ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Cytochrome P450 2A-Catalyzed Metabolic Activation of Structurally Similar Carcinogenic Nitrosamines:  N‘-Nitrosonornicotine Enantiomers, N-Nitrosopiperidine, and N-Nitrosopyrrolidine

View Author Information
University of Minnesota, The Cancer Center, 420 Delaware Street SE, Mayo Mail Code 806, Minneapolis, Minnesota 55455
Cite this: Chem. Res. Toxicol. 2005, 18, 1, 61–69
Publication Date (Web):December 21, 2004
https://doi.org/10.1021/tx0497696
Copyright © 2005 American Chemical Society

    Article Views

    932

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (145 KB)

    Abstract

    Abstract Image

    N‘-Nitrosonornicotine (NNN) and N-nitrosopiperidine (NPIP) are potent esophageal and nasal cavity carcinogens in rats and pulmonary carcinogens in mice. N-Nitrosopyrrolidine (NPYR) induces mainly liver tumors in rats and is a weak pulmonary carcinogen in mice. These nitrosamines may be causative agents in human cancer. α-Hydroxylation is believed to be the key activation pathway in their carcinogenesis. P450 2As are important enzymes of nitrosamine α-hydroxylation. Therefore, a structure−activity relationship study of rat P450 2A3, mouse P450 2A4 and 2A5, and human P450 2A6 and 2A13 was undertaken to compare the catalytic activities of these enzymes for α-hydroxylation of (R)-NNN, (S)-NNN, NPIP, and NPYR. Kinetic parameters differed significantly among the P450 2As although their amino acid sequence identities were 83% or greater. For NNN, α-hydroxylation can occur at the 2‘- or 5‘-carbon. P450 2As catalyzed 5‘-hydroxylation of (R)- or (S)-NNN with Km values of 0.74−69 μM. All of the P450 2As except P450 2A6 catalyzed (R)-NNN 2‘-hydroxylation with Km values of 0.73−66 μM. (S)-NNN 2‘-hydroxylation was not observed. Although P450 2A4 and 2A5 differ by only 11 amino acids, they were the least and most efficient catalysts of NNN 5‘-hydroxylation, respectively. The catalytic efficiencies (kcat/Km) for (R)-NNN differed by 170-fold whereas there was a 46-fold difference for (S)-NNN. In general, P450 2As catalyzed (R)- and (S)-NNN 5‘-hydroxylation with significantly lower Km and higher kcat/Km values than NPIP or NPYR α-hydroxylation (p < 0.05). Furthermore, P450 2As were better catalysts of NPIP α-hydroxylation than NPYR. P450 2A4, 2A5, 2A6, and 2A13 exhibited significantly lower Km and higher kcat/Km values for NPIP than NPYR α-hydroxylation (p < 0.05), similar to previous reports with P450 2A3. Taken together, these data indicate that critical P450 2A residues determine the catalytic activities of NNN, NPIP, and NPYR α-hydroxylation.

    *

     To whom correspondence should be addressed. Tel:  612-624-7604. Fax:  612-626-5135. E-mail:  [email protected].

    Cited By

    This article is cited by 82 publications.

    1. David J. Ponting, Krista L. Dobo, Michelle O. Kenyon, Amit S. Kalgutkar. Strategies for Assessing Acceptable Intakes for Novel N-Nitrosamines Derived from Active Pharmaceutical Ingredients. Journal of Medicinal Chemistry 2022, 65 (23) , 15584-15607. https://doi.org/10.1021/acs.jmedchem.2c01498
    2. Robert Thomas, Rachael E. Tennant, Antonio Anax F. Oliveira, David J. Ponting. What Makes a Potent Nitrosamine? Statistical Validation of Expert-Derived Structure–Activity Relationships. Chemical Research in Toxicology 2022, 35 (11) , 1997-2013. https://doi.org/10.1021/acs.chemrestox.2c00199
    3. Jorddy Neves Cruz, Mozaniel Santana de Oliveira, Sebastião Gomes Silva, Antonio Pedro da Silva Souza Filho, Daniel Santiago Pereira, Anderson Henrique Lima e Lima, Eloisa Helena de Aguiar Andrade. Insight into the Interaction Mechanism of Nicotine, NNK, and NNN with Cytochrome P450 2A13 Based on Molecular Dynamics Simulation. Journal of Chemical Information and Modeling 2020, 60 (2) , 766-776. https://doi.org/10.1021/acs.jcim.9b00741
    4. Yupeng Li, Bin Ma, Qing Cao, Silvia Balbo, Lijiao Zhao, Pramod Upadhyaya, Stephen S. Hecht. Mass Spectrometric Quantitation of Pyridyloxobutyl DNA Phosphate Adducts in Rats Chronically Treated with N′-Nitrosonornicotine. Chemical Research in Toxicology 2019, 32 (4) , 773-783. https://doi.org/10.1021/acs.chemrestox.9b00007
    5. Guangcai Ma, Haiying Yu, Ting Xu, Xiaoxuan Wei, Jianrong Chen, Hongjun Lin, Gerrit Schüürmann. Computational Insight into the Activation Mechanism of Carcinogenic N’-Nitrosonornicotine (NNN) Catalyzed by Cytochrome P450. Environmental Science & Technology 2018, 52 (20) , 11838-11847. https://doi.org/10.1021/acs.est.8b02795
    6. Anna K. Michel, Adam T. Zarth, Pramod Upadhyaya, and Stephen S. Hecht . Identification of 4-(3-Pyridyl)-4-oxobutyl-2′-deoxycytidine Adducts Formed in the Reaction of DNA with 4-(Acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone: A Chemically Activated Form of Tobacco-Specific Carcinogens. ACS Omega 2017, 2 (3) , 1180-1190. https://doi.org/10.1021/acsomega.7b00072
    7. Erik S. Carlson, Pramod Upadhyaya, and Stephen S. Hecht . Evaluation of Nitrosamide Formation in the Cytochrome P450-Mediated Metabolism of Tobacco-Specific Nitrosamines. Chemical Research in Toxicology 2016, 29 (12) , 2194-2205. https://doi.org/10.1021/acs.chemrestox.6b00384
    8. Tsutomu Shimada, Shigeo Takenaka, Kensaku Kakimoto, Norie Murayama, Young-Ran Lim, Donghak Kim, Maryam K. Foroozesh, Hiroshi Yamazaki, F. Peter Guengerich, and Masayuki Komori . Structure–Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6. Chemical Research in Toxicology 2016, 29 (6) , 1029-1040. https://doi.org/10.1021/acs.chemrestox.6b00083
    9. Adam T. Zarth, Pramod Upadhyaya, Jing Yang, and Stephen S. Hecht . DNA Adduct Formation from Metabolic 5′-Hydroxylation of the Tobacco-Specific Carcinogen N′-Nitrosonornicotine in Human Enzyme Systems and in Rats. Chemical Research in Toxicology 2016, 29 (3) , 380-389. https://doi.org/10.1021/acs.chemrestox.5b00520
    10. Tsutomu Shimada, Shigeo Takenaka, Norie Murayama, Hiroshi Yamazaki, Joo-Hwan Kim, Donghak Kim, Francis K. Yoshimoto, F. Peter Guengerich, and Masayuki Komori . Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes. Chemical Research in Toxicology 2015, 28 (2) , 268-278. https://doi.org/10.1021/tx500505y
    11. Lijiao Zhao, Silvia Balbo, Mingyao Wang, Pramod Upadhyaya, Samir S. Khariwala, Peter W. Villalta, and Stephen S. Hecht . Quantitation of Pyridyloxobutyl-DNA Adducts in Tissues of Rats Treated Chronically with (R)- or (S)-N′-Nitrosonornicotine (NNN) in a Carcinogenicity Study. Chemical Research in Toxicology 2013, 26 (10) , 1526-1535. https://doi.org/10.1021/tx400235x
    12. Tsutomu Shimada, Norie Murayama, Hiroshi Yamazaki, Katsuhiro Tanaka, Shigeo Takenaka, Masayuki Komori, Donghak Kim, and F. Peter Guengerich . Metabolic Activation of Polycyclic Aromatic Hydrocarbons and Aryl and Heterocyclic Amines by Human Cytochromes P450 2A13 and 2A6. Chemical Research in Toxicology 2013, 26 (4) , 529-537. https://doi.org/10.1021/tx3004906
    13. Slobodan Rendic and F. Peter Guengerich . Contributions of Human Enzymes in Carcinogen Metabolism. Chemical Research in Toxicology 2012, 25 (7) , 1316-1383. https://doi.org/10.1021/tx300132k
    14. Stephen S. Hecht, Pramod Upadhyaya, and Mingyao Wang . Evolution of Research on the DNA Adduct Chemistry of N-Nitrosopyrrolidine and Related Aldehydes. Chemical Research in Toxicology 2011, 24 (6) , 781-790. https://doi.org/10.1021/tx200064a
    15. Siyi Zhang, Mingyao Wang, Peter W. Villalta, Bruce R. Lindgren, Yanbin Lao and Stephen S. Hecht. Quantitation of Pyridyloxobutyl DNA Adducts in Nasal and Oral Mucosa of Rats Treated Chronically with Enantiomers of N′-Nitrosonornicotine. Chemical Research in Toxicology 2009, 22 (5) , 949-956. https://doi.org/10.1021/tx900040j
    16. Pramod Upadhyaya and Stephen S. Hecht. Identification of Adducts Formed in the Reactions of 5′-Acetoxy-N′-nitrosonornicotine with Deoxyadenosine, Thymidine, and DNA. Chemical Research in Toxicology 2008, 21 (11) , 2164-2171. https://doi.org/10.1021/tx8002559
    17. Aliuska Morales Helguera, Maykel Pérez González, Maria Natália Dias Soeiro Cordeiro and Miguel Ángel Cabrera Pérez . Quantitative Structure−Carcinogenicity Relationship for Detecting Structural Alerts in Nitroso Compounds: Species, Rat; Sex, Female; Route of Administration, Gavage. Chemical Research in Toxicology 2008, 21 (3) , 633-642. https://doi.org/10.1021/tx700336n
    18. Stephen S. Hecht. Progress and Challenges in Selected Areas of Tobacco Carcinogenesis. Chemical Research in Toxicology 2008, 21 (1) , 160-171. https://doi.org/10.1021/tx7002068
    19. Yanbin Lao,, Nanxiong Yu,, Fekadu Kassie,, Peter W. Villalta, and, Stephen S. Hecht. Analysis of Pyridyloxobutyl DNA Adducts in F344 Rats Chronically Treated with (R)- and (S)-N‘-Nitrosonornicotine. Chemical Research in Toxicology 2007, 20 (2) , 246-256. https://doi.org/10.1021/tx060208j
    20. Kathryn M. Brown,, Linda B. von Weymarn, and, Sharon E. Murphy. Identification of N-(Hydroxymethyl) Norcotinine as a Major Product of Cytochrome P450 2A6, but Not Cytochrome P450 2A13-Catalyzed Cotinine Metabolism. Chemical Research in Toxicology 2005, 18 (12) , 1792-1798. https://doi.org/10.1021/tx0501381
    21. Hong Wu,, Richard N. Loeppky, and, Rainer Glaser. Nitrosation Chemistry of Pyrroline, 2-Imidazoline, and 2-Oxazoline:  Theoretical Curtin−Hammett Analysis of Retro-Ene and Solvent-Assisted C−X Cleavage Reactions of α-Hydroxy-N-Nitrosamines. The Journal of Organic Chemistry 2005, 70 (17) , 6790-6801. https://doi.org/10.1021/jo050856s
    22. Hansen L. Wong,, Xiuling Zhang,, Qing-Yu Zhang,, Jun Gu,, Xinxin Ding,, Stephen S. Hecht, and, Sharon E. Murphy. Metabolic Activation of the Tobacco Carcinogen 4-(Methylnitrosamino)-(3-pyridyl)-1-butanone by Cytochrome P450 2A13 in Human Fetal Nasal Microsomes. Chemical Research in Toxicology 2005, 18 (6) , 913-918. https://doi.org/10.1021/tx0500777
    23. John R. Jalas,, Stephen S. Hecht, and, Sharon E. Murphy. Cytochrome P450 Enzymes as Catalysts of Metabolism of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, a Tobacco Specific Carcinogen. Chemical Research in Toxicology 2005, 18 (2) , 95-110. https://doi.org/10.1021/tx049847p
    24. Nasrin Ghassemi-Barghi, Zahra Bayrami. N-Nitrosopyrrolidine. 2024, 953-956. https://doi.org/10.1016/B978-0-12-824315-2.00536-4
    25. Stephen B. Stanfill, Stephen S. Hecht, Andreas C. Joerger, Pablo J. González, Luisa B. Maia, Maria G. Rivas, José J. G. Moura, Alpana K. Gupta, Nick E. Le Brun, Jason C. Crack, Pierre Hainaut, Courtney Sparacino-Watkins, Robert E. Tyx, Suresh D. Pillai, Ghazi S. Zaatari, S. Jane Henley, Benjamin C. Blount, Clifford H. Watson, Bernd Kaina, Ravi Mehrotra. From cultivation to cancer: formation of N -nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Critical Reviews in Toxicology 2023, 50 , 1-44. https://doi.org/10.1080/10408444.2023.2264327
    26. Agnieszka A. Niklas, Grethe Iren A. Borge, Rune Rødbotten, Ingunn Berget, Mette H.B. Müller, Susan S. Herrmann, Kit Granby, Bente Kirkhus. Levels of nitrate, nitrite and nitrosamines in model sausages during heat treatment and in vitro digestion – The impact of adding nitrite and spinach (Spinacia oleracea L.). Food Research International 2023, 166 , 112595. https://doi.org/10.1016/j.foodres.2023.112595
    27. , Dieter Schrenk, Margherita Bignami, Laurent Bodin, James Kevin Chipman, Jesús del Mazo, Christer Hogstrand, Laurentius (Ron) Hoogenboom, Jean‐Charles Leblanc, Carlo Stefano Nebbia, Elsa Nielsen, Evangelia Ntzani, Annette Petersen, Salomon Sand, Tanja Schwerdtle, Christiane Vleminckx, Heather Wallace, Benigni Romualdo, Cristina Fortes, Stephen Hecht, Marco Iammarino, Olaf Mosbach‐Schulz, Francesca Riolo, Anna Christodoulidou, Bettina Grasl‐Kraupp. Risk assessment of N‐nitrosamines in food. EFSA Journal 2023, 21 (3) https://doi.org/10.2903/j.efsa.2023.7884
    28. Umit Baris Kutman. Mineral nutrition and crop quality. 2023, 419-444. https://doi.org/10.1016/B978-0-12-819773-8.00020-4
    29. Yupeng Li, Stephen S. Hecht. Metabolic Activation and DNA Interactions of Carcinogenic N-Nitrosamines to Which Humans Are Commonly Exposed. International Journal of Molecular Sciences 2022, 23 (9) , 4559. https://doi.org/10.3390/ijms23094559
    30. Yupeng Li, Stephen S. Hecht. Metabolism and DNA Adduct Formation of Tobacco-Specific N-Nitrosamines. International Journal of Molecular Sciences 2022, 23 (9) , 5109. https://doi.org/10.3390/ijms23095109
    31. Stephen S. Hecht, Dorothy K. Hatsukami. Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nature Reviews Cancer 2022, 22 (3) , 143-155. https://doi.org/10.1038/s41568-021-00423-4
    32. Sabine J. Behrend, Georgia A. Giotopoulou, Magda Spella, Georgios T. Stathopoulos. A role for club cells in smoking-associated lung adenocarcinoma. European Respiratory Review 2021, 30 (162) , 210122. https://doi.org/10.1183/16000617.0122-2021
    33. Shilpa Gupta, Nilesh J. Jain, Reena C. Jhamtani. Chemical Components in Smokeless Tobacco Products and Impact on Health. Toxicology International 2021, , 279-309. https://doi.org/10.18311/ti/2021/v28i4/26489
    34. Slobodan P. Rendic, F. Peter Guengerich. Human Family 1–4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Archives of Toxicology 2021, 95 (2) , 395-472. https://doi.org/10.1007/s00204-020-02971-4
    35. Lisa A. Peterson, Silvia Balbo, Naomi Fujioka, Dorothy K. Hatsukami, Stephen S. Hecht, Sharon E. Murphy, Irina Stepanov, Natalia Y. Tretyakova, Robert J. Turesky, Peter W. Villalta. Applying Tobacco, Environmental, and Dietary-Related Biomarkers to Understand Cancer Etiology and Evaluate Prevention Strategies. Cancer Epidemiology, Biomarkers & Prevention 2020, 29 (10) , 1904-1919. https://doi.org/10.1158/1055-9965.EPI-19-1356
    36. Marco Iammarino, Michele Mangiacotti, Antonio E. Chiaravalle. Anion exchange polymeric sorbent coupled to high‐performance liquid chromatography with UV diode array detection for the determination of ten N ‐nitrosamines in meat products: a validated approach. International Journal of Food Science & Technology 2020, 55 (3) , 1097-1109. https://doi.org/10.1111/ijfs.14410
    37. Georgia A. Giotopoulou, Georgios T. Stathopoulos. Effects of Inhaled Tobacco Smoke on the Pulmonary Tumor Microenvironment. 2020, 53-69. https://doi.org/10.1007/978-3-030-35727-6_4
    38. Han-Hsing Tsou, Hsiao-Tung Ko, Chia-Tzu Chen, Tse-Wen Wang, Chien-Hung Lee, Tsung-Yun Liu, Hsiang-Tsui Wang. Betel quid containing safrole enhances metabolic activation of tobacco specific 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Environmental Pollution 2019, 251 , 13-21. https://doi.org/10.1016/j.envpol.2019.04.080
    39. Tengjiao Fan, Guohui Sun, Lijiao Zhao, Xin Cui, Rugang Zhong. Metabolic Activation and Carcinogenesis of Tobacco-Specific Nitrosamine N’-Nitrosonornicotine (NNN): A Density Function Theory and Molecular Docking Study. International Journal of Environmental Research and Public Health 2019, 16 (2) , 178. https://doi.org/10.3390/ijerph16020178
    40. Xiaojing Ren, Yuanyuan Ji, Xuhua Jiang, Xun Qi. Downregulation of CYP2A6 and CYP2C8 in Tumor Tissues Is Linked to Worse Overall Survival and Recurrence-Free Survival from Hepatocellular Carcinoma. BioMed Research International 2018, 2018 , 1-9. https://doi.org/10.1155/2018/5859415
    41. Yongfeng Deng, Melvin Bonilla, Hongqiang Ren, Yan Zhang. Health risk assessment of reclaimed wastewater: A case study of a conventional water reclamation plant in Nanjing, China. Environment International 2018, 112 , 235-242. https://doi.org/10.1016/j.envint.2017.12.034
    42. X. Ding, L. Li, L.S. Van Winkle, Q.-Y. Zhang. Biochemical Function of the Respiratory Tract: Metabolism of Xenobiotics. 2018, 171-193. https://doi.org/10.1016/B978-0-12-801238-3.95653-8
    43. Julie-Anne Tanner, Rachel Tyndale. Variation in CYP2A6 Activity and Personalized Medicine. Journal of Personalized Medicine 2017, 7 (4) , 18. https://doi.org/10.3390/jpm7040018
    44. Samir S. Khariwala, Bin Ma, Chris Ruszczak, Steven G. Carmella, Bruce Lindgren, Dorothy K. Hatsukami, Stephen S. Hecht, Irina Stepanov. High Level of Tobacco Carcinogen–Derived DNA Damage in Oral Cells Is an Independent Predictor of Oral/Head and Neck Cancer Risk in Smokers. Cancer Prevention Research 2017, 10 (9) , 507-513. https://doi.org/10.1158/1940-6207.CAPR-17-0140
    45. Julie-Anne Tanner, Jeffrey A. Henderson, Dedra Buchwald, Barbara V. Howard, Patricia Nez Henderson, Rachel F. Tyndale. Variation in CYP2A6 and nicotine metabolism among two American Indian tribal groups differing in smoking patterns and risk for tobacco-related cancer. Pharmacogenetics and Genomics 2017, 27 (5) , 169-178. https://doi.org/10.1097/FPC.0000000000000271
    46. Jing Yang, Steven G. Carmella, Stephen S. Hecht. Analysis of N ′-nitrosonornicotine enantiomers in human urine by chiral stationary phase liquid chromatography–nanoelectrospray ionization–high resolution tandem mass spectrometry. Journal of Chromatography B 2017, 1044-1045 , 127-131. https://doi.org/10.1016/j.jchromb.2017.01.008
    47. Tsutomu Shimada, Shigeo Takenaka, Norie Murayama, Valerie M. Kramlinger, Joo-Hwan Kim, Donghak Kim, Jiawang Liu, Maryam K. Foroozesh, Hiroshi Yamazaki, F. Peter Guengerich, Masayuki Komori. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica 2016, 46 (3) , 211-224. https://doi.org/10.3109/00498254.2015.1069419
    48. Sharon E. Murphy, Sung-Shim L. Park, Elizabeth F. Thompson, Lynne R. Wilkens, Yesha Patel, Daniel O. Stram, Loic Le Marchand. Nicotine N-glucuronidation relative to N-oxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups. Carcinogenesis 2014, 35 (11) , 2526-2533. https://doi.org/10.1093/carcin/bgu191
    49. Jiaping Xue, Suping Yang, Seyha Seng. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN. Cancers 2014, 6 (2) , 1138-1156. https://doi.org/10.3390/cancers6021138
    50. Hossein Roohi, Roghayeh Nokhostin. NMR chemical shielding and spin–spin coupling constants across hydrogen bonds in uracil–α-hydroxy-N-nitrosamine complexes. Structural Chemistry 2014, 25 (2) , 483-493. https://doi.org/10.1007/s11224-013-0264-7
    51. M. Abdollahi, R. Solgi, S. Karami-Mohajeri. N-Nitrosopyrrolidine. 2014, 601-602. https://doi.org/10.1016/B978-0-12-386454-3.01147-7
    52. Jinping Hu, Li Sheng, Lei Li, Xin Zhou, Fang Xie, Jaime D’Agostino, Yan Li, Xinxin Ding. Essential Role of the Cytochrome P450 Enzyme CYP2A5 in Olfactory Mucosal Toxicity of Naphthalene. Drug Metabolism and Disposition 2014, 42 (1) , 23-27. https://doi.org/10.1124/dmd.113.054429
    53. Susan R. Mallery, Meng Tong, Gregory C. Michaels, Amber R. Kiyani, Stephen S. Hecht. Clinical and Biochemical Studies Support Smokeless Tobacco's Carcinogenic Potential in the Human Oral Cavity. Cancer Prevention Research 2014, 7 (1) , 23-32. https://doi.org/10.1158/1940-6207.CAPR-13-0262
    54. Daniel Willis, Mary Popovech, Francesca Gany, Carol Hoffman, Jason Blum, Judith Zelikoff. Toxicity of Gutkha, a Smokeless Tobacco Product Gone Global: Is There More to the Toxicity than Nicotine?. International Journal of Environmental Research and Public Health 2014, 11 (1) , 919-933. https://doi.org/10.3390/ijerph110100919
    55. Huai-chih Chiang, Huei Lee, How-Ran Chao, Yu-Hu Chiou, Tsui-Chun Tsou. Pulmonary CYP2A13 levels are associated with early occurrence of lung cancer—Its implication in mutagenesis of non-small cell lung carcinoma. Cancer Epidemiology 2013, 37 (5) , 653-659. https://doi.org/10.1016/j.canep.2013.04.010
    56. Evan O. Gregg, Emmanuel Minet, Michael McEwan. Urinary biomarkers of smokers’ exposure to tobacco smoke constituents in tobacco products assessment: a fit for purpose approach. Biomarkers 2013, 18 (6) , 467-486. https://doi.org/10.3109/1354750X.2013.821523
    57. Gregg T. Tomy, Ed Sverko, Vince Palace, Bruno Rosenberg, Robert McCrindle, Alan McAlees, Lindsay A.P. Smith, Jonathan Byer, Grazina Pacepavicius, Mehran Alaee, Brian E. McCarry. Dechlorane plus monoadducts in a lake ontario (Canada) food web and biotransformation by lake trout ( Salvelinus namaycush) liver microsomes. Environmental Toxicology and Chemistry 2013, 32 (6) , 1376-1381. https://doi.org/10.1002/etc.2199
    58. Catherine Wassenaar, Qiong Dong, Christopher Amos, Margaret Spitz, Rachel Tyndale. Pilot Study of CYP2B6 Genetic Variation to Explore the Contribution of Nitrosamine Activation to Lung Carcinogenesis. International Journal of Molecular Sciences 2013, 14 (4) , 8381-8392. https://doi.org/10.3390/ijms14048381
    59. Andy Z.X. Zhu, Matthew J. Binnington, Caroline C. Renner, Anne P. Lanier, Dorothy K. Hatsukami, Irina Stepanov, Clifford H. Watson, Connie S. Sosnoff, Neal L. Benowitz, Rachel F. Tyndale. Alaska Native smokers and smokeless tobacco users with slower CYP2A6 activity have lower tobacco consumption, lower tobacco-specific nitrosamine exposure and lower tobacco-specific nitrosamine bioactivation. Carcinogenesis 2013, 34 (1) , 93-101. https://doi.org/10.1093/carcin/bgs306
    60. Linda B. von Weymarn, Cassandra Retzlaff, Sharon E. Murphy. CYP2A6- and CYP2A13-Catalyzed Metabolism of the Nicotine Δ 5′(1′) Iminium Ion. Journal of Pharmacology and Experimental Therapeutics 2012, 343 (2) , 307-315. https://doi.org/10.1124/jpet.112.195255
    61. Xi‐Ling Jiang, Ai‐Ming Yu. Genetically Modified Mouse Models in ADME Studies. 2012, 235-454. https://doi.org/10.1002/9781118180778.ch28
    62. Lin Xu, Biplab Das, Chandra Prakash. CYP 450 Enzymes in Drug Discovery and Development: An Overview. 2012, 1-35. https://doi.org/10.1002/9780470921920.edm117
    63. Huai-chih Chiang, Chin-Ying Wang, Hui-Ling Lee, Tsui-Chun Tsou. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation—A mammalian cell-based mutagenesis approach. Toxicology and Applied Pharmacology 2011, 253 (2) , 145-152. https://doi.org/10.1016/j.taap.2011.03.022
    64. Phil Jackson, Moetaz I. Attalla. N ‐Nitrosopiperazines form at high pH in post‐combustion capture solutions containing piperazine: a low‐energy collisional behaviour study. Rapid Communications in Mass Spectrometry 2010, 24 (24) , 3567-3577. https://doi.org/10.1002/rcm.4815
    65. Shengde Wu, Karen Blackburn, Jack Amburgey, Joanna Jaworska, Thomas Federle. A framework for using structural, reactivity, metabolic and physicochemical similarity to evaluate the suitability of analogs for SAR-based toxicological assessments. Regulatory Toxicology and Pharmacology 2010, 56 (1) , 67-81. https://doi.org/10.1016/j.yrtph.2009.09.006
    66. Xin Zhou, Xiaoliang Zhuo, Fang Xie, Kerri Kluetzman, Yue-Zhong Shu, W. Griffith Humphreys, Xinxin Ding. Role of CYP2A5 in the Clearance of Nicotine and Cotinine: Insights from Studies on a Cyp2a5 -null Mouse Model. Journal of Pharmacology and Experimental Therapeutics 2010, 332 (2) , 578-587. https://doi.org/10.1124/jpet.109.162610
    67. Shu-Feng Zhou, Jun-Ping Liu, Balram Chowbay. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metabolism Reviews 2009, 41 (2) , 89-295. https://doi.org/10.1080/03602530902843483
    68. Kari E. Schlicht, Jeannette Zinggeler Berg, Sharon E. Murphy. Effect of CYP2A13 Active Site Mutation N297A on Metabolism of Coumarin and Tobacco-Specific Nitrosamines. Drug Metabolism and Disposition 2009, 37 (3) , 665-671. https://doi.org/10.1124/dmd.108.025072
    69. Ana Rossini, Tatiana de Almeida Simão, Rodolpho Mattos Albano, Luis Felipe Ribeiro Pinto. CYP2A6 polymorphisms and risk for tobacco-related cancers. Pharmacogenomics 2008, 9 (11) , 1737-1752. https://doi.org/10.2217/14622416.9.11.1737
    70. Nuria Arranz, Ana I. Haza, Almudena García, Ma Eugenia Delgado, Joseph Rafter, Paloma Morales. Inhibition by vitamin C of apoptosis induced by N ‐nitrosamines in HepG2 and HL‐60 cells. Journal of Applied Toxicology 2008, 28 (6) , 788-796. https://doi.org/10.1002/jat.1340
    71. Lijiao Zhao, Rugang Zhong, Yan Zhen. A Theoretical Study on the Critical Difference between the Mechanism of DNA Alkylation by Nitrosamines and Nitrosoureas. 2008, 873-877. https://doi.org/10.1109/BMEI.2008.148
    72. Ting-Ting Liu, Li-Jiao Zhao, Ru-Gang Zhong. Ab initio Studies on the Carcinogenic Mechanism of the Derivatives of 3,5-Dimethyl-Nitrosopiperazine. 2008, 951-954. https://doi.org/10.1109/ICBBE.2008.233
    73. Sharon E. Murphy, Linda B. von Weymarn. Mechanism-Based Inactivation of Cytochrome P450 2A and 2B Enzymes. 2008, 1-29. https://doi.org/10.1007/978-0-387-77300-1_5
    74. N. Arranz, A.I. Haza, A. García, L. Möller, J. Rafter, P. Morales. Protective effects of organosulfur compounds towards N-nitrosamine-induced DNA damage in the single-cell gel electrophoresis (SCGE)/HepG2 assay. Food and Chemical Toxicology 2007, 45 (9) , 1662-1669. https://doi.org/10.1016/j.fct.2007.02.032
    75. Dariusz Pogocki, Tomasz Ruman, Magdalena Danilczuk, Marek Danilczuk, Monika Celuch, Elżbieta Wałajtys-Rode. Application of nicotine enantiomers, derivatives and analogues in therapy of neurodegenerative disorders. European Journal of Pharmacology 2007, 563 (1-3) , 18-39. https://doi.org/10.1016/j.ejphar.2007.02.038
    76. Li-Jiao Zhao, Ru-Gang Zhong, Yan Zhen. The mechanism of DNA alkylation by the &#x003B2;-electrophilic center of nitrosamines and nitrosoureas: a theoretical study. 2007, 1550-1554. https://doi.org/10.1109/ICCME.2007.4382007
    77. Lan Li, Aihua Zhang, Guofeng Teng, Zonghe Li. Theoretical study of hydroxylation reaction mechanism and subsequent carcinogenic metabolites for nitrosopyrrolidine. Journal of Molecular Structure: THEOCHEM 2007, 806 (1-3) , 35-38. https://doi.org/10.1016/j.theochem.2006.10.027
    78. G. Mittal, S. Vadhera, A.P.S. Brar, Giridhar Soni. Protective role of dietary fibre on N-nitrosopyrrolidine-induced toxicity in hypercholesterolemic rats. Human & Experimental Toxicology 2007, 26 (2) , 91-98. https://doi.org/10.1177/0960327107071864
    79. F. de Vocht, I. Burstyn, K. Straif, R. Vermeulen, K. Jakobsson, L. Nichols, B. Peplonska, D. Taeger, H. Kromhout. Occupational exposure to NDMA and NMor in the European rubber industry. Journal of Environmental Monitoring 2007, 9 (3) , 253. https://doi.org/10.1039/b615472g
    80. Linda B. von Weymarn, Kathryn M. Brown, Sharon E. Murphy. Inactivation of CYP2A6 and CYP2A13 during Nicotine Metabolism. Journal of Pharmacology and Experimental Therapeutics 2006, 316 (1) , 295-303. https://doi.org/10.1124/jpet.105.091306
    81. Hyung Sik Kim, Seung Jun Kwack, Byung Mu Lee. Alteration of Cytochrome P-450 and Glutathione S -Transferase Activity in Normal and Malignant Human Stomach. Journal of Toxicology and Environmental Health, Part A 2005, 68 (19) , 1611-1620. https://doi.org/10.1080/15287390500182867
    82. Sharon E. Murphy, Vytautas Raulinaitis, Kathryn M. Brown. NICOTINE 5′-OXIDATION AND METHYL OXIDATION BY P450 2A ENZYMES. Drug Metabolism and Disposition 2005, 33 (8) , 1166-1173. https://doi.org/10.1124/dmd.105.004549

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect