Automated Selection of Synthetic Biology Parts for Genetic Regulatory NetworksClick to copy article linkArticle link copied!
Abstract
Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps.
Cited By
This article is cited by 45 publications.
- Rachel M. Hartfield, Kelly A. Schwarz, Joseph J. Muldoon, Neda Bagheri, and Joshua N. Leonard . Multiplexing Engineered Receptors for Multiparametric Evaluation of Environmental Ligands. ACS Synthetic Biology 2017, 6
(11)
, 2042-2055. https://doi.org/10.1021/acssynbio.6b00279
- Swapnil P. Bhatia, Michael J. Smanski, Christopher A. Voigt, and Douglas M. Densmore . Genetic Design via Combinatorial Constraint Specification. ACS Synthetic Biology 2017, 6
(11)
, 2130-2135. https://doi.org/10.1021/acssynbio.7b00154
- Vishal Gupta, Jesús Irimia, Iván Pau, and Alfonso Rodríguez-Patón . BioBlocks: Programming Protocols in Biology Made Easier. ACS Synthetic Biology 2017, 6
(7)
, 1230-1232. https://doi.org/10.1021/acssynbio.6b00304
- Nicholas Roehner, Eric M. Young, Christopher A. Voigt, D. Benjamin Gordon, and Douglas Densmore . Double Dutch: A Tool for Designing Combinatorial Libraries of Biological Systems. ACS Synthetic Biology 2016, 5
(6)
, 507-517. https://doi.org/10.1021/acssynbio.5b00232
- Nicholas Roehner, Zhen Zhang, Tramy Nguyen, and Chris J. Myers . Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language. ACS Synthetic Biology 2015, 4
(8)
, 873-879. https://doi.org/10.1021/sb5003289
- Nicholas Roehner, Ernst Oberortner, Matthew Pocock, Jacob Beal, Kevin Clancy, Curtis Madsen, Goksel Misirli, Anil Wipat, Herbert Sauro, and Chris J. Myers . Proposed Data Model for the Next Version of the Synthetic Biology Open Language. ACS Synthetic Biology 2015, 4
(1)
, 57-71. https://doi.org/10.1021/sb500176h
- Nicholas Roehner and Chris J. Myers . Directed Acyclic Graph-Based Technology Mapping of Genetic Circuit Models. ACS Synthetic Biology 2014, 3
(8)
, 543-555. https://doi.org/10.1021/sb400135t
- Linh Huynh and Ilias Tagkopoulos . Optimal Part and Module Selection for Synthetic Gene Circuit Design Automation. ACS Synthetic Biology 2014, 3
(8)
, 556-564. https://doi.org/10.1021/sb400139h
- Matthew T. Weinstock . Keystone Symposia Conference on Precision Genome Engineering and Synthetic Biology Brings Together Players from Both Disciplines. ACS Synthetic Biology 2013, 2
(6)
, 296-300. https://doi.org/10.1021/sb400045k
- Guillermo Rodrigo and Alfonso Jaramillo . AutoBioCAD: Full Biodesign Automation of Genetic Circuits. ACS Synthetic Biology 2013, 2
(5)
, 230-236. https://doi.org/10.1021/sb300084h
- Linh Huynh, Athanasios Tsoukalas, Matthias Köppe, and Ilias Tagkopoulos . SBROME: A Scalable Optimization and Module Matching Framework for Automated Biosystems Design. ACS Synthetic Biology 2013, 2
(5)
, 263-273. https://doi.org/10.1021/sb300095m
- Jacob Beal, Ron Weiss, Douglas Densmore, Aaron Adler, Evan Appleton, Jonathan Babb, Swapnil Bhatia, Noah Davidsohn, Traci Haddock, Joseph Loyall, Richard Schantz, Viktor Vasilev, and Fusun Yaman . An End-to-End Workflow for Engineering of Biological Networks from High-Level Specifications. ACS Synthetic Biology 2012, 1
(8)
, 317-331. https://doi.org/10.1021/sb300030d
- Richard Matzko, Savas Konur. Technologies for design-build-test-learn automation and computational modelling across the synthetic biology workflow: a review. Network Modeling Analysis in Health Informatics and Bioinformatics 2024, 13
(1)
https://doi.org/10.1007/s13721-024-00455-4
- Attia Iram, Yueming Dong, Codruta Ignea. Synthetic biology advances towards a bio-based society in the era of artificial intelligence. Current Opinion in Biotechnology 2024, 87 , 103143. https://doi.org/10.1016/j.copbio.2024.103143
- Blaine A. Pfeifer, Marie Beitelshees, Andrew Hill, Justin Bassett, Charles H. Jones. Harnessing synthetic biology for advancing RNA therapeutics and vaccine design. npj Systems Biology and Applications 2023, 9
(1)
https://doi.org/10.1038/s41540-023-00323-3
- Timothy S. Jones, Samuel M. D. Oliveira, Chris J. Myers, Christopher A. Voigt, Douglas Densmore. Genetic circuit design automation with Cello 2.0. Nature Protocols 2022, 17
(4)
, 1097-1113. https://doi.org/10.1038/s41596-021-00675-2
- Mohammed Eslami, Aaron Adler, Rajmonda S. Caceres, Joshua G. Dunn, Nancy Kelley-Loughnane, Vanessa A. Varaljay, Hector Garcia Martin. Artificial intelligence for synthetic biology. Communications of the ACM 2022, 65
(5)
, 88-97. https://doi.org/10.1145/3500922
- Tianchi Chen, M. Ali Al-Radhawi, Christopher A. Voigt, Eduardo D. Sontag. A synthetic distributed genetic multi-bit counter. iScience 2021, 24
(12)
, 103526. https://doi.org/10.1016/j.isci.2021.103526
- Hasan Baig, Jan Madsen. Fundamentals of Molecular Biology and Genetic Circuits. 2020, 11-23. https://doi.org/10.1007/978-3-030-52355-8_2
- Xiangyang Liu, Sanjan T P Gupta, Devesh Bhimsaria, Jennifer L Reed, José A Rodríguez-Martínez, Aseem Z Ansari, Srivatsan Raman. De novo design of programmable inducible promoters. Nucleic Acids Research 2019, 47
(19)
, 10452-10463. https://doi.org/10.1093/nar/gkz772
- Tramy Nguyen, Timothy S. Jones, Pedro Fontanarrosa, Jeanet V. Mante, Zach Zundel, Douglas Densmore, Chris Myers. Design of Asynchronous Genetic Circuits. Proceedings of the IEEE 2019, 107
(7)
, 1356-1368. https://doi.org/10.1109/JPROC.2019.2916057
- Fusun Yaman, Aaron Adler, Jacob Beal. Opportunities and Challenges in Applying Artificial Intelligence to Bioengineering. 2019, 425-452. https://doi.org/10.1007/978-3-030-17297-8_16
- Nathan Braniff, Matthew Scott, Brian Ingalls. Component Characterization in a Growth-Dependent Physiological Context: Optimal Experimental Design. Processes 2019, 7
(1)
, 52. https://doi.org/10.3390/pr7010052
- Jiaoyun Yang, Song Yu, Bowen Gong, Ning An, Gil Alterovitz. Biobrick chain recommendations for genetic circuit design. Computers in Biology and Medicine 2017, 86 , 31-39. https://doi.org/10.1016/j.compbiomed.2017.04.019
- Evan Appleton, Curtis Madsen, Nicholas Roehner, Douglas Densmore. Design Automation in Synthetic Biology. Cold Spring Harbor Perspectives in Biology 2017, 9
(4)
, a023978. https://doi.org/10.1101/cshperspect.a023978
- Jovan Tanevski, Ljupčo Todorovski, Sašo Džeroski. Process-based design of dynamical biological systems. Scientific Reports 2016, 6
(1)
https://doi.org/10.1038/srep34107
- Miriam Leon, Mae L. Woods, Alex J. H. Fedorec, Chris P. Barnes. A computational method for the investigation of multistable systems and its application to genetic switches. BMC Systems Biology 2016, 10
(1)
https://doi.org/10.1186/s12918-016-0375-z
- Jacob Beal, Aaron Adler, Fusun Yaman. Managing bioengineering complexity with AI techniques. Biosystems 2016, 148 , 40-46. https://doi.org/10.1016/j.biosystems.2015.08.006
- Alec A. K. Nielsen, Bryan S. Der, Jonghyeon Shin, Prashant Vaidyanathan, Vanya Paralanov, Elizabeth A. Strychalski, David Ross, Douglas Densmore, Christopher A. Voigt. Genetic circuit design automation. Science 2016, 352
(6281)
https://doi.org/10.1126/science.aac7341
- Elise Rosati, Morgan Madec, Abir Rezgui, Quentin Colman, Nicolas Toussaint, Christophe Lallement, Pierre Collet. Application of Evolutionary Algorithms for the Optimization of Genetic Regulatory Networks. 2016, 184-200. https://doi.org/10.1007/978-3-319-31204-0_13
- Prashant Vaidyanathan, Bryan S. Der, Swapnil Bhatia, Nicholas Roehner, Ryan Silva, Christopher A. Voigt, Douglas Densmore. A Framework for Genetic Logic Synthesis. Proceedings of the IEEE 2015, 103
(11)
, 2196-2207. https://doi.org/10.1109/JPROC.2015.2443832
- Jacob Beal. Bridging the Gap: A Roadmap to Breaking the Biological Design Barrier. Frontiers in Bioengineering and Biotechnology 2015, 2 https://doi.org/10.3389/fbioe.2014.00087
- Michael Pedersen, Boyan Yordanov. Programming Languages for Circuit Design. 2015, 81-104. https://doi.org/10.1007/978-1-4939-1878-2_5
- Chris Myers, Kevin Clancy, Goksel Misirli, Ernst Oberortner, Matthew Pocock, Jacqueline Quinn, Nicholas Roehner, Herbert M. Sauro. The Synthetic Biology Open Language. 2015, 323-336. https://doi.org/10.1007/978-1-4939-1878-2_16
- Goksel Misirli, Jennifer Hallinan, Anil Wipat. Composable Modular Models for Synthetic Biology. ACM Journal on Emerging Technologies in Computing Systems 2014, 11
(3)
, 1-19. https://doi.org/10.1145/2631921
- Chris J. Myers, Herbert Sauro, Anil Wipat. Introduction to the Special Issue on Computational Synthetic Biology. ACM Journal on Emerging Technologies in Computing Systems 2014, 11
(3)
, 1-5. https://doi.org/10.1145/2668126
- Daniel D. Lewis, Fernando D. Villarreal, Fan Wu, Cheemeng Tan. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems. Frontiers in Bioengineering and Biotechnology 2014, 2 https://doi.org/10.3389/fbioe.2014.00066
- Mario Andrea Marchisio. Parts & Pools: A Framework for Modular Design of Synthetic Gene Circuits. Frontiers in Bioengineering and Biotechnology 2014, 2 https://doi.org/10.3389/fbioe.2014.00042
- Jennifer A N Brophy, Christopher A Voigt. Principles of genetic circuit design. Nature Methods 2014, 11
(5)
, 508-520. https://doi.org/10.1038/nmeth.2926
- Yves Gendrault, Morgan Madec, Christophe Lallement, Jacques Haiech. Modeling Biology With HDL Languages: A First Step Toward a Genetic Design Automation Tool Inspired From Microelectronics. IEEE Transactions on Biomedical Engineering 2014, 61
(4)
, 1231-1240. https://doi.org/10.1109/TBME.2014.2298559
- Douglas M. Densmore, Swapnil Bhatia. Bio-design automation: software + biology + robots. Trends in Biotechnology 2014, 32
(3)
, 111-113. https://doi.org/10.1016/j.tibtech.2013.10.005
- Miha Moskon, Miha Mraz. Systematic Approach to Computational Design of Gene Regulatory Networks with Information Processing Capabilities. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2014, 11
(2)
, 431-440. https://doi.org/10.1109/TCBB.2013.2295792
- Nathan Crook, Hal S. Alper. Model-based design of synthetic, biological systems. Chemical Engineering Science 2013, 103 , 2-11. https://doi.org/10.1016/j.ces.2012.12.022
- Boyan Yordanov, Christoph M. Wintersteiger, Youssef Hamadi, Hillel Kugler. SMT-Based Analysis of Biological Computation. 2013, 78-92. https://doi.org/10.1007/978-3-642-38088-4_6
- Ezio Bartocci, Luca Bortolussi, Laura Nenzi. A Temporal Logic Approach to Modular Design of Synthetic Biological Circuits. 2013, 164-177. https://doi.org/10.1007/978-3-642-40708-6_13
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.