ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Cellulose–Hemicellulose and Cellulose–Lignin Interactions during Fast Pyrolysis

View Author Information
Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
§ Center for Sustainable and Environmental Technologies, Iowa State University, Ames, Iowa 50011, United States
*Tel.: +1 515 294 1895. E-mail: [email protected]
Cite this: ACS Sustainable Chem. Eng. 2015, 3, 2, 293–301
Publication Date (Web):December 23, 2014
https://doi.org/10.1021/sc500664h
Copyright © 2014 American Chemical Society

    Article Views

    9150

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Previously, the primary product distribution resulting from fast pyrolysis of cellulose, hemicellulose, and lignin was quantified. This study extends the analysis to the examinations of interactions between cellulose–hemicellulose and cellulose–lignin, which were determined by comparing the pyrolysis products from their native mixture, physical mixture, and superposition of individual components. Negligible interactions were found for both binary physical mixtures. For the native cellulose–hemicellulose mixture, no significant interaction was identified either. In the case of the native cellulose–lignin mixture, herbaceous biomass exhibited an apparent interaction, represented by diminished yield of levoglucosan and enhanced yield of low molecular weight compounds and furans. However, such an interaction was not found for woody biomass. It is speculated that these results are due to different amounts of covalent linkages in these biomass samples. This study provides insight into the chemistry involved during the pyrolysis of multicomponent biomass, which can facilitate building a model for bio-oil composition prediction.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details of the pyrolyzer-GC-MS/FID experiments and ICP-MS analysis, results for the Tukey honest significant different test, biomass component analysis of the extracted hemicellulose, mineral content for pretreated biomass samples, GC chromatographs for the native mixture and physical mixture, pyrolysis product distribution of the extracted hemicellulose, and pyrolysis product distribution of the native cellulose–lignin from switchgrass, pine, and red oak. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 240 publications.

    1. Ji Ha Lee, Hiroya Tsubota, Tomoyuki Tachibana. Controllable Drug-Release Ratio and Rate of Doxorubicin-Loaded Natural Composite Films Based on Polysaccharides: Evaluation of Transdermal Permeability Potential. ACS Omega 2024, 9 (1) , 1936-1944. https://doi.org/10.1021/acsomega.3c08834
    2. Muhammad Ashraf, Nisar Ullah, Ibrahim Khan, Wolfgang Tremel, Shahzada Ahmad, Muhammad Nawaz Tahir. Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy. Chemical Reviews 2023, 123 (8) , 4443-4509. https://doi.org/10.1021/acs.chemrev.2c00602
    3. Fu Wei, Shinji Kudo, Shusaku Asano, Jun-ichiro Hayashi. Staged Pyrolytic Conversion of Acid-Loaded Woody Biomass for Production of High-Strength Coke and Valorization of Volatiles. Energy & Fuels 2022, 36 (13) , 6949-6958. https://doi.org/10.1021/acs.energyfuels.2c01352
    4. Arman Dastpak, Philip Ansell, Justin R. Searle, Mari Lundström, Benjamin P. Wilson. Biopolymeric Anticorrosion Coatings from Cellulose Nanofibrils and Colloidal Lignin Particles. ACS Applied Materials & Interfaces 2021, 13 (34) , 41034-41045. https://doi.org/10.1021/acsami.1c08274
    5. Meredith Rose Barr, Roberto Volpe, Rafael Kandiyoti. Identifying Synergistic Effects between Biomass Components during Pyrolysis and Pointers Concerning Experiment Design. ACS Sustainable Chemistry & Engineering 2021, 9 (16) , 5603-5612. https://doi.org/10.1021/acssuschemeng.1c00051
    6. Haruki Nagakawa, Morio Nagata. Photoreforming of Lignocellulosic Biomass into Hydrogen under Sunlight in the Presence of Thermally Radiative CdS/SiC Composite Photocatalyst. ACS Applied Energy Materials 2021, 4 (2) , 1059-1062. https://doi.org/10.1021/acsaem.0c02530
    7. Zhihao Wang, Qi Wang, Xingwei Yang, Shengpeng Xia, Anqing Zheng, Kuo Zeng, Zengli Zhao, Haibin Li, Szymon Sobek, Sebastian Werle. Comparative Assessment of Pretreatment Options for Biomass Pyrolysis: Linking Biomass Compositions to Resulting Pyrolysis Behaviors, Kinetics, and Product Yields. Energy & Fuels 2021, 35 (4) , 3186-3196. https://doi.org/10.1021/acs.energyfuels.0c04186
    8. Kai Yan, Hao Li. State of the Art and Perspectives in Catalytic Conversion Mechanism of Biomass to Bio-aromatics. Energy & Fuels 2021, 35 (1) , 45-62. https://doi.org/10.1021/acs.energyfuels.0c03174
    9. Lingli Zhu, Dekui Shen, Chunfei Wu, Sai Gu. State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Industrial & Engineering Chemistry Research 2020, 59 (51) , 22017-22039. https://doi.org/10.1021/acs.iecr.0c04760
    10. Pavlo Kostetskyy, Linda J. Broadbelt. Progress in Modeling of Biomass Fast Pyrolysis: A Review. Energy & Fuels 2020, 34 (12) , 15195-15216. https://doi.org/10.1021/acs.energyfuels.0c02295
    11. Bin Hu, Bing Zhang, Wen-luan Xie, Xiao-yan Jiang, Ji Liu, Qiang Lu. Recent Progress in Quantum Chemistry Modeling on the Pyrolysis Mechanisms of Lignocellulosic Biomass. Energy & Fuels 2020, 34 (9) , 10384-10440. https://doi.org/10.1021/acs.energyfuels.0c01948
    12. Dimitrios Georgouvelas, Blanca Jalvo, Luis Valencia, Wassilios Papawassiliou, Andrew J. Pell, Ulrica Edlund, Aji P. Mathew. Residual Lignin and Zwitterionic Polymer Grafts on Cellulose Nanocrystals for Antifouling and Antibacterial Applications. ACS Applied Polymer Materials 2020, 2 (8) , 3060-3071. https://doi.org/10.1021/acsapm.0c00212
    13. Thulluri Chiranjeevi, Steffi Jose, B. Ramachandrarao, Harshad Ravindra Velankar. Introduction of a Preconditioning Step Prior to Assisted Single-Step Acid Pretreatment Influences the Structural Integrity of Lignin in Rice Straw. Energy & Fuels 2020, 34 (6) , 7170-7182. https://doi.org/10.1021/acs.energyfuels.0c00967
    14. Ravinder Kumar, Vladimir Strezov, Tao Kan, Haftom Weldekidan, Jing He, Sayka Jahan. Investigating the Effect of Mono- and Bimetallic/Zeolite Catalysts on Hydrocarbon Production during Bio-oil Upgrading from Ex Situ Pyrolysis of Biomass. Energy & Fuels 2020, 34 (1) , 389-400. https://doi.org/10.1021/acs.energyfuels.9b02724
    15. Evan Terrell, Lauren D. Dellon, Anthony Dufour, Erika Bartolomei, Linda J. Broadbelt, Manuel Garcia-Perez. A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. Industrial & Engineering Chemistry Research 2020, 59 (2) , 526-555. https://doi.org/10.1021/acs.iecr.9b05744
    16. Hui Chen, Guihua Xu, Chunyue Xiao, Yadong Bi, Jianli Hu. Fast Pyrolysis of Organosolv Lignin: Effect of Adding Stabilization Reagents to the Extraction Process. Energy & Fuels 2019, 33 (9) , 8676-8682. https://doi.org/10.1021/acs.energyfuels.9b01486
    17. Melisa Nallar, Hsi-Wu Wong. Hydroxyl Group Stabilization for Increased Yields of Low-Molecular-Weight Products in the Copyrolysis of Cellulose and Thermoplastics. Industrial & Engineering Chemistry Research 2019, 58 (25) , 10776-10784. https://doi.org/10.1021/acs.iecr.9b01177
    18. Wei Yang, Munan Fang, Hao Xu, Hui Wang, Shengji Wu, Jie Zhou, Shouxin Zhu. Interactions between Holocellulose and Lignin during Hydrolysis of Sawdust in Subcritical Water. ACS Sustainable Chemistry & Engineering 2019, 7 (12) , 10583-10594. https://doi.org/10.1021/acssuschemeng.9b01127
    19. Zaikuan J. Yu, Mckay W. Easton, Priya Murria, Lan Xu, Duanchen Ding, Yuan Jiang, Jifa Zhang, Hilkka I. Kenttämaa. Molecular-Level Understanding of the Major Fragmentation Mechanisms of Cellulose Fast Pyrolysis: An Experimental Approach Based on Isotopically Labeled Model Compounds. The Journal of Organic Chemistry 2019, 84 (11) , 7037-7050. https://doi.org/10.1021/acs.joc.9b00723
    20. Xiaoxiao Yang, Yuying Zhao, Weipu Li, Rui Li, Yulong Wu. Unveiling the Pyrolysis Mechanisms of Hemicellulose: Experimental and Theoretical Studies. Energy & Fuels 2019, 33 (5) , 4352-4360. https://doi.org/10.1021/acs.energyfuels.9b00482
    21. Roberto Volpe, Anastasia A. Zabaniotou, Vasiliki Skoulou. Synergistic Effects between Lignin and Cellulose during Pyrolysis of Agricultural Waste. Energy & Fuels 2018, 32 (8) , 8420-8430. https://doi.org/10.1021/acs.energyfuels.8b00767
    22. Shilin Zhao, Meng Liu, Liang Zhao, Lingli Zhu. Influence of Interactions among Three Biomass Components on the Pyrolysis Behavior. Industrial & Engineering Chemistry Research 2018, 57 (15) , 5241-5249. https://doi.org/10.1021/acs.iecr.8b00593
    23. Michael O. Adenson, Jessica D. Murillo, Matthew Kelley, Joseph J. Biernacki, Clyde P. Bagley. Slow Pyrolysis Kinetics of Two Herbaceous Feedstock: Effect of Milling, Source, and Heating Rate. Industrial & Engineering Chemistry Research 2018, 57 (11) , 3821-3832. https://doi.org/10.1021/acs.iecr.7b04020
    24. Anqing Zheng, Tianju Chen, Jiangwei Sun, Liqun Jiang, Jinhu Wu, Zengli Zhao, Zhen Huang, Kun Zhao, Guoqiang Wei, Fang He, and Haibin Li . Toward Fast Pyrolysis-Based Biorefinery: Selective Production of Platform Chemicals from Biomass by Organosolv Fractionation Coupled with Fast Pyrolysis. ACS Sustainable Chemistry & Engineering 2017, 5 (8) , 6507-6516. https://doi.org/10.1021/acssuschemeng.7b00622
    25. Jing Zhang, Kwang Ho Kim, Yong S. Choi, Ali H. Motagamwala, James A. Dumesic, Robert C. Brown, and Brent H. Shanks . Comparison of Fast Pyrolysis Behavior of Cornstover Lignins Isolated by Different Methods. ACS Sustainable Chemistry & Engineering 2017, 5 (7) , 5657-5661. https://doi.org/10.1021/acssuschemeng.7b01393
    26. Xiaoyan Lv, Zhicheng Jiang, Jindong Li, Yue Wang, Dongmei Tong, and Changwei Hu . Low-Temperature Torrefaction of Phyllostachys heterocycla cv. pubescens: Effect of Two Torrefaction Procedures on the Composition of Bio-Oil Obtained. ACS Sustainable Chemistry & Engineering 2017, 5 (6) , 4869-4878. https://doi.org/10.1021/acssuschemeng.7b00283
    27. Wu-Jun Liu, Wen-Wei Li, Hong Jiang, and Han-Qing Yu . Fates of Chemical Elements in Biomass during Its Pyrolysis. Chemical Reviews 2017, 117 (9) , 6367-6398. https://doi.org/10.1021/acs.chemrev.6b00647
    28. Youping Zhou, Xijie Yin, Hubiao Yang, Jing Su, Huimin Yu, Yan Wang, Shuixiu Zhou, and Saša Zavadlav . Stable Isotopic Evidence for the Widespread Presence of Oxygen-Containing Chemical Linkages between α-Cellulose and Lignin in Poaceae (Gramineae) Grass Leaves. ACS Sustainable Chemistry & Engineering 2017, 5 (4) , 3250-3260. https://doi.org/10.1021/acssuschemeng.6b03075
    29. Wei Yang, Hui Wang, Jie Zhou, and Shengji Wu . Hydrolysis Kinetics and Structure Changes of Wood Meal in Subcritical Water. ACS Sustainable Chemistry & Engineering 2017, 5 (4) , 3544-3552. https://doi.org/10.1021/acssuschemeng.7b00300
    30. Calvin Mukarakate, Robert J. Evans, Steve Deutch, Tabitha Evans, Anne K. Starace, Jeroen ten Dam, Michael J. Watson, and Kim Magrini . Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels. Energy & Fuels 2017, 31 (2) , 1600-1607. https://doi.org/10.1021/acs.energyfuels.6b02463
    31. Shuai Zhou, Yuan Xue, Ashokkumar Sharma, and Xianglan Bai . Lignin Valorization through Thermochemical Conversion: Comparison of Hardwood, Softwood and Herbaceous Lignin. ACS Sustainable Chemistry & Engineering 2016, 4 (12) , 6608-6617. https://doi.org/10.1021/acssuschemeng.6b01488
    32. Yangyang Han, Xiaodong Wu, Xinxing Zhang, Zehang Zhou, and Canhui Lu . Dual Functional Biocomposites Based on Polydopamine Modified Cellulose Nanocrystal for Fe3+-Pollutant Detecting and Autoblocking. ACS Sustainable Chemistry & Engineering 2016, 4 (10) , 5667-5673. https://doi.org/10.1021/acssuschemeng.6b01567
    33. Anqing Zheng, Kun Zhao, Liqun Jiang, Zengli Zhao, Jiangwei Sun, Zhen Huang, Guoqiang Wei, Fang He, and Haibin Li . Bridging the Gap between Pyrolysis and Fermentation: Improving Anhydrosugar Production from Fast Pyrolysis of Agriculture and Forest Residues by Microwave-Assisted Organosolv Pretreatment. ACS Sustainable Chemistry & Engineering 2016, 4 (9) , 5033-5040. https://doi.org/10.1021/acssuschemeng.6b01416
    34. Rajneesh Kaushal, Sonam Sandhu, Sunil K. Sansaniwal. Advances in augmenting biogas generation for achieving sustainable development. International Journal of Ambient Energy 2024, 45 (1) https://doi.org/10.1080/01430750.2024.2304730
    35. Lutz Grossmann. Sustainable media feedstocks for cellular agriculture. Biotechnology Advances 2024, 73 , 108367. https://doi.org/10.1016/j.biotechadv.2024.108367
    36. Zhongye Li, Pankajkumar R. Waghmare, Lubbert Dijkhuizen, Xiangfeng Meng, Weifeng Liu. Research advances on the consolidated bioprocessing of lignocellulosic biomass. Engineering Microbiology 2024, 4 (2) , 100139. https://doi.org/10.1016/j.engmic.2024.100139
    37. Seth Kane, Sabbie A. Miller. Predicting biochar properties and pyrolysis life-cycle inventories with compositional modeling. Bioresource Technology 2024, 399 , 130551. https://doi.org/10.1016/j.biortech.2024.130551
    38. Luiz Marcelo Ribeiro Tomé, Mariana Teixeira Dornelles Parise, Doglas Parise, Vasco Ariston de Carvalho Azevedo, Bertram Brenig, Fernanda Badotti, Aristóteles Góes-Neto. Pure lignin induces overexpression of cytochrome P450 (CYP) encoding genes and brings insights into the lignocellulose depolymerization by Trametes villosa. Heliyon 2024, 10 (7) , e28449. https://doi.org/10.1016/j.heliyon.2024.e28449
    39. Yunfei Zhang, Changyong Cai, Ke Xu, Xiao Yang, Leixiao Yu, Lingyan Gao, Shengyi Dong. A supramolecular approach for converting renewable biomass into functional materials. Materials Horizons 2024, 11 (5) , 1315-1324. https://doi.org/10.1039/D3MH01692G
    40. Hao Liu, Mi Li, Shuna Zhao, Lin Jiang, Qiang Xu, Andrea Majlingová. Applications of distributed activation energy model on the pyrolysis of green renewable wood. Fuel 2024, 359 , 130457. https://doi.org/10.1016/j.fuel.2023.130457
    41. Kai Wu, Zhenting Zha, Ke Yang, Han Wu, Chenyang Chu, Mingfan Li, Bingbing Luo, Siyu Wang, Huiyan Zhang. Thermal behavior and production distributions of organosolv-phase oxidization pretreatment of biomass coupled with fast pyrolysis. Energy 2024, 291 , 130359. https://doi.org/10.1016/j.energy.2024.130359
    42. Zhengyang E, Jianjun Liang, Ping Li, Shirong Qiang, Qiaohui Fan. A review on photocatalytic attribution and process of pyrolytic biochar in environment. Water Research 2024, 251 , 120994. https://doi.org/10.1016/j.watres.2023.120994
    43. Arul Mozhi Devan Padmanathan, Seth Beck, Khursheed B. Ansari, Samir H. Mushrif. Impact of lignin–carbohydrate complex (LCC) linkages on cellulose pyrolysis chemistry. Energy Advances 2024, 3 (2) , 515-528. https://doi.org/10.1039/D3YA00427A
    44. Rongge Zou, Xu Zhou, Moriko Qian, Chenxi Wang, Dorin Boldor, Hanwu Lei, Xiao Zhang. Advancements and applications of microwave-assisted deep eutectic solvent (MW-DES) lignin extraction: a comprehensive review. Green Chemistry 2024, 26 (3) , 1153-1169. https://doi.org/10.1039/D3GC04501C
    45. Shipeng Zhang, Yanyang Mei, Guiying Lin. Pyrolysis interaction of cellulose, hemicellulose and lignin studied by TG-DSC-MS. Journal of the Energy Institute 2024, 112 , 101479. https://doi.org/10.1016/j.joei.2023.101479
    46. Bin Hu, Ji Liu, Wen-luan Xie, Yang Li, Qiang Lu. Biofuels production using pyrolysis techniques. 2024, 103-125. https://doi.org/10.1016/B978-0-323-95076-3.00010-7
    47. Mian Xu, Xianqing Zhu, Yiming Lai, Ao Xia, Yun Huang, Xun Zhu, Qiang Liao. Production of hierarchical porous bio‑carbon based on deep eutectic solvent fractionated lignin nanoparticles for high-performance supercapacitor. Applied Energy 2024, 353 , 122095. https://doi.org/10.1016/j.apenergy.2023.122095
    48. Hanfei Ye, Wenwen Yu. Different influences of dietary fiber from various sources on the in vitro digestibility of casein as uncovered by the study of protein-dietary fiber interactions. Food Research International 2024, 176 , 113845. https://doi.org/10.1016/j.foodres.2023.113845
    49. Xumeng Ge, Rahamat Ullah Tanvir, Zhiqiang Hu, Amro Hassanein, Stephanie Lansing, Zhongtang Yu, Hao Luo, Zhi-Wu Wang, Caixia Wan, Liangcheng Yang, Samir Kumar Khanal, Yebo Li. Rethinking anaerobic digestion for bioenergy and biopolymers production: Challenges and opportunities. 2024https://doi.org/10.1016/bs.aibe.2024.01.001
    50. Georgios Iakovou, Dimitris Ipsakis, Konstantinos S. Triantafyllidis. Kraft lignin fast (catalytic) pyrolysis for the production of high value-added chemicals (HVACs): A techno-economic screening of valorization pathways. Environmental Research 2024, 34 , 118205. https://doi.org/10.1016/j.envres.2024.118205
    51. Chao Chen, Kang Sun, Chen Huang, Mengmei Yang, Mengmeng Fan, Ao Wang, Gaoyue Zhang, Bei Li, Jianchun Jiang, Wei Xu, Junli Liu. Investigation on the mechanism of structural reconstruction of biochars derived from lignin and cellulose during graphitization under high temperature. Biochar 2023, 5 (1) https://doi.org/10.1007/s42773-023-00229-7
    52. Erwei Leng, Yi He, Yuan Xue, Lijian Leng, Honghao He. Interactions between cellulose and lignin during pyrolysis: Evolutions of condensed-phase functional groups and gas-phase volatile fraction. Industrial Crops and Products 2023, 205 , 117518. https://doi.org/10.1016/j.indcrop.2023.117518
    53. Fuat Sakirler, M. Doga Tekbas, Hsi-Wu Wong. Molten plastic induced noncovalent interactions for tunable cellulose fast pyrolysis. Green Chemistry 2023, 25 (23) , 10010-10019. https://doi.org/10.1039/D3GC01312J
    54. David Hentges, Philippe Gérardin, Pierre Vinchelin, Stéphane Dumarçay. Use of Pyrolysis–Gas Chromatography/Mass Spectrometry as a Tool to Study the Natural Variation in Biopolymers in Different Tissues of Economically Important European Softwood Species. Polymers 2023, 15 (21) , 4270. https://doi.org/10.3390/polym15214270
    55. Mohammad Rahimi, Hossein Mashhadimoslem, Hung Vo Thanh, Benyamin Ranjbar, Mobin Safarzadeh Khosrowshahi, Abbas Rohani, Ali Elkamel. Yield prediction and optimization of biomass-based products by multi-machine learning schemes: Neural, regression and function-based techniques. Energy 2023, 283 , 128546. https://doi.org/10.1016/j.energy.2023.128546
    56. Gregory Albornoz-Palma, Isidora Ortega-Sanhueza, Roberto Teruel-Juanes, Sergio Henríquez-Gallegos, Amparo Ribes-Greus, Miguel Pereira. Effect of lignin on the morphological, rheological, and dielectric characteristics of lignocellulose nanofibrils from Pinus radiata. Industrial Crops and Products 2023, 204 , 117323. https://doi.org/10.1016/j.indcrop.2023.117323
    57. Weixian Wang, Yang Xu, Baoping Zhu, Hanwen Ge, Shenglin Wang, Bin Li, Huanfei Xu. Exploration of the interaction mechanism of lignocellulosic hybrid systems based on deep eutectic solvents. Bioresource Technology 2023, 385 , 129401. https://doi.org/10.1016/j.biortech.2023.129401
    58. Nikita O. Burov, Vsevolod D. Savelenko, Mikhail A. Ershov, Anastasia O. Vikhritskaya, Ekaterina O. Tikhomirova, Nikita A. Klimov, Vladimir M. Kapustin, Elena A. Chernysheva, Alexander V. Sereda, Tamer M.M. Abdellatief, Mohamad Ramadan, Mohammad Ali Abdelkareem. Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass. Renewable Energy 2023, 215 , 118898. https://doi.org/10.1016/j.renene.2023.06.019
    59. Yipeng Chen, Baokang Dang, Chao Wang, Yuanyuan Wang, Yushan Yang, Ming Liu, Hongjie Bi, Dan Sun, Yingying Li, Jian Li, Xiaoping Shen, Qingfeng Sun. Intelligent designs from nature: Biomimetic applications in wood technology. Progress in Materials Science 2023, 139 , 101164. https://doi.org/10.1016/j.pmatsci.2023.101164
    60. Arul Mozhi Devan Padmanathan, Rahul Vaidya, Samir H. Mushrif. Does the presence of lignin affect the pyrolytic decomposition of cellulose? A condensed phase computational investigation. Sustainable Energy & Fuels 2023, 7 (15) , 3660-3674. https://doi.org/10.1039/D3SE00379E
    61. Gregory Albornoz-Palma, Isidora Ortega-Sanhueza, Roberto Teruel-Juanes, Sergio Henríquez-Gallegos, Amparo Ribes-Greus, Miguel Pereira. Understanding the effect of lignin on the production process and characteristics of lignocellulose nanofibrils from Eucalyptus nitens. Cellulose 2023, 30 (11) , 6811-6831. https://doi.org/10.1007/s10570-023-05299-1
    62. Ajay Sharma, A. Aravind Kumar, Bikash Mohanty, Ashish N. Sawarkar. Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis. Renewable Energy 2023, 210 , 321-334. https://doi.org/10.1016/j.renene.2023.04.066
    63. Heitor Luiz Ornaghi, Francisco M. Monticeli, Roberta Motta Neves, Lucas Dall Agnol, Otavio Bianchi. Influence of different cellulose/hemicellulose/lignin ratios on the thermal degradation behavior: prediction and optimization. Biomass Conversion and Biorefinery 2023, 13 (9) , 7775-7782. https://doi.org/10.1007/s13399-021-01651-2
    64. Han Zhang, Ming Liu, Yang Yang, Wei Chen, Jinjiao Zhu, Shihong Zhang, Haiping Yang, Hanping Chen, Yingquan Chen. Mechanism study on the interaction between holocellulose and lignin during secondary pyrolysis of biomass: In terms of molecular model compounds. Fuel Processing Technology 2023, 244 , 107701. https://doi.org/10.1016/j.fuproc.2023.107701
    65. Jie Yu, Xiaotian Liu, Marcos Millan. A study on pyrolysis of wood of different sizes at various temperatures and pressures. Fuel 2023, 342 , 127846. https://doi.org/10.1016/j.fuel.2023.127846
    66. Leszek Marynowski, Magdalena Goryl, Małgorzata Lempart-Drozd, Michał Bucha, Marcin Majewski, Marcin Stępień, Robert Loręc, Jochen Brocks, Bernd R.T. Simoneit. Differences in hemicellulose composition and pectin detection in Eocene and Miocene xylites. Chemical Geology 2023, 624 , 121416. https://doi.org/10.1016/j.chemgeo.2023.121416
    67. Wei Yang, Fan Yang, Xu Zhang, Pengfei Zhu, Huanghu Peng, Zezhou Chen, Lei Che, Shouxin Zhu, Shengji Wu. Investigation of holocellulose-lignin interactions during pyrolysis of wood meal by TGA-FTIR. Biomass Conversion and Biorefinery 2023, 13 (5) , 3731-3740. https://doi.org/10.1007/s13399-021-01455-4
    68. Jianfeng Zou, Hangli Hu, Yingkai Li, Hessam Jahangiri, Fang He, Xingguang Zhang, Md Maksudur Rahman, Junmeng Cai. Complementary use of generalized logistic mixture model and distributed activation energy model in exploring kinetic mechanisms of wheat straw and torrefied rice husk pyrolysis. Journal of Cleaner Production 2023, 397 , 136560. https://doi.org/10.1016/j.jclepro.2023.136560
    69. Ning Nie, Yinuo Wang, Dominic Yellezuome, Xiaojie Liu, Pengxiao Wang, Xiaoya Wang, Congbin Zhu, Jinbin Xiao, Junmeng Cai. Exploring kinetic and thermodynamic mechanisms of switchgrass pyrolysis using iterative linear integral isoconversional method and master plots approach. Fuel 2023, 338 , 127266. https://doi.org/10.1016/j.fuel.2022.127266
    70. Kui Wang, Jefferson William Tester. Sustainable management of unavoidable biomass wastes. Green Energy and Resources 2023, 1 (1) , 100005. https://doi.org/10.1016/j.gerr.2023.100005
    71. Susi Susi, Makhmudun Ainuri, Wagiman Wagiman, Mohammad Affan Fajar Falah, . High-Yield Alpha-Cellulose from Oil Palm Empty Fruit Bunches by Optimizing Thermochemical Delignification Processes for Use as Microcrystalline Cellulose. International Journal of Biomaterials 2023, 2023 , 1-15. https://doi.org/10.1155/2023/9169431
    72. Ajay Kumar, Arvind Singh Chauhan, Rohit Bains, Pralay Das. Catalytic transformations for agro-waste conversion to 5-hydroxymethylfurfural and furfural: Chemistry and scale-up development. Green Chemistry 2023, 25 (3) , 849-870. https://doi.org/10.1039/D2GC03999K
    73. Weiyang Fu, Zhuofei Li, Jie Han, Zhengping Zhang, Feng Wang. Inspired by plants: Carbonization mechanism, micro architecture and electrochemical applications of corn stalks. Carbon 2023, 204 , 516-525. https://doi.org/10.1016/j.carbon.2022.12.067
    74. Diyan Qin, Yancheng Liu, Ruofeng Yang, Jianmei Li, Changwei Hu. Complete Low‐Temperature Transformation and Dissolution of the Three Main Components in Corn Straw. ChemistryOpen 2023, 12 (2) https://doi.org/10.1002/open.202200247
    75. Marcin Bielecki, Valentina Zubkova. Analysis of Interactions Occurring during the Pyrolysis of Lignocellulosic Biomass. Molecules 2023, 28 (2) , 506. https://doi.org/10.3390/molecules28020506
    76. Juping Liu, Xu Chen, Wei Chen, Mingwei Xia, Yingquan Chen, Hanping Chen, Kuo Zeng, Haiping Yang. Biomass pyrolysis mechanism for carbon-based high-value products. Proceedings of the Combustion Institute 2023, 39 (3) , 3157-3181. https://doi.org/10.1016/j.proci.2022.09.063
    77. Sakib Hossain Khan, Md Zillur Rahman, Mohammad Rejaul Haque, Md Enamul Hoque. Characterization and Comparative Evaluation of Structural, Chemical, Thermal, Mechanical, and Morphological Properties of Plant Fibers. 2023, 1-45. https://doi.org/10.1007/978-981-99-2473-8_1
    78. Rishikesh Kumar Singh, Suneerat Fukuda, Shurong Wang. INFLUENCE OF BIOMASS PRETREATMENT ON SUBSEQUENT PYROLYSIS AND HYDRODEOXYGENATION IN BIO-BASED TRANSPORT FUELS AND CHEMICALS PRODUCTION: A CRITICAL REVIEW. International Journal of Energy for a Clean Environment 2023, 24 (7) , 59-114. https://doi.org/10.1615/InterJEnerCleanEnv.2022044290
    79. Mateusz Samoraj, Agnieszka Dmytryk, Łukasz Tuhy, Anna Zdunek, Piotr Rusek, Konstantinos Moustakas, Katarzyna Chojnacka. Applicability of alfalfa and goldenrod residues after supercritical CO2 extraction to plant micronutrient biosorption and renewable energy production. Energy 2023, 262 , 125437. https://doi.org/10.1016/j.energy.2022.125437
    80. Qing Wang, Shipeng Sun, Chunlei Wu, Baizhong Sun. Kinetic study on flue gas torrefaction of real components of corn stalk. Thermochimica Acta 2023, 719 , 179406. https://doi.org/10.1016/j.tca.2022.179406
    81. Bin Hu, Zhen-xi Zhang, Wen-luan Xie, Ji Liu, Yang Li, Wen-ming Zhang, Hao Fu, Qiang Lu. Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds. Fuel Processing Technology 2022, 237 , 107465. https://doi.org/10.1016/j.fuproc.2022.107465
    82. Edi Syafri, Jamaluddin, Harmailis, Sudirman Umar, Melbi Mahardika, Devita Amelia, Reni Mayerni, Sanjay Mavinkere Rangappa, Suchart Siengchin, Tariq Rashad Sobahi, Anish Khan, Abdullah M. Asiri. Isolation and Characterization of New Cellulosic Microfibers from Pandan Duri ( Pandanus Tectorius ) for Sustainable Environment. Journal of Natural Fibers 2022, 19 (16) , 12924-12934. https://doi.org/10.1080/15440478.2022.2079582
    83. Heitor Ornaghi, Roberta Motta Neves, Francisco Monticeli, Otavio Bianchi. Pyrolysis Decomposition Kinetics of Microcrystalline Cellulose and Curaua Fiber: Insight of Reaction Models by Using Vyazovkin Method. Journal of Natural Fibers 2022, 19 (16) , 13711-13724. https://doi.org/10.1080/15440478.2022.2105466
    84. Junrui Duan, Haowei Hu, Jie Ji. Mechanism study on arabinose pyrolysis by combining TG-FTIR-GC–MS and theoretical calculations. Combustion and Flame 2022, 245 , 112352. https://doi.org/10.1016/j.combustflame.2022.112352
    85. Garba Kabir, Isah Yakub Mohammed, Yousif Abdalla Abakr, Bassim H. Hameed. Intermediate Pyrolysis of Desert Date Shell for Conversion to High‐Quality Biomaterial Resources. Chemical Engineering & Technology 2022, 45 (11) , 1998-2007. https://doi.org/10.1002/ceat.202200095
    86. Haipeng Yu, Fan Zhang, Linghao Li, Hong Wang, Zhiwen Jia, Yan Sun, Enchen Jiang, Xiwei Xu. Promotion of biomass pyrolytic saccharification and lignin depolymerization via nucleophilic reagents quenching of the carbonium ions. Bioresource Technology 2022, 363 , 127876. https://doi.org/10.1016/j.biortech.2022.127876
    87. A.A. Azahar, M.D. Nurhafizah, M.R. Omar, N. Abdullah, A. Ul-Hamid. Bio-graphene production from oil palm shell waste valorised through sequential thermal and catalytic means. Carbon Trends 2022, 9 , 100225. https://doi.org/10.1016/j.cartre.2022.100225
    88. Ruhua Zha, Tuo Shi, Liu He, Min Zhang. Nanoengineering and green chemistry-oriented strategies toward nanocelluloses for protein sensing. Advances in Colloid and Interface Science 2022, 308 , 102758. https://doi.org/10.1016/j.cis.2022.102758
    89. Yingchuan Zhang, Weiting Xu, Nianfang Ma, Yu Shen, Feixiang Xu, Yitong Wang, Nannan Wu, Zhengxiao Guo, Liqun Jiang. Revealing the key role of structural cross-link between lignin and polysaccharides during fast pyrolysis of lignocellulose. Bioresource Technology 2022, 361 , 127714. https://doi.org/10.1016/j.biortech.2022.127714
    90. Zhi Xu, Zhaohui Guo, Huimin Xie, Yulian Hu. Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components. International Journal of Environmental Research and Public Health 2022, 19 (15) , 8953. https://doi.org/10.3390/ijerph19158953
    91. Honggang Fan, Jing Gu, Yazhuo Wang, Haoran Yuan, Yong Chen. Kinetics modeling of co-pyrolytic decomposition of binary system of cellulose, xylan and lignin. Journal of the Energy Institute 2022, 102 , 278-288. https://doi.org/10.1016/j.joei.2022.03.012
    92. Yi Wang, Abdolhamid Akbarzadeh, Li Chong, Jinyu Du, Nadeem Tahir, Mukesh Kumar Awasthi. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Chemosphere 2022, 297 , 134181. https://doi.org/10.1016/j.chemosphere.2022.134181
    93. Kobra Rahbar-Shamskar, Alimorad Rashidi, Sahar Baniyaghoob, Saeed Khodabakhshi. In-situ catalytic fast pyrolysis of reed as a sustainable method for production of porous carbon as VOCs adsorbents. Journal of Analytical and Applied Pyrolysis 2022, 164 , 105520. https://doi.org/10.1016/j.jaap.2022.105520
    94. Xueping Song, Siyu Zhao, Ying Xu, Xinrui Chen, Shuangfei Wang, Peitao Zhao, Yunqiao Pu, Arthur J. Ragauskas. Preparation, Properties, and Application of Lignocellulosic‐Based Fluorescent Carbon Dots. ChemSusChem 2022, 15 (8) https://doi.org/10.1002/cssc.202102486
    95. Mengzhu Li, Ting Wang, Mengyun Zhao, Yifan Wang. Research on hydrogen production and degradation of corn straw by circular electrolysis with polyoxometalate (POM) catalyst. International Journal of Hydrogen Energy 2022, 47 (34) , 15357-15369. https://doi.org/10.1016/j.ijhydene.2021.11.111
    96. Jianfeng Zou, Hangli Hu, Yuan Xue, Chong Li, Yingkai Li, Dominic Yellezuome, Fang He, Xingguang Zhang, Md. Maksudur Rahman, Junmeng Cai. Exploring kinetic mechanisms of biomass pyrolysis using generalized logistic mixture model. Energy Conversion and Management 2022, 258 , 115522. https://doi.org/10.1016/j.enconman.2022.115522
    97. Eren Yücedağ, Halil Durak. Bio-oil and bio-char from lactuca scariola: significance of catalyst and temperature for assessing yield and quality of pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022, 44 (1) , 1774-1787. https://doi.org/10.1080/15567036.2019.1645765
    98. Yingchuan Zhang, Feixiang Xu, Fenglin Chen, Yanru Zhang, Yaxiang Wu, Liqun Jiang. Dual Utilization of Lignocellulose Biomass and Glycerol Waste to Produce Fermentable Levoglucosan via Fast Pyrolysis. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.847767
    99. Sasha Yang, Lei Shi, Qiaoqiao Zhou, Binbin Qian, Anthony De Girolamo, Lian Zhang. Elucidating the synergistic interaction and reaction pathway between the individual lignocellulosic components during flash pyrolysis. Chemical Engineering Journal 2022, 432 , 134372. https://doi.org/10.1016/j.cej.2021.134372
    100. Nancy Chen, Srikanth Pilla. A comprehensive review on transforming lignocellulosic materials into biocarbon and its utilization for composites applications.. Composites Part C: Open Access 2022, 7 , 100225. https://doi.org/10.1016/j.jcomc.2021.100225
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect