Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Cytochrome P450 3A4-Mediated Bioactivation of Raloxifene:  Irreversible Enzyme Inhibition and Thiol Adduct Formation
My Activity

Figure 1Loading Img
    Article

    Cytochrome P450 3A4-Mediated Bioactivation of Raloxifene:  Irreversible Enzyme Inhibition and Thiol Adduct Formation
    Click to copy article linkArticle link copied!

    View Author Information
    Departments of Drug Metabolism and Medicinal Chemistry, Merck Research Laboratories, Rahway, New Jersey 07065
    Other Access Options

    Chemical Research in Toxicology

    Cite this: Chem. Res. Toxicol. 2002, 15, 7, 907–914
    Click to copy citationCitation copied!
    https://doi.org/10.1021/tx0200109
    Published June 7, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Raloxifene is a selective estrogen receptor modulator which is effective in the treatment of osteoporosis in postmenopausal women. We report herein that cytochrome P450 (P450)3A4 is inhibited by raloxifene in human liver microsomal incubations. The nature of the inhibition was irreversible and was NADPH- and preincubation time-dependent, with KI and kinact values estimated at 9.9 μM and 0.16 min-1, respectively. The observed loss of P450 3A4 activity was attenuated partially by glutathione (GSH), implying the involvement of a reactive metabolite(s) in the inactivation process. Subsequently, GSH adducts of raloxifene were identified in incubations with human liver microsomes; substitution with GSH occurred at the 5- or 7-position of the benzothiophene moiety or at the 3‘-position of the phenol ring, with the 7-glutathionyl derivative being most abundant based on LC/MS and NMR analyses. These adducts are postulated to derive from addition of GSH to raloxifene arene oxides followed by dehydration and aromatization. Alternatively, raloxifene may be oxidized to an extended quinone intermediate, which then is trapped by GSH conjugation. The bioactivation of raloxifene most likely is catalyzed by P450 3A4, since the formation of GSH adducts was almost abolished when liver microsomes were pretreated with ketoconazole or with an inhibitory anti-P450 3A4 IgG. The GSH adducts also were detected in incubations of raloxifene with rat or human hepatocytes, while the corresponding N-acetylcysteine adducts were identified in the bile and urine from rats treated orally with the drug at 5 mg/kg. Taken together, these data indicate that P450 3A4-mediated bioactivation of raloxifene in vitro is accompanied by loss of enzyme activity. The significance of these findings with respect to the clinical use of raloxifene remains to be determined.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Drug Metabolism.

     Department of Medicinal Chemistry.

    *

     Correspondence should be addressed to this author at the Department of Drug Metabolism, Merck & Co., P.O. Box 2000, RY800-B211, Rahway, NJ 07065. Tel:  (732) 594-4501; Fax:  (732) 594-4820.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 123 publications.

    1. Yang Zhou, Junhao Li, Glib Baryshnikov, Yaoquan Tu. Unraveling the Abnormal Molecular Mechanism of Suicide Inhibition of Cytochrome P450 3A4. Journal of Chemical Information and Modeling 2022, 62 (23) , 6172-6181. https://doi.org/10.1021/acs.jcim.2c01035
    2. Michael Riffle, Michael R. Hoopmann, Daniel Jaschob, Guo Zhong, Robert L. Moritz, Michael J. MacCoss, Trisha N. Davis, Nina Isoherranen, Alex Zelter. Discovery and Visualization of Uncharacterized Drug–Protein Adducts Using Mass Spectrometry. Analytical Chemistry 2022, 94 (8) , 3501-3509. https://doi.org/10.1021/acs.analchem.1c04101
    3. Amit S. Kalgutkar. Designing around Structural Alerts in Drug Discovery. Journal of Medicinal Chemistry 2020, 63 (12) , 6276-6302. https://doi.org/10.1021/acs.jmedchem.9b00917
    4. Ivana Klopčič, Marija Sollner Dolenc. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites. Chemical Research in Toxicology 2019, 32 (1) , 1-34. https://doi.org/10.1021/acs.chemrestox.8b00213
    5. Judy L. Bolton and Tareisha Dunlap . Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chemical Research in Toxicology 2017, 30 (1) , 13-37. https://doi.org/10.1021/acs.chemrestox.6b00256
    6. Rasmus Leth, Patrik Rydberg, Flemming Steen Jørgensen, and Lars Olsen . Density Functional Theory Study on the Formation of Reactive Benzoquinone Imines by Hydrogen Abstraction. Journal of Chemical Information and Modeling 2015, 55 (3) , 660-666. https://doi.org/10.1021/ci500653b
    7. Ying Li, George A. Doss, Yan Li, Qing Chen, Wei Tang, and Zhoupeng Zhang . In Vitro Bioactivation of a Selective Estrogen Receptor Modulator (2S,3R)-(+)-3-(3-Hydroxyphenyl)-2-[4-(2-pyrrolidin-1-ylethoxy)phenyl]-2,3-dihydro-1,4-benzoxathiin-6-ol (I) in Liver Microsomes: Formation of Adenine Adducts. Chemical Research in Toxicology 2012, 25 (11) , 2368-2377. https://doi.org/10.1021/tx3002466
    8. Bradley T. Michalsen, Teshome B. Gherezghiher, Jaewoo Choi, R. Esala P. Chandrasena, Zhihui Qin, Gregory R. J. Thatcher, and Judy L. Bolton . Selective Estrogen Receptor Modulator (SERM) Lasofoxifene Forms Reactive Quinones Similar to Estradiol. Chemical Research in Toxicology 2012, 25 (7) , 1472-1483. https://doi.org/10.1021/tx300142h
    9. Suvi T. M. Orr, Sharon L. Ripp, T. Eric Ballard, Jaclyn L. Henderson, Dennis O. Scott, R. Scott Obach, Hao Sun, and Amit S. Kalgutkar . Mechanism-Based Inactivation (MBI) of Cytochrome P450 Enzymes: Structure–Activity Relationships and Discovery Strategies To Mitigate Drug–Drug Interaction Risks. Journal of Medicinal Chemistry 2012, 55 (11) , 4896-4933. https://doi.org/10.1021/jm300065h
    10. Antonia F. Stepan, Daniel P. Walker, Jonathan Bauman, David A. Price, Thomas A. Baillie, Amit S. Kalgutkar, and Michael D. Aleo . Structural Alert/Reactive Metabolite Concept as Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxicity: A Perspective Based on the Critical Examination of Trends in the Top 200 Drugs Marketed in the United States. Chemical Research in Toxicology 2011, 24 (9) , 1345-1410. https://doi.org/10.1021/tx200168d
    11. Chad D. Moore, Kiumars Shahrokh, Stephen F. Sontum, Thomas E. Cheatham, III, and Garold S. Yost . Improved Cytochrome P450 3A4 Molecular Models Accurately Predict the Phe215 Requirement for Raloxifene Dehydrogenation Selectivity. Biochemistry 2010, 49 (41) , 9011-9019. https://doi.org/10.1021/bi101139q
    12. Amit S. Kalgutkar, David A. Griffith, Tim Ryder, Hao Sun, Zhuang Miao, Jonathan N. Bauman, Mary T. Didiuk, Kosea S. Frederick, Sabrina X. Zhao, Chandra Prakash, John R. Soglia, Scott W. Bagley, Bruce M. Bechle, Ryan M. Kelley, Kenneth Dirico, Michael Zawistoski, Jianke Li, Robert Oliver, Angel Guzman-Perez, Kevin K. C. Liu, Daniel P. Walker, John W. Benbow and Joel Morris. Discovery Tactics To Mitigate Toxicity Risks Due to Reactive Metabolite Formation with 2-(2-Hydroxyaryl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one Derivatives, Potent Calcium-Sensing Receptor Antagonists and Clinical Candidate(s) for the Treatment of Osteoporosis. Chemical Research in Toxicology 2010, 23 (6) , 1115-1126. https://doi.org/10.1021/tx100137n
    13. Chad D. Moore, Christopher A. Reilly and Garold S. Yost . CYP3A4-Mediated Oxygenation versus Dehydrogenation of Raloxifene. Biochemistry 2010, 49 (21) , 4466-4475. https://doi.org/10.1021/bi902213r
    14. Besnik Bajrami, Linlin Zhao, John B. Schenkman and James F. Rusling. Rapid LC-MS Drug Metabolite Profiling Using Microsomal Enzyme Bioreactors in a Parallel Processing Format. Analytical Chemistry 2009, 81 (24) , 9921-9929. https://doi.org/10.1021/ac9015853
    15. Jinping Gan, Qian Ruan, Bing He, Mingshe Zhu, Wen C. Shyu and W. Griffith Humphreys. In Vitro Screening of 50 Highly Prescribed Drugs for Thiol Adduct Formation—Comparison of Potential for Drug-Induced Toxicity and Extent of Adduct Formation. Chemical Research in Toxicology 2009, 22 (4) , 690-698. https://doi.org/10.1021/tx800368n
    16. Bolan Yu, Zhihui Qin, Gihani T. Wijewickrama, Praneeth Edirisinghe, Judy L. Bolton and Gregory R. J. Thatcher. Comparative Methods for Analysis of Protein Covalent Modification by Electrophilic Quinoids Formed from Xenobiotics. Bioconjugate Chemistry 2009, 20 (4) , 728-741. https://doi.org/10.1021/bc800435m
    17. Jonathon N. Bauman, Joan M. Kelly, Sakambari Tripathy, Sabrina X. Zhao, Wing W. Lam, Amit S. Kalgutkar and R. Scott Obach. Can In Vitro Metabolism-Dependent Covalent Binding Data Distinguish Hepatotoxic from Nonhepatotoxic Drugs? An Analysis Using Human Hepatocytes and Liver S-9 Fraction. Chemical Research in Toxicology 2009, 22 (2) , 332-340. https://doi.org/10.1021/tx800407w
    18. Deepak Dalvie, Ping Kang, Michael Zientek, Cathie Xiang, Sue Zhou and R. Scott Obach. Effect of Intestinal Glucuronidation in Limiting Hepatic Exposure and Bioactivation of Raloxifene in Humans and Rats. Chemical Research in Toxicology 2008, 21 (12) , 2260-2271. https://doi.org/10.1021/tx800323w
    19. R. Scott Obach, Amit S. Kalgutkar, John R. Soglia and Sabrina X. Zhao. Can In Vitro Metabolism-Dependent Covalent Binding Data in Liver Microsomes Distinguish Hepatotoxic from Nonhepatotoxic Drugs? An Analysis of 18 Drugs with Consideration of Intrinsic Clearance and Daily Dose. Chemical Research in Toxicology 2008, 21 (9) , 1814-1822. https://doi.org/10.1021/tx800161s
    20. J. Matthew Hutzler, Roger J. Melton, Jeanne M. Rumsey, David C. Thompson, Dan A. Rock, and Larry C. Wienkers . Assessment of the Metabolism and Intrinsic Reactivity of a Novel Catechol Metabolite. Chemical Research in Toxicology 2008, 21 (5) , 1125-1133. https://doi.org/10.1021/tx700429v
    21. Michael D. Mitchell, Mollisa M. Elrick, Jennie L. Walgren, Richard A. Mueller, Dale L. Morris and David C. Thompson. Peptide-Based In Vitro Assay for the Detection of Reactive Metabolites. Chemical Research in Toxicology 2008, 21 (4) , 859-868. https://doi.org/10.1021/tx700344m
    22. Paul F. Hollenberg, Ute M. Kent and Namandjé N. Bumpus. Mechanism-Based Inactivation of Human Cytochromes P450s: Experimental Characterization, Reactive Intermediates, and Clinical Implications. Chemical Research in Toxicology 2008, 21 (1) , 189-205. https://doi.org/10.1021/tx7002504
    23. Matthew G. McDonald and Allan E. Rettie. Sequential Metabolism and Bioactivation of the Hepatotoxin Benzbromarone: Formation of Glutathione Adducts From a Catechol Intermediate. Chemical Research in Toxicology 2007, 20 (12) , 1833-1842. https://doi.org/10.1021/tx7001228
    24. Josh T. Pearson, Jan L. Wahlstrom, Leslie J. Dickmann, Santosh Kumar, James R. Halpert, Larry C. Wienkers, Robert S. Foti and Dan A. Rock. Differential Time-Dependent Inactivation of P450 3A4 and P450 3A5 by Raloxifene: A Key Role for C239 in Quenching Reactive Intermediates. Chemical Research in Toxicology 2007, 20 (12) , 1778-1786. https://doi.org/10.1021/tx700207u
    25. Hong Liu, Zhihui Qin, Gregory R. J. Thatcher and Judy L. Bolton. Uterine Peroxidase-Catalyzed Formation of Diquinone Methides from the Selective Estrogen Receptor Modulators Raloxifene and Desmethylated Arzoxifene. Chemical Research in Toxicology 2007, 20 (11) , 1676-1684. https://doi.org/10.1021/tx7001367
    26. Hideo Yukinaga, Tomonori Takami, Sho-hei Shioyama, Zenzaburo Tozuka, Hiroshi Masumoto, Osamu Okazaki and Ken-ichi Sudo. Identification of Cytochrome P450 3A4 Modification Site with Reactive Metabolite Using Linear Ion Trap-Fourier Transform Mass Spectrometry. Chemical Research in Toxicology 2007, 20 (10) , 1373-1378. https://doi.org/10.1021/tx700165q
    27. Ming Yao, Nian Tong, Rahul Baghla, Qian Ruan. Advancing structural elucidation of conjugation drug metabolites in metabolite profiling with novel electron‐activated dissociation. Rapid Communications in Mass Spectrometry 2024, 38 (20) https://doi.org/10.1002/rcm.9890
    28. Slobodan P. Rendic, F. Peter Guengerich. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Archives of Toxicology 2024, 98 (6) , 1581-1628. https://doi.org/10.1007/s00204-024-03710-9
    29. Cui Li, Xiaokun Li, Ali Fan, Ning He, Dongmei Wu, Hongyan Yu, Kun Wang, Weijie Jiao, Xu Zhao. Evidence for cytochrome P450 3A4‐mediated metabolic activation of SCO‐267. Biopharmaceutics & Drug Disposition 2024, 45 (1) , 30-42. https://doi.org/10.1002/bdd.2381
    30. Chunyong He, Yuchang Mao, Hong Wan. Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Discovery Today 2023, 28 (7) , 103621. https://doi.org/10.1016/j.drudis.2023.103621
    31. R. Scott Obach, Amit S. Kalgutkar. Reactive Electrophiles and Metabolic Activation. 2023https://doi.org/10.1016/B978-0-323-95488-4.00018-8
    32. MARK P. GRILLO. Chemical Mechanisms in Toxicology. 2022, 703-743. https://doi.org/10.1002/9781119851042.ch21
    33. DAN A. ROCK, LARRY C. WIENKERS. Characterization of Cytochrome P450 Mechanism Based Inhibition. 2022, 465-526. https://doi.org/10.1002/9781119851042.ch15
    34. Kasim Ali, Prajjval Mishra, Awnish Kumar, Damodara N Reddy, Sushobhan Chowdhury, Gautam Panda. Reactivity vs. selectivity of quinone methides: synthesis of pharmaceutically important molecules, toxicity and biological applications. Chemical Communications 2022, 58 (42) , 6160-6175. https://doi.org/10.1039/D2CC00838F
    35. Amit S. Kalgutkar. Reactive Metabolites. 2021, 314-330. https://doi.org/10.1039/9781788016414-00314
    36. Slobodan P. Rendic, F. Peter Guengerich. Human Family 1–4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Archives of Toxicology 2021, 95 (2) , 395-472. https://doi.org/10.1007/s00204-020-02971-4
    37. R.S. Obach, A.S. Kalgutkar. Reactive Electrophiles and Metabolic Activation. 2018, 295-331. https://doi.org/10.1016/B978-0-12-801238-3.64290-3
    38. Carmen Limban, Diana C. Nuţă, Cornel Chiriţă, Simona Negreș, Andreea L. Arsene, Marina Goumenou, Spyros P. Karakitsios, Aristidis M. Tsatsakis, Dimosthenis A. Sarigiannis. The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicology Reports 2018, 5 , 943-953. https://doi.org/10.1016/j.toxrep.2018.08.017
    39. Agnieszka Potęga, Barbara Fedejko-Kap, Zofia Mazerska. Mechanism-based inactivation of human cytochrome P450 1A2 and 3A4 isoenzymes by anti-tumor triazoloacridinone C-1305. Xenobiotica 2016, 46 (12) , 1056-1065. https://doi.org/10.3109/00498254.2016.1147623
    40. Wan He, Buzhe Xu, Jian Bao, Xinxian Deng, Wenlu Liu, Yong Zhang, Faqin Jiang, Lei Fu. Synthesis and antimicrobial evaluation of 3-substituted-imine-6-hydroxy-benzofuran derivatives. Medicinal Chemistry Research 2016, 25 (11) , 2485-2497. https://doi.org/10.1007/s00044-016-1694-8
    41. T. Bohnert, A. Patel, I. Templeton, Y. Chen, C. Lu, G. Lai, L. Leung, S. Tse, H. J. Einolf, Y.-H. Wang, M. Sinz, R. Stearns, R. Walsky, W. Geng, S. Sudsakorn, D. Moore, L. He, J. Wahlstrom, J. Keirns, R. Narayanan, D. Lang, X. Yang, . Evaluation of a New Molecular Entity as a Victim of Metabolic Drug-Drug Interactions--an Industry Perspective. Drug Metabolism and Disposition 2016, 44 (8) , 1399-1423. https://doi.org/10.1124/dmd.115.069096
    42. Jeanette E. Stok, Sharon Chow, Elizabeth H. Krenske, Clementina Farfan Soto, Csongor Matyas, Raymond A. Poirier, Craig M. Williams, James J. De Voss. Direct Observation of an Oxepin from a Bacterial Cytochrome P450‐Catalyzed Oxidation. Chemistry – A European Journal 2016, 22 (13) , 4408-4412. https://doi.org/10.1002/chem.201600246
    43. . Drug–Drug Interaction: From Bench to Drug Label. 2015, 139-178. https://doi.org/10.1002/9781118838440.ch5
    44. Winnie Yin Bing Foo, Hwee Ying Tay, Eric Chun Yong Chan, Aik Jiang Lau. Meclizine, a pregnane X receptor agonist, is a direct inhibitor and mechanism-based inactivator of human cytochrome P450 3A. Biochemical Pharmacology 2015, 97 (3) , 320-330. https://doi.org/10.1016/j.bcp.2015.07.036
    45. Ying Hui, Lijun Luo, Lingtian Zhang, Katsuhisa Kurogi, Chunyang Zhou, Yoichi Sakakibara, Masahito Suiko, Ming-Cheh Liu. Sulfation of afimoxifene, endoxifen, raloxifene, and fulvestrant by the human cytosolic sulfotransferases (SULTs): A systematic analysis. Journal of Pharmacological Sciences 2015, 128 (3) , 144-149. https://doi.org/10.1016/j.jphs.2015.06.004
    46. Amit S. Kalgutkar, Deepak Dalvie. Predicting Toxicities of Reactive Metabolite–Positive Drug Candidates. Annual Review of Pharmacology and Toxicology 2015, 55 (1) , 35-54. https://doi.org/10.1146/annurev-pharmtox-010814-124720
    47. Deepak Dalvie, Amit S. Kalgutkar, Weichao Chen. Practical approaches to resolving reactive metabolite liabilities in early discovery. Drug Metabolism Reviews 2015, 47 (1) , 56-70. https://doi.org/10.3109/03602532.2014.984813
    48. Maria Almira Correia, Paul. F. Hollenberg. Inhibition of Cytochrome P450 Enzymes. 2015, 177-259. https://doi.org/10.1007/978-3-319-12108-6_5
    49. Nenad Manevski, Kamal Kumar Balavenkatraman, Barbara Bertschi, Piet Swart, Markus Walles, Gian Camenisch, Hilmar Schiller, Olivier Kretz, Barbara Ling, Reto Wettstein, Dirk J. Schaefer, Francois Pognan, Armin Wolf, Karine Litherland. Aldehyde Oxidase Activity in Fresh Human Skin. Drug Metabolism and Disposition 2014, 42 (12) , 2049-2057. https://doi.org/10.1124/dmd.114.060368
    50. Amanda K. Bolles, Rina Fujiwara, Erran D. Briggs, Amin A. Nomeir, Laura Lowe Furge. Mechanism-Based Inactivation of Human Cytochrome P450 3A4 by Two Piperazine-Containing Compounds. Drug Metabolism and Disposition 2014, 42 (12) , 2087-2096. https://doi.org/10.1124/dmd.114.060459
    51. . ABSTRACTS FROM THE 10 TH INTERNATIONAL ISSX MEETING. Drug Metabolism Reviews 2014, 1-286. https://doi.org/10.3109/03602532.2013.868114
    52. Bo-lan Yu, Zi-xin Mai, Xu-xiang Liu, Zhao-feng Huang. Selective estrogen receptor modulator BC-1 activates antioxidant signaling pathway in vitro via formation of reactive metabolites. Acta Pharmacologica Sinica 2013, 34 (3) , 373-379. https://doi.org/10.1038/aps.2012.168
    53. Douglas K. Spracklin, Amit S. Kalgutkar, Angus N. R. Nedderman. The Role of Biotransformation Studies in Reducing Drug Attrition. 2013, 97-137. https://doi.org/10.1007/7355_2012_18
    54. Marina Prigol, Cristina W. Nogueira, Gilson Zeni, Maria Rosário Bronze, Luís Constantino. In vitro metabolism of diphenyl diselenide in rat liver fractions. Conjugation with GSH and binding to thiol groups. Chemico-Biological Interactions 2012, 200 (2-3) , 65-72. https://doi.org/10.1016/j.cbi.2012.09.007
    55. Brooke M. VandenBrink, John A. Davis, Josh T. Pearson, Robert S. Foti, Larry C. Wienkers, Dan A. Rock. Cytochrome P450 Architecture and Cysteine Nucleophile Placement Impact Raloxifene-Mediated Mechanism-Based Inactivation. Molecular Pharmacology 2012, 82 (5) , 835-842. https://doi.org/10.1124/mol.112.080739
    56. . Structural Alert and Reactive Metabolite Analysis for the Top 200 Drugs in the US Market by Prescription. 2012, 269-312. https://doi.org/10.1002/9783527655748.ch12
    57. . Dealing with Reactive Metabolite–Positive Compounds in Drug Discovery. 2012, 335-355. https://doi.org/10.1002/9783527655748.ch14
    58. . Bioactivation and Inactivation of Cytochrome P450 and Other Drug‐Metabolizing Enzymes. 2012, 43-70. https://doi.org/10.1002/9783527655748.ch3
    59. David C. Evans. Covalent Drug–Protein Adducts: An Exploration of Their Role in Drug‐Induced Liver and General Organ Toxicity. 2012, 1-45. https://doi.org/10.1002/9780470921920.edm075
    60. Hideo Yukinaga, Haruo Iwabuchi, Osamu Okazaki, Takashi Izumi. Glutathione S-transferase pi trapping method for generation and characterization of drug–protein adducts in human liver microsomes using liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2012, 67-68 , 186-192. https://doi.org/10.1016/j.jpba.2012.04.035
    61. Heng-Keang Lim, Min Yang, Wing Lam, Fran Xu, Jie Chen, Yaodong Xu, H. Umesha Shetty, Ke Yang, Jose Silva, David C. Evans. Free radical metabolism of raloxifene in human liver microsomes. Xenobiotica 2012, 42 (8) , 737-747. https://doi.org/10.3109/00498254.2012.662306
    62. Timothy J. Strelevitz, Christine C. Orozco, R. Scott Obach. Hydralazine As a Selective Probe Inactivator of Aldehyde Oxidase in Human Hepatocytes: Estimation of the Contribution of Aldehyde Oxidase to Metabolic Clearance. Drug Metabolism and Disposition 2012, 40 (7) , 1441-1448. https://doi.org/10.1124/dmd.112.045195
    63. Carolina Säll, J. Brian Houston, Aleksandra Galetin. A Comprehensive Assessment of Repaglinide Metabolic Pathways: Impact of Choice of In Vitro System and Relative Enzyme Contribution to In Vitro Clearance. Drug Metabolism and Disposition 2012, 40 (7) , 1279-1289. https://doi.org/10.1124/dmd.112.045286
    64. Kirk R. Henne, Thuy B. Tran, Brooke M. VandenBrink, Dan A. Rock, Divesh K. Aidasani, Raju Subramanian, Andrew K. Mason, David M. Stresser, Yohannes Teffera, Simon G. Wong, Michael G. Johnson, Xiaoqi Chen, George R. Tonn, Bradley K. Wong. Sequential Metabolism of AMG 487, a Novel CXCR3 Antagonist, Results in Formation of Quinone Reactive Metabolites That Covalently Modify CYP3A4 Cys239 and Cause Time-Dependent Inhibition of the Enzyme. Drug Metabolism and Disposition 2012, 40 (7) , 1429-1440. https://doi.org/10.1124/dmd.112.045708
    65. Amit S. Kalgutkar, Jonathan N. Bauman. Role of Metabolism in Toxicity of Drugs in Humans. 2012, 1-26. https://doi.org/10.1002/9780470921920.edm127
    66. Wei Tang, Zhoupeng Zhang. Bioactivation and Reactive Metabolite Assays. 2012, 1-30. https://doi.org/10.1002/9780470921920.edm113
    67. . Toxicity. 2012, 159-208. https://doi.org/10.1002/9783527645763.ch8
    68. Tina Trdan Lušin, Tihomir Tomašić, Jurij Trontelj, Aleš Mrhar, Lucija Peterlin-Mašič. In vitro bioactivation of bazedoxifene and 2-(4-hydroxyphenyl)-3-methyl-1H-indol-5-ol in human liver microsomes. Chemico-Biological Interactions 2012, 197 (1) , 8-15. https://doi.org/10.1016/j.cbi.2012.03.001
    69. Shengkai Liao, Nigel P. Ewing, Brian Boucher, Olivier Materne, Christopher L. Brummel. High‐throughput screening for glutathione conjugates using stable‐isotope labeling and negative electrospray ionization precursor‐ion mass spectrometry. Rapid Communications in Mass Spectrometry 2012, 26 (6) , 659-669. https://doi.org/10.1002/rcm.6135
    70. Michael Zientek, Deepak Dalvie. Use of a Multistaged Time-Dependent Inhibition Assay to Assess the Impact of Intestinal Metabolism on Drug-Drug Interaction Potential. Drug Metabolism and Disposition 2012, 40 (3) , 467-473. https://doi.org/10.1124/dmd.111.043257
    71. Dominique Pessayre, Bernard Fromenty, Alain Berson, Marie-Anne Robin, Philippe Lettéron, Richard Moreau, Abdellah Mansouri. Central role of mitochondria in drug-induced liver injury. Drug Metabolism Reviews 2012, 44 (1) , 34-87. https://doi.org/10.3109/03602532.2011.604086
    72. Louis Leung, Amit S. Kalgutkar, R. Scott Obach. Metabolic activation in drug-induced liver injury. Drug Metabolism Reviews 2012, 44 (1) , 18-33. https://doi.org/10.3109/03602532.2011.605791
    73. Deepak K. Dalvie. Bioactivation I: Bioactivation by Cytochrome P450s. 2012, 1-54. https://doi.org/10.1002/9780470921920.edm072
    74. John A. Davis, Robert J. Greene, Sean Han, Dan A. Rock, Larry C. Wienkers. Formation of raloxifene homo-dimer in CYP3A4, evidence for multi-substrate binding in a single catalytically competent P450 active site. Archives of Biochemistry and Biophysics 2011, 513 (2) , 110-118. https://doi.org/10.1016/j.abb.2011.06.016
    75. Amit S. Kalgutkar. Handling reactive metabolite positives in drug discovery: What has retrospective structure–toxicity analyses taught us?. Chemico-Biological Interactions 2011, 192 (1-2) , 46-55. https://doi.org/10.1016/j.cbi.2010.09.003
    76. Leslie D. Nagy, Catherine S. Mocny, Laura E. Diffenderfer, David J. Hsi, Brendan F. Butler, Evan J. Arthur, Kyle J. Fletke, Jairam R. Palamanda, Amin A. Nomeir, Laura Lowe Furge. Substituted Imidazole of 5-Fluoro-2-[4-[(2-phenyl-1 H -imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine Inactivates Cytochrome P450 2D6 by Protein Adduction. Drug Metabolism and Disposition 2011, 39 (6) , 974-983. https://doi.org/10.1124/dmd.110.037630
    77. Amit S. Kalgutkar. Metabolic Activation of Organic Functional Groups Utilized in Medicinal Chemistry. 2011, 43-82. https://doi.org/10.1002/9780470929278.ch3
    78. Phillip M. Cowley, James Baker, Kirsteen I. Buchanan, Ian Carlyle, John K. Clark, Thomas R. Clarkson, Maureen Deehan, Darren Edwards, Yasuko Kiyoi, Iain Martin, Dawn Osbourn, Glenn Walker, Nick Ward, Grant Wishart. Pharmacokinetic optimisation of novel indole-2-carboxamide cannabinoid CB1 antagonists. Bioorganic & Medicinal Chemistry Letters 2011, 21 (7) , 2034-2039. https://doi.org/10.1016/j.bmcl.2011.02.019
    79. Jinghai James Xu, Keith Hoffmaster. Hepatic Toxicity. 2011, 353-377. https://doi.org/10.1002/9780470915110.ch8
    80. J. Matthew Hutzler, Jack Cook, Joseph C. Fleishaker. Drug–Drug Interactions: Designing Development Programs and Appropriate Product Labeling. 2011, 21-56. https://doi.org/10.1007/978-1-4419-7937-7_2
    81. Amit S. Kalgutkar. Reliability of reactive metabolite and covalent binding assessments in prediction of idiosyncratic drug toxicity. 2010, 102-123. https://doi.org/10.1017/CBO9780511779053.008
    82. Simon G. Wong, Peter W. Fan, Raju Subramanian, George R. Tonn, Kirk R. Henne, Michael G. Johnson, Michelle Tadano Lohr, Bradley K. Wong. Bioactivation of a Novel 2-Methylindole-Containing Dual Chemoattractant Receptor-Homologous Molecule Expressed on T-Helper Type-2 Cells/d-Prostanoid Receptor Antagonist Leads to Mechanism-Based CYP3A Inactivation: Glutathione Adduct Characterization and Prediction of In Vivo Drug-Drug Interaction. Drug Metabolism and Disposition 2010, 38 (5) , 841-850. https://doi.org/10.1124/dmd.109.031344
    83. Wei Tang, Anthony Y.H. Lu. Metabolic bioactivation and drug-related adverse effects: current status and future directions from a pharmaceutical research perspective. Drug Metabolism Reviews 2010, 42 (2) , 225-249. https://doi.org/10.3109/03602530903401658
    84. Dan Rock, Larry C. Wienkers. Characterization of Cytochrome P 450 Mechanism‐Based Inhibition. 2010, 1-56. https://doi.org/10.1002/9780470571224.pse117
    85. Mark P. Grillo. Chemical Mechanisms in Toxicology. 2010, 1-42. https://doi.org/10.1002/9780470571224.pse122
    86. Eugene G. Hrycay, Stelvio M. Bandiera. Cytochrome P 450 Enzymes. 2010, 1-70. https://doi.org/10.1002/9780470571224.pse048
    87. R. Scott Obach, A.S. Kalgutkar. Reactive Electrophiles and Metabolic Activation. 2010, 309-347. https://doi.org/10.1016/B978-0-08-046884-6.00115-9
    88. César Ramírez‐Molina, Lucy Burton. Screening strategy for the rapid detection of in vitro generated glutathione conjugates using high‐performance liquid chromatography and low‐resolution mass spectrometry in combination with LightSight® software for data processing. Rapid Communications in Mass Spectrometry 2009, 23 (22) , 3501-3512. https://doi.org/10.1002/rcm.4275
    89. Amit S. Kalgutkar, Mary T. Didiuk. Structural Alerts, Reactive Metabolites, and Protein Covalent Binding: How Reliable Are These Attributes as Predictors of Drug Toxicity?. Chemistry & Biodiversity 2009, 6 (11) , 2115-2137. https://doi.org/10.1002/cbdv.200900055
    90. Ben-Fillippo Krippendorff, Roland Neuhaus, Philip Lienau, Andreas Reichel, Wilhelm Huisinga. Mechanism-Based Inhibition: Deriving KI and kinact Directly from Time-Dependent IC50 Values. SLAS Discovery 2009, 14 (8) , 913-923. https://doi.org/10.1177/1087057109336751
    91. Judy L. Bolton, John A. Thompson. Formation and Reactions of Xenobiotic Quinone Methides in Biology. 2009, 329-356. https://doi.org/10.1002/9780470452882.ch10
    92. Dan Rock, Larry C. Wienkers. Characterization of Cytochrome P450 Mechanism‐Based Inhibition. 2009, 479-534. https://doi.org/10.1002/9780470439265.ch18
    93. Mark P. Grillo. Chemical Mechanisms in Toxicology. 2009, 655-696. https://doi.org/10.1002/9780470439265.ch23
    94. W. Tang, R. A. Stearns, R. W. Wang, R. R. Miller, Q. Chen, J. Ngui, R. K. Bakshi, R. P. Nargund, D. C. Dean, T. A. Baillie. Assessing and minimizing time-dependent inhibition of cytochrome P450 3A in drug discovery: A case study with melanocortin-4 receptor agonists. Xenobiotica 2008, 38 (11) , 1437-1451. https://doi.org/10.1080/00498250802464685
    95. T. A. Traina, I. Poggesi, M. Robson, A. Asnis, B. A. Duncan, A. Heerdt, C. Dang, D. Lake, M. Moasser, K. Panageas, P. Borgen, L. Norton, C. Hudis, M. N. Dickler. Pharmacokinetics and tolerability of exemestane in combination with raloxifene in postmenopausal women with a history of breast cancer. Breast Cancer Research and Treatment 2008, 111 (2) , 377-388. https://doi.org/10.1007/s10549-007-9787-1
    96. Jinghai J. Xu, Peter V. Henstock, Margaret C. Dunn, Arthur R. Smith, Jeffrey R. Chabot, David de Graaf. Cellular Imaging Predictions of Clinical Drug-Induced Liver Injury. Toxicological Sciences 2008, 105 (1) , 97-105. https://doi.org/10.1093/toxsci/kfn109
    97. Chandra Prakash, Kim A. Johnson, Clinton M. Schroeder, Michael J. Potchoiba. Metabolism, Distribution, and Excretion of a Next Generation Selective Estrogen Receptor Modulator, Lasofoxifene, in Rats and Monkeys. Drug Metabolism and Disposition 2008, 36 (9) , 1753-1769. https://doi.org/10.1124/dmd.108.021808
    98. Chandra Prakash, Kim A. Johnson, Mark J. Gardner. Disposition of Lasofoxifene, a Next-Generation Selective Estrogen Receptor Modulator, in Healthy Male Subjects. Drug Metabolism and Disposition 2008, 36 (7) , 1218-1226. https://doi.org/10.1124/dmd.108.020404
    99. Amit S Kalgutkar, Gwendolyn Fate, Mary T Didiuk, Jonathan Bauman. Toxicophores, reactive metabolites and drug safety: when is it a cause for concern?. Expert Review of Clinical Pharmacology 2008, 1 (4) , 515-531. https://doi.org/10.1586/17512433.1.4.515
    100. Lin Xu, Bruce Adams, Valentina V. Jeliazkova-Mecheva, Laird Trimble, Gloria Kwei, Andreas Harsch. Identification of Novel Metabolites of Colchicine in Rat Bile Facilitated by Enhanced Online Radiometric Detection. Drug Metabolism and Disposition 2008, 36 (4) , 731-739. https://doi.org/10.1124/dmd.107.019463
    Load all citations

    Chemical Research in Toxicology

    Cite this: Chem. Res. Toxicol. 2002, 15, 7, 907–914
    Click to copy citationCitation copied!
    https://doi.org/10.1021/tx0200109
    Published June 7, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    1758

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.