometallics. 2017, 36, 858– 866, DOI: 10.1021/acs.organomet.6b00909Google ScholarThere is no corresponding record for this reference.
- 35Sheppard, S. A.; Bennett, T. L. R.; Long, N. J. Development and Characterisation of Highly Conjugated Functionalised Ferrocenylene Macrocycles. Eur. J. Inorg. Chem. 2022, 2022, e202200055, DOI: 10.1002/ejic.202200055Google ScholarThere is no corresponding record for this reference.
- 36Bunz, U. H. F.; Roidl, G.; Altmann, M.; Enkelmann, V.; Shimizu, K. D. Synthesis and Structural Characterization of Novel Organometallic Dehydroannulenes with Fused CpCo-Cyclobutadiene and Ferrocene Units Including a Cyclic Fullerenyne Segment. J. Am. Chem. Soc. 1999, 121, 10719– 10726, DOI: 10.1021/ja992262aGoogle ScholarThere is no corresponding record for this reference.
- 37Hisatome, M.; Tachikawa, O.; Sasho̅, M.; Yamakawa, K. Organometallic compounds: XXXII. Syntheses of 1,3-disubstituted ferrocenes and intermolecular (1,3)ferrocenophanes. J. Organomet. Chem. 1981, 217, C17– C20, DOI: 10.1016/S0022-328X(00)86033-7Google ScholarThere is no corresponding record for this reference.
- 38Garbicz, M.; Latos-Grażyński, L. A meso-Tetraaryl-21-carbaporphyrin: Incorporation of a Cyclopentadiene Unit into a Porphyrin Architecture. Angew. Chem., Int. Ed. 2019, 58, 6089– 6093, DOI: 10.1002/anie.201901808Google ScholarThere is no corresponding record for this reference.
- 39Di Giannantonio, M.; Ayer, M. A.; Verde-Sesto, E.; Lattuada, M.; Weder, C.; Fromm, K. M. Triggered Metal Ion Release and Oxidation: Ferrocene as a Mechanophore in Polymers. Angew. Chem., Int. Ed. 2018, 57, 11445– 11450, DOI: 10.1002/anie.201803524Google ScholarThere is no corresponding record for this reference.
- 40Sha, Y.; Zhang, Y.; Xu, E.; Wang, Z.; Zhu, T.; Craig, S. L.; Tang, C. Quantitative and Mechanistic Mechanochemistry in Ferrocene Dissociation. ACS Macro Lett. 2018, 7, 1174– 1179, DOI: 10.1021/acsmacrolett.8b00625Google ScholarThere is no corresponding record for this reference.
- 41Zhang, Y.; Wang, Z.; Kouznetsova, T. B.; Sha, Y.; Xu, E.; Shannahan, L.; Fermen-Coker, M.; Lin, Y.; Tang, C.; Craig, S. L. Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 2021, 13, 56– 62, DOI: 10.1038/s41557-020-00600-2Google ScholarThere is no corresponding record for this reference.
- 42Katz, T. J.; Pesti, J. The synthesis of a helical ferrocene. J. Am. Chem. Soc. 1982, 104, 346– 347, DOI: 10.1021/ja00365a087Google ScholarThere is no corresponding record for this reference.
- 43Amaya, T.; Takahashi, Y.; Moriuchi, T.; Hirao, T. Sumanenyl Metallocenes: Synthesis and Structure of Mono- and Trinuclear Zirconocene Complexes. J. Am. Chem. Soc. 2014, 136, 12794– 12798, DOI: 10.1021/ja5072459Google ScholarThere is no corresponding record for this reference.
- 44Jiang, H.-W.; Tanaka, T.; Mori, H.; Park, K. H.; Kim, D.; Osuka, A. Cyclic 2,12-Porphyrinylene Nanorings as a Porphyrin Analogue of Cycloparaphenylenes. J. Am. Chem. Soc. 2015, 137, 2219– 2222, DOI: 10.1021/ja513102mGoogle ScholarThere is no corresponding record for this reference.
- 45Jiang, H.-W.; Tanaka, T.; Kim, T.; Sung, Y. M.; Mori, H.; Kim, D.; Osuka, A. Synthesis of [n]Cyclo-5,15-porphyrinylene-4,4′-biphenylenes Displaying Size-Dependent Excitation-Energy Hopping. Angew. Chem., Int. Ed. 2015, 54, 15197– 15201, DOI: 10.1002/anie.201507822Google ScholarThere is no corresponding record for this reference.
- 46Xu, Y.; Gsänger, S.; Minameyer, M. B.; Imaz, I.; Maspoch, D.; Shyshov, O.; Schwer, F.; Ribas, X.; Drewello, T.; Meyer, B.; von Delius, M. Highly Strained, Radially π-Conjugated Porphyrinylene Nanohoops. J. Am. Chem. Soc. 2019, 141, 18500– 18507, DOI: 10.1021/jacs.9b08584Google ScholarThere is no corresponding record for this reference.
- 47Stawski, W.; Van Raden, J. M.; Patrick, C. W.; Horton, P. N.; Coles, S. J.; Anderson, H. L. Strained Porphyrin Tape–Cycloparaphenylene Hybrid Nanorings. Org. Lett. 2023, 25, 378– 383, DOI: 10.1021/acs.orglett.2c04089Google ScholarThere is no corresponding record for this reference.
- 48Kubota, N.; Segawa, Y.; Itami, K. η6-Cycloparaphenylene Transition Metal Complexes: Synthesis, Structure, Photophysical Properties, and Application to the Selective Monofunctionalization of Cycloparaphenylenes. J. Am. Chem. Soc. 2015, 137, 1356– 1361, DOI: 10.1021/ja512271pGoogle ScholarThere is no corresponding record for this reference.
- 49Kayahara, E.; Patel, V. K.; Mercier, A.; Kündig, E. P.; Yamago, S. Regioselective Synthesis and Characterization of Multinuclear Convex-Bound Ruthenium-[n]Cycloparaphenylene (n = 5 and 6) Complexes. Angew. Chem., Int. Ed. 2016, 55, 302– 306, DOI: 10.1002/anie.201508003Google ScholarThere is no corresponding record for this reference.
- 50Van Raden, J. M.; Louie, S.; Zakharov, L. N.; Jasti, R. 2,2′-Bipyridyl-Embedded Cycloparaphenylenes as a General Strategy To Investigate Nanohoop-Based Coordination Complexes. J. Am. Chem. Soc. 2017, 139, 2936– 2939, DOI: 10.1021/jacs.7b00359Google ScholarThere is no corresponding record for this reference.
- 51Majewski, M. A.; Stawski, W.; Van Raden, J. M.; Clarke, M.; Hart, J.; O’Shea, J. N.; Saywell, A.; Anderson, H. L. Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring**. Angew. Chem., Int. Ed. 2023, 62, e202302114, DOI: 10.1002/anie.202302114Google ScholarThere is no corresponding record for this reference.
- 52Heras Ojea, M. J.; Van Raden, J. M.; Louie, S.; Collins, R.; Pividori, D.; Cirera, J.; Meyer, K.; Jasti, R.; Layfield, R. A. Spin-Crossover Properties of an Iron(II) Coordination Nanohoop. Angew. Chem., Int. Ed. 2021, 60, 3515– 3518, DOI: 10.1002/anie.202013374Google ScholarThere is no corresponding record for this reference.
- 53Fuhrmann, G.; Debaerdemaeker, T.; Bäuerle, P. C–C bond formation through oxidatively induced elimination of platinum complexes─A novel approach towards conjugated macrocycles. Chem. Commun. 2003, 948– 949, DOI: 10.1039/b300542aGoogle ScholarThere is no corresponding record for this reference.
- 54Zhang, F.; Götz, G.; Winkler, H. D. F.; Schalley, C. A.; Bäuerle, P. Giant Cyclo[n]thiophenes with Extended π Conjugation. Angew. Chem., Int. Ed. 2009, 48, 6632– 6635, DOI: 10.1002/anie.200900101Google ScholarThere is no corresponding record for this reference.
- 55Yamago, S.; Watanabe, Y.; Iwamoto, T. Synthesis of [8]Cycloparaphenylene from a Square-Shaped Tetranuclear Platinum Complex. Angew. Chem., Int. Ed. 2010, 49, 757– 759, DOI: 10.1002/anie.200905659Google ScholarThere is no corresponding record for this reference.
- 56Hitosugi, S.; Nakanishi, W.; Yamasaki, T.; Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun. 2011, 2, 492, DOI: 10.1038/ncomms1505Google ScholarThere is no corresponding record for this reference.
- 57Zhao, H.; Ma, Y.-C.; Cao, L.; Huang, S.; Zhang, J.-P.; Yan, X. Synthesis and Photophysical Properties of Chalcophenes-Embedded Cycloparaphenylenes. J. Org. Chem. 2019, 84, 5230– 5235, DOI: 10.1021/acs.joc.9b00207Google ScholarThere is no corresponding record for this reference.
- 58Zirakzadeh, A.; Herlein, A.; Groß, M. A.; Mereiter, K.; Wang, Y.; Weissensteiner, W. Halide-Mediated Ortho-Deprotonation Reactions Applied to the Synthesis of 1,2- and 1,3-Disubstituted Ferrocene Derivatives. Organometallics. 2015, 34, 3820– 3832, DOI: 10.1021/acs.organomet.5b00464Google ScholarThere is no corresponding record for this reference.
- 59Brandl, M.; Weiss, M. S.; Jabs, A.; Sühnel, J.; Hilgenfeld, R. C-h···π-interactions in proteins. J. Mol. Biol. 2001, 307, 357– 377, DOI: 10.1006/jmbi.2000.4473Google ScholarThere is no corresponding record for this reference.
- 60Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. The CH/π interaction: Significance in molecular recognition. Tetrahedron. 1995, 51, 8665– 8701, DOI: 10.1016/0040-4020(94)01066-9Google ScholarThere is no corresponding record for this reference.
- 61Kwon, H.; Newell, B. S.; Bruns, C. J. Redox-switchable host–guest complexes of metallocenes and [8]cycloparaphenylene. Nanoscale 2022, 14, 14276– 14285, DOI: 10.1039/D2NR03852HGoogle ScholarThere is no corresponding record for this reference.
- 62Liu, C. Y.; Meng, M. Introduction and Fundamentals of Mixed-Valence Chemistry. Mixed-Valence Systems 2023, 1– 43, DOI: 10.1002/9783527835287.ch1Google ScholarThere is no corresponding record for this reference.
- 63Santi, S.; Orian, L.; Donoli, A.; Bisello, A.; Scapinello, M.; Benetollo, F.; Ganis, P.; Ceccon, A. Synthesis of the Prototypical Cyclic Metallocene Triad: Mixed-Valence Properties of [(FeCp)3(trindenyl)] Isomers. Angew. Chem., Int. Ed. 2008, 47, 5331– 5334, DOI: 10.1002/anie.200801124Google ScholarThere is no corresponding record for this reference.
- 64Hildebrandt, A.; Miesel, D.; Lang, H. Electrostatic interactions within mixed-valent compounds. Coord. Chem. Rev. 2018, 371, 56– 66, DOI: 10.1016/j.ccr.2018.05.017Google ScholarThere is no corresponding record for this reference.
- 65Geiger, W. E.; Barrière, F. Organometallic Electrochemistry Based on Electrolytes Containing Weakly-Coordinating Fluoroarylborate Anions. Acc. Chem. Res. 2010, 43, 1030– 1039, DOI: 10.1021/ar1000023Google ScholarThere is no corresponding record for this reference.
- 66Barrière, F.; Geiger, W. E. Use of Weakly Coordinating Anions to Develop an Integrated Approach to the Tuning of ΔE1/2 Values by Medium Effects. J. Am. Chem. Soc. 2006, 128, 3980– 3989, DOI: 10.1021/ja058171xGoogle ScholarThere is no corresponding record for this reference.
- 67LeSuer, R. J.; Buttolph, C.; Geiger, W. E. Comparison of the Conductivity Properties of the Tetrabutylammonium Salt of Tetrakis(pentafluorophenyl)borate Anion with Those of Traditional Supporting Electrolyte Anions in Nonaqueous Solvents. Anal. Chem. 2004, 76, 6395– 6401, DOI: 10.1021/ac040087xGoogle ScholarThere is no corresponding record for this reference.
- 68D’Alessandro, D. M.; Keene, F. R. Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions. Chem. Soc. Rev. 2006, 35, 424– 440, DOI: 10.1039/b514590mGoogle ScholarThere is no corresponding record for this reference.
- 69Hildebrandt, A.; Lang, H. (Multi)ferrocenyl Five-Membered Heterocycles: Excellent Connecting Units for Electron Transfer Studies. Organometallics 2013, 32, 5640– 5653, DOI: 10.1021/om400453mGoogle ScholarThere is no corresponding record for this reference.
- 70Santi, S.; Orian, L.; Durante, C.; Bencze, E. Z.; Bisello, A.; Donoli, A.; Ceccon, A.; Benetollo, F.; Crociani, L. Metal–Metal Electronic Coupling in syn and anti Stereoisomers of Mixed-Valent (FeCp)2-, (RhL2)2-, and (FeCp)(RhL2)-as-Indacenediide Ions. Chem.─Eur. J. 2007, 13, 7933– 7947, DOI: 10.1002/chem.200700052Google ScholarThere is no corresponding record for this reference.
- 71Gray, H. B.; Sohn, Y. S.; Hendrickson, N. Electronic structure of metallocenes. J. Am. Chem. Soc. 1971, 93, 3603– 3612, DOI: 10.1021/ja00744a011Google ScholarThere is no corresponding record for this reference.
- 72Cuffe, L.; Hudson, R. D. A.; Gallagher, J. F.; Jennings, S.; McAdam, C. J.; Connelly, R. B. T.; Manning, A. R.; Robinson, B. H.; Simpson, J. Synthesis, Structure, and Redox Chemistry of Ethenyl and Ethynyl Ferrocene Polyaromatic Dyads. Organometallics. 2005, 24, 2051– 2060, DOI: 10.1021/om0492653Google ScholarThere is no corresponding record for this reference.
- 73Kaur, S.; Kaur, M.; Kaur, P.; Clays, K.; Singh, K. Ferrocene chromophores continue to inspire. Fine-tuning and switching of the second-order nonlinear optical response. Coord. Chem. Rev. 2017, 343, 185– 219, DOI: 10.1016/j.ccr.2017.05.008Google ScholarThere is no corresponding record for this reference.
- 74Shi, R.; Han, X.; Cheng, P.; Xin, M.; Xu, J. Self-Assembled Nonlinear Optical Crystals Based on an Asymmetric Fluorenone Derivative. Cryst. Growth Des. 2022, 22, 3998– 4004, DOI: 10.1021/acs.cgd.2c00342Google ScholarThere is no corresponding record for this reference.
- 75Segawa, Y.; Omachi, H.; Itami, K. Theoretical Studies on the Structures and Strain Energies of Cycloparaphenylenes. Org. Lett. 2010, 12, 2262– 2265, DOI: 10.1021/ol1006168Google ScholarThere is no corresponding record for this reference.
- 76Colwell, C. E.; Price, T. W.; Stauch, T.; Jasti, R. Strain visualization for strained macrocycles. Chem. Sci. 2020, 11, 3923– 3930, DOI: 10.1039/D0SC00629GGoogle ScholarThere is no corresponding record for this reference.
- 77Lin, J.; Lv, Y.; Song, K.; Song, X.; Zang, H.; Du, P.; Zang, Y.; Zhu, D. Cleavage of non-polar C(sp2)–C(sp2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution. Nat. Commun. 2023, 14, 293, DOI: 10.1038/s41467-022-35686-4Google ScholarThere is no corresponding record for this reference.
- 78Lv, Y.; Lin, J.; Song, K.; Song, X.; Zang, H.; Zang, Y.; Zhu, D. Single cycloparaphenylene molecule devices: Achieving large conductance modulation via tuning radial π-conjugation. Sci. Adv. 2021, 7, eabk3095, DOI: 10.1126/sciadv.abk3095Google ScholarThere is no corresponding record for this reference.
- 79Lin, J.; Wang, S.; Zhang, F.; Yang, B.; Du, P.; Chen, C.; Zang, Y.; Zhu, D. Highly efficient charge transport across carbon nanobelts. Sci. Adv. 2022, 8, eade4692, DOI: 10.1126/sciadv.ade4692Google ScholarThere is no corresponding record for this reference.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 5 publications.
- Remigiusz B. Kręcijasz, Juraj Malinčík, Simon Mathew, Peter Štacko, Tomáš Šolomek. Strain-Induced Photochemical Opening of Ferrocene[6]cycloparaphenylene: Uncaging of Fe2+ with Green Light. Journal of the American Chemical Society 2025, 147
(12)
, 10231-10237. https://doi.org/10.1021/jacs.4c15818
- Ruiying Zhang, Xinyu Chen, Lingyun Zhu, Yanxia Huang, Zi'ang Zhai, Qiang Wang, Lingding Wang, Taosong Wang, Wei-Zhen Wang, Ke-Yin Ye, Yuanming Li. Thiophene-backbone arcuate graphene nanoribbons: shotgun synthesis and length dependent properties. Chemical Science 2025, 16
(17)
, 7366-7373. https://doi.org/10.1039/D4SC08353A
- Kang Wei, Zaitian Cheng, Xinyu Zhang, Qiang Huang, Pingwu Du. Direct π-extension of a conjugated carbon nanohoop using a zipper method. Chemical Communications 2024, 60
(96)
, 14248-14251. https://doi.org/10.1039/D4CC04976D
- Jindong Xu, Bin Lan, Lingyun Zhu, Hui Xu, Xinyu Chen, Wenjuan Li, Yaofeng Yuan, Jianfeng Yan, Yuanming Li. Synthesis and Properties of Ferrocene Conjugated Macrocycles with Illusory Topology of the Penrose Stairs. Chemical Research in Chinese Universities 2024, 40
(5)
, 881-886. https://doi.org/10.1007/s40242-024-4134-1
- Lingyun Zhu, Jingdong Xu, Bin Lan, Xinyu Chen, Hideya Kono, Hui Xu, Jianfeng Yan, Wenjuan Li, Akiko Yagi, Yaofeng Yuan, Kenichiro Itami, Yuanming Li. Ferrocene-based conjugated macrocycles: shotgun synthesis, size-dependent properties and tunable fluorescence intensity. Organic Chemistry Frontiers 2024, 11
(18)
, 5130-5137. https://doi.org/10.1039/D4QO01079E
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Figure 1
Figure 1. Conceptual representation of (a) ferrocene-based π-conjugated polymers; (b) main-chain and side-chain type ferrocene π-conjugated macrocycles; (c) representative examples of main-chain ferrocene π-conjugated macrocycles; (d) this work: side-chain type radially π-conjugated macrocycles.
Scheme 1
Scheme 1. Synthetic Route to Side-Chain Type Ferrocene RingsFigure 2
Figure 2. Partial 1H NMR spectra of A2, A3, A2B, and Fc4 in CDCl3.
Figure 3
Figure 3. X-ray crystal structures of (a) A2B and (b) A3 (thermal ellipsoids are shown at 50% probability; solvent molecules have been omitted for clarity). (c) Crystal stacking along the a-axis of A2B and distances between the hydrogen atoms and the aromatic plane (iron atoms, purple).
Figure 4
Figure 4. Cyclic voltammetry (CV, top) and differential pulse voltammetry (DPV, bottom) were recorded in 0.01 M [Na][BArF]/CH2Cl2.
Figure 5
Figure 5. UV–vis absorption spectra of A2B, A3, A2, and Fc4 recorded in (10–5–10–6 M) CH2Cl2.
Figure 6
Figure 6. (a) NLO spectra of A2B single crystals pumped at different wavelengths from 860 to 1040 nm. (b) Polarization dependence plot of the SHG signal of the A2B single crystal with an incident wavelength of 1040 nm.
Figure 7
Figure 7. Qualitative energy diagram and frontier molecular orbitals of A2B, calculated at the PBE0-D3(BJ)/Def2-SVP level of theory.
Figure 8
Figure 8. (a) Molecular strain energy for A2B and A3 calculated and visualized using StrainViz and (b) relative Gibbs free energy diagram of the ferrocenyl rotational barriers in A3 (B3LYP/SDD, 6-31g(d); Transition State: Ts; Metastable State: Ms.).
References
This article references 79 other publications.
- 1Williams, K. A.; Boydston, A. J.; Bielawski, C. W. Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev. 2007, 36, 729– 744, DOI: 10.1039/b601574nThere is no corresponding record for this reference.
- 2Hudson, R. D. A. Ferrocene polymers: current architectures, syntheses and utility. J. Organomet. Chem. 2001, 637–639, 47– 69, DOI: 10.1016/S0022-328X(01)01142-1There is no corresponding record for this reference.
- 3Pietschnig, R. Polymers with pendant ferrocenes. Chem. Soc. Rev. 2016, 45, 5216– 5231, DOI: 10.1039/C6CS00196CThere is no corresponding record for this reference.
- 4Musgrave, R. A.; Russell, A. D.; Hayward, D. W.; Whittell, G. R.; Lawrence, P. G.; Gates, P. J.; Green, J. C.; Manners, I. Main-chain metallopolymers at the static–dynamic boundary based on nickelocene. Nat. Chem. 2017, 9, 743– 750, DOI: 10.1038/nchem.2743There is no corresponding record for this reference.
- 5Hudson, Z. M.; Lunn, D. J.; Winnik, M. A.; Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 2014, 5, 3372, DOI: 10.1038/ncomms4372There is no corresponding record for this reference.
- 6Masson, G.; Herbert, D. E.; Whittell, G. R.; Holland, J. P.; Lough, A. J.; Green, J. C.; Manners, I. Synthesis and Reactivity of a Strained Silicon-Bridged [1]Ferrocenophanium Ion. Angew. Chem., Int. Ed. 2009, 48, 4961– 4964, DOI: 10.1002/anie.200901213There is no corresponding record for this reference.
- 7Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 2015, 44, 2221– 2304, DOI: 10.1039/C4CS00366GThere is no corresponding record for this reference.
- 8Darzi, E. R.; Jasti, R. The dynamic, size-dependent properties of [5]–[12]cycloparaphenylenes. Chem. Soc. Rev. 2015, 44, 6401– 6410, DOI: 10.1039/C5CS00143AThere is no corresponding record for this reference.
- 9Hermann, M.; Wassy, D.; Esser, B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero- or Polycyclic Aromatics. Angew. Chem., Int. Ed. 2021, 60, 15743– 15766, DOI: 10.1002/anie.202007024There is no corresponding record for this reference.
- 10Li, Y.; Kono, H.; Maekawa, T.; Segawa, Y.; Yagi, A.; Itami, K. Chemical Synthesis of Carbon Nanorings and Nanobelts. Acc. Mater. Res. 2021, 2, 681– 691, DOI: 10.1021/accountsmr.1c00105There is no corresponding record for this reference.
- 11Wang, J.; Zhang, X.; Jia, H.; Wang, S.; Du, P. Large π-Extended and Curved Carbon Nanorings as Carbon Nanotube Segments. Acc. Chem. Res. 2021, 54, 4178– 4190, DOI: 10.1021/acs.accounts.1c00505There is no corresponding record for this reference.
- 12Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis of a carbon nanobelt. Science 2017, 356, 172– 175, DOI: 10.1126/science.aam8158There is no corresponding record for this reference.
- 13Cheung, K. Y.; Gui, S.; Deng, C.; Liang, H.; Xia, Z.; Liu, Z.; Chi, L.; Miao, Q. Synthesis of Armchair and Chiral Carbon Nanobelts. Chem. 2019, 5, 838– 847, DOI: 10.1016/j.chempr.2019.01.004There is no corresponding record for this reference.
- 14Luan, Y.; Cong, H. Recent Synthetic Advances on π-Extended Carbon Nanohoops. Synlett. 2017, 28, 1383– 1388, DOI: 10.1055/s-0036-1588978There is no corresponding record for this reference.
- 15Esser, B.; Hermann, M. Buckling up zigzag nanobelts. Nat. Chem. 2021, 13, 209– 211, DOI: 10.1038/s41557-021-00642-0There is no corresponding record for this reference.
- 16Kaiser, K.; Scriven, L. M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H. L. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 2019, 365, 1299– 1301, DOI: 10.1126/science.aay1914There is no corresponding record for this reference.
- 17Scriven, L. M.; Kaiser, K.; Schulz, F.; Sterling, A. J.; Woltering, S. L.; Gawel, P.; Christensen, K. E.; Anderson, H. L.; Gross, L. Synthesis of Cyclo[18]carbon via Debromination of C18Br6. J. Am. Chem. Soc. 2020, 142, 12921– 12924, DOI: 10.1021/jacs.0c05033There is no corresponding record for this reference.
- 18Muraoka, T.; Kinbara, K.; Kobayashi, Y.; Aida, T. Light-Driven Open–Close Motion of Chiral Molecular Scissors. J. Am. Chem. Soc. 2003, 125, 5612– 5613, DOI: 10.1021/ja034994fThere is no corresponding record for this reference.
- 19Muraoka, T.; Kinbara, K.; Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 2006, 440, 512– 515, DOI: 10.1038/nature04635There is no corresponding record for this reference.
- 20Aragonès, A. C.; Darwish, N.; Ciampi, S.; Jiang, L.; Roesch, R.; Ruiz, E.; Nijhuis, C. A.; Díez-Pérez, I. Control over Near-Ballistic Electron Transport through Formation of Parallel Pathways in a Single-Molecule Wire. J. Am. Chem. Soc. 2019, 141, 240– 250, DOI: 10.1021/jacs.8b09086There is no corresponding record for this reference.
- 21Moneo, A.; González-Orive, A.; Bock, S.; Fenero, M.; Herrer, I. L.; Milan, D. C.; Lorenzoni, M.; Nichols, R. J.; Cea, P.; Perez-Murano, F.; Low, P. J.; Martin, S. Towards molecular electronic devices based on ‘all-carbon’ wires. Nanoscale. 2018, 10, 14128– 14138, DOI: 10.1039/C8NR02347FThere is no corresponding record for this reference.
- 22Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Inkpen, M. S.; Lovat, G.; Fung, E. D.; Roy, X.; Venkataraman, L.; Evers, F. Mechanically Tunable Quantum Interference in Ferrocene-Based Single-Molecule Junctions. Nano Lett. 2020, 20, 6381– 6386, DOI: 10.1021/acs.nanolett.0c01956There is no corresponding record for this reference.
- 23Xiao, C.; Wu, W.; Liang, W.; Zhou, D.; Kanagaraj, K.; Cheng, G.; Su, D.; Zhong, Z.; Chruma, J. J.; Yang, C. Redox-Triggered Chirality Switching and Guest-Capture/Release with a Pillar[6]arene-Based Molecular Universal Joint. Angew. Chem., Int. Ed. 2020, 59, 8094– 8098, DOI: 10.1002/anie.201916285There is no corresponding record for this reference.
- 24Xu, L.; Wang, Y.-X.; Chen, L.-J.; Yang, H.-B. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: from structure to functions. Chem. Soc. Rev. 2015, 44, 2148– 2167, DOI: 10.1039/C5CS00022JThere is no corresponding record for this reference.
- 25Grossmann, B.; Heinze, J.; Herdtweck, E.; Köhler, F. H.; Nöth, H.; Schwenk, H.; Spiegler, M.; Wachter, W.; Weber, B. Seven Doubly Bridged Ferrocene Units in a Cycle. Angew. Chem., Int. Ed. 1997, 36, 387– 389, DOI: 10.1002/anie.199703871There is no corresponding record for this reference.
- 26Herbert, D. E.; Gilroy, J. B.; Chan, W. Y.; Chabanne, L.; Staubitz, A.; Lough, A. J.; Manners, I. Redox-Active Metallomacrocycles and Cyclic Metallopolymers: Photocontrolled Ring-Opening Oligomerization and Polymerization of Silicon-Bridged [1]Ferrocenophanes Using Substitutionally-Labile Lewis Bases as Initiators. J. Am. Chem. Soc. 2009, 131, 14958– 14968, DOI: 10.1021/ja904928cThere is no corresponding record for this reference.
- 27Chan, W. Y.; Lough, A. J.; Manners, I. Organometallic Macrocycles and Cyclic Polymers by the Bipyridine-Initiated Photolytic Ring Opening of a Silicon-Bridged [1]Ferrocenophane. Angew. Chem., Int. Ed. 2007, 46, 9069– 9072, DOI: 10.1002/anie.200703430There is no corresponding record for this reference.
- 28Winter, T.; Haider, W.; Schießer, A.; Presser, V.; Gallei, M.; Schäfer, A. Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene. Macromol. Rapid Commun. 2021, 42, 2000738, DOI: 10.1002/marc.202000738There is no corresponding record for this reference.
- 29Inkpen, M. S.; Scheerer, S.; Linseis, M.; White, A. J. P.; Winter, R. F.; Albrecht, T.; Long, N. J. Oligomeric ferrocene rings. Nat. Chem. 2016, 8, 825– 830, DOI: 10.1038/nchem.2553There is no corresponding record for this reference.
- 30Simkowa, I.; Latos-Grażyński, L.; Stępień, M. π Conjugation Transmitted across a d-Electron Metallocene in Ferrocenothiaporphyrin Macrocycles. Angew. Chem., Int. Ed. 2010, 49, 7665– 7669, DOI: 10.1002/anie.201004015There is no corresponding record for this reference.
- 31Metzelaars, M.; Schleicher, S.; Hattori, T.; Borca, B.; Matthes, F.; Sanz, S.; Bürgler, D. E.; Rawson, J.; Schneider, C. M.; Kögerler, P. Cyclophane with eclipsed pyrene units enables construction of spin interfaces with chemical accuracy. Chem. Sci. 2021, 12, 8430– 8437, DOI: 10.1039/D1SC01036KThere is no corresponding record for this reference.
- 32Metzelaars, M.; Sanz, S.; Rawson, J.; Hartmann, R.; Schneider, C. M.; Kögerler, P. Fusing pyrene and ferrocene into a chiral, redox-active triangle. Chem. Commun. 2021, 57, 6660– 6663, DOI: 10.1039/D1CC02191EThere is no corresponding record for this reference.
- 33Wilson, L. E.; Hassenrück, C.; Winter, R. F.; White, A. J. P.; Albrecht, T.; Long, N. J. Ferrocene- and Biferrocene-Containing Macrocycles towards Single-Molecule Electronics. Angew. Chem., Int. Ed. 2017, 56, 6838– 6842, DOI: 10.1002/anie.201702006There is no corresponding record for this reference.
- 34Hoffmann, V.; le Pleux, L.; Häussinger, D.; Unke, O. T.; Prescimone, A.; Mayor, M. Deltoid versus Rhomboid: Controlling the Shape of Bis-ferrocene Macrocycles by the Bulkiness of the Substituents. Organometallics. 2017, 36, 858– 866, DOI: 10.1021/acs.organomet.6b00909There is no corresponding record for this reference.
- 35Sheppard, S. A.; Bennett, T. L. R.; Long, N. J. Development and Characterisation of Highly Conjugated Functionalised Ferrocenylene Macrocycles. Eur. J. Inorg. Chem. 2022, 2022, e202200055, DOI: 10.1002/ejic.202200055There is no corresponding record for this reference.
- 36Bunz, U. H. F.; Roidl, G.; Altmann, M.; Enkelmann, V.; Shimizu, K. D. Synthesis and Structural Characterization of Novel Organometallic Dehydroannulenes with Fused CpCo-Cyclobutadiene and Ferrocene Units Including a Cyclic Fullerenyne Segment. J. Am. Chem. Soc. 1999, 121, 10719– 10726, DOI: 10.1021/ja992262aThere is no corresponding record for this reference.
- 37Hisatome, M.; Tachikawa, O.; Sasho̅, M.; Yamakawa, K. Organometallic compounds: XXXII. Syntheses of 1,3-disubstituted ferrocenes and intermolecular (1,3)ferrocenophanes. J. Organomet. Chem. 1981, 217, C17– C20, DOI: 10.1016/S0022-328X(00)86033-7There is no corresponding record for this reference.
- 38Garbicz, M.; Latos-Grażyński, L. A meso-Tetraaryl-21-carbaporphyrin: Incorporation of a Cyclopentadiene Unit into a Porphyrin Architecture. Angew. Chem., Int. Ed. 2019, 58, 6089– 6093, DOI: 10.1002/anie.201901808There is no corresponding record for this reference.
- 39Di Giannantonio, M.; Ayer, M. A.; Verde-Sesto, E.; Lattuada, M.; Weder, C.; Fromm, K. M. Triggered Metal Ion Release and Oxidation: Ferrocene as a Mechanophore in Polymers. Angew. Chem., Int. Ed. 2018, 57, 11445– 11450, DOI: 10.1002/anie.201803524There is no corresponding record for this reference.
- 40Sha, Y.; Zhang, Y.; Xu, E.; Wang, Z.; Zhu, T.; Craig, S. L.; Tang, C. Quantitative and Mechanistic Mechanochemistry in Ferrocene Dissociation. ACS Macro Lett. 2018, 7, 1174– 1179, DOI: 10.1021/acsmacrolett.8b00625There is no corresponding record for this reference.
- 41Zhang, Y.; Wang, Z.; Kouznetsova, T. B.; Sha, Y.; Xu, E.; Shannahan, L.; Fermen-Coker, M.; Lin, Y.; Tang, C.; Craig, S. L. Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 2021, 13, 56– 62, DOI: 10.1038/s41557-020-00600-2There is no corresponding record for this reference.
- 42Katz, T. J.; Pesti, J. The synthesis of a helical ferrocene. J. Am. Chem. Soc. 1982, 104, 346– 347, DOI: 10.1021/ja00365a087There is no corresponding record for this reference.
- 43Amaya, T.; Takahashi, Y.; Moriuchi, T.; Hirao, T. Sumanenyl Metallocenes: Synthesis and Structure of Mono- and Trinuclear Zirconocene Complexes. J. Am. Chem. Soc. 2014, 136, 12794– 12798, DOI: 10.1021/ja5072459There is no corresponding record for this reference.
- 44Jiang, H.-W.; Tanaka, T.; Mori, H.; Park, K. H.; Kim, D.; Osuka, A. Cyclic 2,12-Porphyrinylene Nanorings as a Porphyrin Analogue of Cycloparaphenylenes. J. Am. Chem. Soc. 2015, 137, 2219– 2222, DOI: 10.1021/ja513102mThere is no corresponding record for this reference.
- 45Jiang, H.-W.; Tanaka, T.; Kim, T.; Sung, Y. M.; Mori, H.; Kim, D.; Osuka, A. Synthesis of [n]Cyclo-5,15-porphyrinylene-4,4′-biphenylenes Displaying Size-Dependent Excitation-Energy Hopping. Angew. Chem., Int. Ed. 2015, 54, 15197– 15201, DOI: 10.1002/anie.201507822There is no corresponding record for this reference.
- 46Xu, Y.; Gsänger, S.; Minameyer, M. B.; Imaz, I.; Maspoch, D.; Shyshov, O.; Schwer, F.; Ribas, X.; Drewello, T.; Meyer, B.; von Delius, M. Highly Strained, Radially π-Conjugated Porphyrinylene Nanohoops. J. Am. Chem. Soc. 2019, 141, 18500– 18507, DOI: 10.1021/jacs.9b08584There is no corresponding record for this reference.
- 47Stawski, W.; Van Raden, J. M.; Patrick, C. W.; Horton, P. N.; Coles, S. J.; Anderson, H. L. Strained Porphyrin Tape–Cycloparaphenylene Hybrid Nanorings. Org. Lett. 2023, 25, 378– 383, DOI: 10.1021/acs.orglett.2c04089There is no corresponding record for this reference.
- 48Kubota, N.; Segawa, Y.; Itami, K. η6-Cycloparaphenylene Transition Metal Complexes: Synthesis, Structure, Photophysical Properties, and Application to the Selective Monofunctionalization of Cycloparaphenylenes. J. Am. Chem. Soc. 2015, 137, 1356– 1361, DOI: 10.1021/ja512271pThere is no corresponding record for this reference.
- 49Kayahara, E.; Patel, V. K.; Mercier, A.; Kündig, E. P.; Yamago, S. Regioselective Synthesis and Characterization of Multinuclear Convex-Bound Ruthenium-[n]Cycloparaphenylene (n = 5 and 6) Complexes. Angew. Chem., Int. Ed. 2016, 55, 302– 306, DOI: 10.1002/anie.201508003There is no corresponding record for this reference.
- 50Van Raden, J. M.; Louie, S.; Zakharov, L. N.; Jasti, R. 2,2′-Bipyridyl-Embedded Cycloparaphenylenes as a General Strategy To Investigate Nanohoop-Based Coordination Complexes. J. Am. Chem. Soc. 2017, 139, 2936– 2939, DOI: 10.1021/jacs.7b00359There is no corresponding record for this reference.
- 51Majewski, M. A.; Stawski, W.; Van Raden, J. M.; Clarke, M.; Hart, J.; O’Shea, J. N.; Saywell, A.; Anderson, H. L. Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring**. Angew. Chem., Int. Ed. 2023, 62, e202302114, DOI: 10.1002/anie.202302114There is no corresponding record for this reference.
- 52Heras Ojea, M. J.; Van Raden, J. M.; Louie, S.; Collins, R.; Pividori, D.; Cirera, J.; Meyer, K.; Jasti, R.; Layfield, R. A. Spin-Crossover Properties of an Iron(II) Coordination Nanohoop. Angew. Chem., Int. Ed. 2021, 60, 3515– 3518, DOI: 10.1002/anie.202013374There is no corresponding record for this reference.
- 53Fuhrmann, G.; Debaerdemaeker, T.; Bäuerle, P. C–C bond formation through oxidatively induced elimination of platinum complexes─A novel approach towards conjugated macrocycles. Chem. Commun. 2003, 948– 949, DOI: 10.1039/b300542aThere is no corresponding record for this reference.
- 54Zhang, F.; Götz, G.; Winkler, H. D. F.; Schalley, C. A.; Bäuerle, P. Giant Cyclo[n]thiophenes with Extended π Conjugation. Angew. Chem., Int. Ed. 2009, 48, 6632– 6635, DOI: 10.1002/anie.200900101There is no corresponding record for this reference.
- 55Yamago, S.; Watanabe, Y.; Iwamoto, T. Synthesis of [8]Cycloparaphenylene from a Square-Shaped Tetranuclear Platinum Complex. Angew. Chem., Int. Ed. 2010, 49, 757– 759, DOI: 10.1002/anie.200905659There is no corresponding record for this reference.
- 56Hitosugi, S.; Nakanishi, W.; Yamasaki, T.; Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun. 2011, 2, 492, DOI: 10.1038/ncomms1505There is no corresponding record for this reference.
- 57Zhao, H.; Ma, Y.-C.; Cao, L.; Huang, S.; Zhang, J.-P.; Yan, X. Synthesis and Photophysical Properties of Chalcophenes-Embedded Cycloparaphenylenes. J. Org. Chem. 2019, 84, 5230– 5235, DOI: 10.1021/acs.joc.9b00207There is no corresponding record for this reference.
- 58Zirakzadeh, A.; Herlein, A.; Groß, M. A.; Mereiter, K.; Wang, Y.; Weissensteiner, W. Halide-Mediated Ortho-Deprotonation Reactions Applied to the Synthesis of 1,2- and 1,3-Disubstituted Ferrocene Derivatives. Organometallics. 2015, 34, 3820– 3832, DOI: 10.1021/acs.organomet.5b00464There is no corresponding record for this reference.
- 59Brandl, M.; Weiss, M. S.; Jabs, A.; Sühnel, J.; Hilgenfeld, R. C-h···π-interactions in proteins. J. Mol. Biol. 2001, 307, 357– 377, DOI: 10.1006/jmbi.2000.4473There is no corresponding record for this reference.
- 60Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. The CH/π interaction: Significance in molecular recognition. Tetrahedron. 1995, 51, 8665– 8701, DOI: 10.1016/0040-4020(94)01066-9There is no corresponding record for this reference.
- 61Kwon, H.; Newell, B. S.; Bruns, C. J. Redox-switchable host–guest complexes of metallocenes and [8]cycloparaphenylene. Nanoscale 2022, 14, 14276– 14285, DOI: 10.1039/D2NR03852HThere is no corresponding record for this reference.
- 62Liu, C. Y.; Meng, M. Introduction and Fundamentals of Mixed-Valence Chemistry. Mixed-Valence Systems 2023, 1– 43, DOI: 10.1002/9783527835287.ch1There is no corresponding record for this reference.
- 63Santi, S.; Orian, L.; Donoli, A.; Bisello, A.; Scapinello, M.; Benetollo, F.; Ganis, P.; Ceccon, A. Synthesis of the Prototypical Cyclic Metallocene Triad: Mixed-Valence Properties of [(FeCp)3(trindenyl)] Isomers. Angew. Chem., Int. Ed. 2008, 47, 5331– 5334, DOI: 10.1002/anie.200801124There is no corresponding record for this reference.
- 64Hildebrandt, A.; Miesel, D.; Lang, H. Electrostatic interactions within mixed-valent compounds. Coord. Chem. Rev. 2018, 371, 56– 66, DOI: 10.1016/j.ccr.2018.05.017There is no corresponding record for this reference.
- 65Geiger, W. E.; Barrière, F. Organometallic Electrochemistry Based on Electrolytes Containing Weakly-Coordinating Fluoroarylborate Anions. Acc. Chem. Res. 2010, 43, 1030– 1039, DOI: 10.1021/ar1000023There is no corresponding record for this reference.
- 66Barrière, F.; Geiger, W. E. Use of Weakly Coordinating Anions to Develop an Integrated Approach to the Tuning of ΔE1/2 Values by Medium Effects. J. Am. Chem. Soc. 2006, 128, 3980– 3989, DOI: 10.1021/ja058171xThere is no corresponding record for this reference.
- 67LeSuer, R. J.; Buttolph, C.; Geiger, W. E. Comparison of the Conductivity Properties of the Tetrabutylammonium Salt of Tetrakis(pentafluorophenyl)borate Anion with Those of Traditional Supporting Electrolyte Anions in Nonaqueous Solvents. Anal. Chem. 2004, 76, 6395– 6401, DOI: 10.1021/ac040087xThere is no corresponding record for this reference.
- 68D’Alessandro, D. M.; Keene, F. R. Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions. Chem. Soc. Rev. 2006, 35, 424– 440, DOI: 10.1039/b514590mThere is no corresponding record for this reference.
- 69Hildebrandt, A.; Lang, H. (Multi)ferrocenyl Five-Membered Heterocycles: Excellent Connecting Units for Electron Transfer Studies. Organometallics 2013, 32, 5640– 5653, DOI: 10.1021/om400453mThere is no corresponding record for this reference.
- 70Santi, S.; Orian, L.; Durante, C.; Bencze, E. Z.; Bisello, A.; Donoli, A.; Ceccon, A.; Benetollo, F.; Crociani, L. Metal–Metal Electronic Coupling in syn and anti Stereoisomers of Mixed-Valent (FeCp)2-, (RhL2)2-, and (FeCp)(RhL2)-as-Indacenediide Ions. Chem.─Eur. J. 2007, 13, 7933– 7947, DOI: 10.1002/chem.200700052There is no corresponding record for this reference.
- 71Gray, H. B.; Sohn, Y. S.; Hendrickson, N. Electronic structure of metallocenes. J. Am. Chem. Soc. 1971, 93, 3603– 3612, DOI: 10.1021/ja00744a011There is no corresponding record for this reference.
- 72Cuffe, L.; Hudson, R. D. A.; Gallagher, J. F.; Jennings, S.; McAdam, C. J.; Connelly, R. B. T.; Manning, A. R.; Robinson, B. H.; Simpson, J. Synthesis, Structure, and Redox Chemistry of Ethenyl and Ethynyl Ferrocene Polyaromatic Dyads. Organometallics. 2005, 24, 2051– 2060, DOI: 10.1021/om0492653There is no corresponding record for this reference.
- 73Kaur, S.; Kaur, M.; Kaur, P.; Clays, K.; Singh, K. Ferrocene chromophores continue to inspire. Fine-tuning and switching of the second-order nonlinear optical response. Coord. Chem. Rev. 2017, 343, 185– 219, DOI: 10.1016/j.ccr.2017.05.008There is no corresponding record for this reference.
- 74Shi, R.; Han, X.; Cheng, P.; Xin, M.; Xu, J. Self-Assembled Nonlinear Optical Crystals Based on an Asymmetric Fluorenone Derivative. Cryst. Growth Des. 2022, 22, 3998– 4004, DOI: 10.1021/acs.cgd.2c00342There is no corresponding record for this reference.
- 75Segawa, Y.; Omachi, H.; Itami, K. Theoretical Studies on the Structures and Strain Energies of Cycloparaphenylenes. Org. Lett. 2010, 12, 2262– 2265, DOI: 10.1021/ol1006168There is no corresponding record for this reference.
- 76Colwell, C. E.; Price, T. W.; Stauch, T.; Jasti, R. Strain visualization for strained macrocycles. Chem. Sci. 2020, 11, 3923– 3930, DOI: 10.1039/D0SC00629GThere is no corresponding record for this reference.
- 77Lin, J.; Lv, Y.; Song, K.; Song, X.; Zang, H.; Du, P.; Zang, Y.; Zhu, D. Cleavage of non-polar C(sp2)–C(sp2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution. Nat. Commun. 2023, 14, 293, DOI: 10.1038/s41467-022-35686-4There is no corresponding record for this reference.
- 78Lv, Y.; Lin, J.; Song, K.; Song, X.; Zang, H.; Zang, Y.; Zhu, D. Single cycloparaphenylene molecule devices: Achieving large conductance modulation via tuning radial π-conjugation. Sci. Adv. 2021, 7, eabk3095, DOI: 10.1126/sciadv.abk3095There is no corresponding record for this reference.
- 79Lin, J.; Wang, S.; Zhang, F.; Yang, B.; Du, P.; Chen, C.; Zang, Y.; Zhu, D. Highly efficient charge transport across carbon nanobelts. Sci. Adv. 2022, 8, eade4692, DOI: 10.1126/sciadv.ade4692There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/prechem.3c00121.
Experimental procedures and characterization data for all compounds; electrochemistry, NLO measurements, UV–vis-NIR, VT-NMR experimental details, and computational results (PDF)
Crystallographic data for 2 (CIF)
Crystallographic data for A2B (CIF)
Crystallographic data for A3 (CIF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.