ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

d-Amino-acid Oxidase Is Involved in d-Serine-Induced Nephrotoxicity

View Author Information
Department of Physiology and Biological Information and Department of Microbiology, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan, Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan, and Institute of Toxicology, GSF-National Research Center for Environment and Health, 85758 Neuherberg, Germany
Cite this: Chem. Res. Toxicol. 2005, 18, 11, 1678–1682
Publication Date (Web):October 21, 2005
https://doi.org/10.1021/tx0500326
Copyright © 2005 American Chemical Society

    Article Views

    638

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    d-Serine is nephrotoxic in rats. Based on circumstantial evidence, it has been suspected that d-amino-acid oxidase is involved in this nephrotoxicity. Since we found that LEA/SENDAI rats lacked d-amino-acid oxidase, we examined whether this enzyme was associated with d-serine-induced nephrotoxicity using the LEA/SENDAI rats and control F344 rats. When d-propargylglycine, which is known to have a nephrotoxic effect through its metabolism by d-amino-acid oxidase, was injected intraperitoneally into the F344 rats, it caused glucosuria and polyuria. However, injection of d-propargylglycine into LEA/SENDAI rats did not cause any glucosuria or polyuria, indicating that d-amino-acid oxidase is definitely not functional in these rats. d-Serine was then injected into the F344 and LEA/SENDAI rats. It caused glucosuria and polyuria in the F344 rats but not in the LEA/SENDAI rats. These results indicate clearly that d-amino-acid oxidase is responsible for the d-serine-induced nephrotoxicity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence should be addressed. Tel:  +81-282-87-2126. Fax:  +81-282-86-2011. E-mail:  [email protected].

     Department of Physiology and Biological Information, Dokkyo University School of Medicine.

     Tohoku University Graduate School of Medicine.

    §

     Present address:  Division of Animal Models, Department of Infectious Diseases, Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.

     GSF-National Research Center for Environment and Health.

     Department of Microbiology, Dokkyo University School of Medicine.

    Cited By

    This article is cited by 67 publications.

    1. Niyada Hin, Bridget Duvall, Dana Ferraris, Jesse Alt, Ajit G. Thomas, Rana Rais, Camilo Rojas, Ying Wu, Krystyna M. Wozniak, Barbara S. Slusher, and Takashi Tsukamoto . 6-Hydroxy-1,2,4-triazine-3,5(2H,4H)-dione Derivatives as Novel d-Amino Acid Oxidase Inhibitors. Journal of Medicinal Chemistry 2015, 58 (18) , 7258-7272. https://doi.org/10.1021/acs.jmedchem.5b00482
    2. James F. Berry, Dana V. Ferraris, Bridget Duvall, Niyada Hin, Rana Rais, Jesse Alt, Ajit G. Thomas, Camilo Rojas, Kenji Hashimoto, Barbara S. Slusher, and Takashi Tsukamoto . Synthesis and SAR of 1-Hydroxy-1H-benzo[d]imidazol-2(3H)-ones as Inhibitors of d-Amino Acid Oxidase. ACS Medicinal Chemistry Letters 2012, 3 (10) , 839-843. https://doi.org/10.1021/ml300212a
    3. Linh P. Nguyen, Erin L. Hsu, Goutam Chowdhury, Miroslav Dostalek, F. Peter Guengerich and Christopher A. Bradfield. d-Amino Acid Oxidase Generates Agonists of the Aryl Hydrocarbon Receptor from d-Tryptophan. Chemical Research in Toxicology 2009, 22 (12) , 1897-1904. https://doi.org/10.1021/tx900043s
    4. Chezélle Stear, Anél Petzer, Chantalle Crous, Jacobus P. Petzer. Indazole derivatives as novel inhibitors of monoamine oxidase and D-amino acid oxidase. Medicinal Chemistry Research 2024, 33 (1) , 164-176. https://doi.org/10.1007/s00044-023-03176-x
    5. Jean-Marie Billard, Thomas Freret. Improved NMDA Receptor Activation by the Secreted Amyloid-Protein Precursor-α in Healthy Aging: A Role for D-Serine?. International Journal of Molecular Sciences 2022, 23 (24) , 15542. https://doi.org/10.3390/ijms232415542
    6. Chien-Yi Kuo, Chieh-Hsin Lin, Hsien-Yuan Lane. Targeting d-Amino Acid Oxidase (DAAO) for the Treatment of Schizophrenia: Rationale and Current Status of Research. CNS Drugs 2022, 36 (11) , 1143-1153. https://doi.org/10.1007/s40263-022-00959-5
    7. Rialette Hitge, Anél Petzer, Jacobus P. Petzer. Isatoic anhydrides as novel inhibitors of monoamine oxidase. Bioorganic & Medicinal Chemistry 2022, 73 , 117030. https://doi.org/10.1016/j.bmc.2022.117030
    8. Milan Holeček. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients 2022, 14 (9) , 1987. https://doi.org/10.3390/nu14091987
    9. Nozomi Nagase, Yuka Ikeda, Ai Tsuji, Yasuko Kitagishi, Satoru Matsuda. Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy. World Journal of Diabetes 2022, 13 (3) , 150-160. https://doi.org/10.4239/wjd.v13.i3.150
    10. Yuanqiang Ma, Gyurim Lee, Su-Young Heo, Yoon-Seok Roh. Oxidative Stress Is a Key Modulator in the Development of Nonalcoholic Fatty Liver Disease. Antioxidants 2022, 11 (1) , 91. https://doi.org/10.3390/antiox11010091
    11. Roslyn Lefin, Anél Petzer, Stephanus J. Cloete, Jacobus P. Petzer. Phenothiazine, anthraquinone and related tricyclic derivatives as inhibitors of d-amino acid oxidase. Results in Chemistry 2022, 4 , 100278. https://doi.org/10.1016/j.rechem.2021.100278
    12. Andrea Baker, Lachlan Clarke, Peter Donovan, Jacobus P. J. Ungerer, Gunter Hartel, George Bruxner, Luca Cocchi, Anne Gordon, Vikas Moudgil, Gail Robinson, Digant Roy, Ravinder Sohal, Emma Whittle, James G. Scott. Cadence discovery: study protocol for a dose-finding and mechanism of action clinical trial of sodium benzoate in people with treatment-refractory schizophrenia. Trials 2021, 22 (1) https://doi.org/10.1186/s13063-021-05890-6
    13. Magdalena Orzylowski, Esther Fujiwara, Darrell D. Mousseau, Glen B. Baker. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Frontiers in Psychiatry 2021, 12 https://doi.org/10.3389/fpsyt.2021.754032
    14. Ju-Chun Pei, Da-Zhong Luo, Shiang-Shin Gau, Chia-Yuan Chang, Wen-Sung Lai. Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Frontiers in Psychiatry 2021, 12 https://doi.org/10.3389/fpsyt.2021.742058
    15. Amir Meftah, Hiroshi Hasegawa, Joshua T. Kantrowitz. D-Serine: A Cross Species Review of Safety. Frontiers in Psychiatry 2021, 12 https://doi.org/10.3389/fpsyt.2021.726365
    16. Yi-Shiou Tseng, Chun-Hou Liao, Wen-Bin Wu, Ming-Chieh Ma. N -methyl- d -aspartate receptor hyperfunction contributes to d -serine-mediated renal insufficiency. American Journal of Physiology-Renal Physiology 2021, 320 (5) , F799-F813. https://doi.org/10.1152/ajprenal.00461.2020
    17. Eizo Marutani, Fumito Ichinose. Emerging pharmacological tools to control hydrogen sulfide signaling in critical illness. Intensive Care Medicine Experimental 2020, 8 (1) https://doi.org/10.1186/s40635-020-0296-4
    18. James G. Scott, Andrea Baker, Carmen C. W. Lim, Sharon Foley, Frances Dark, Anne Gordon, David Ward, Drew Richardson, George Bruxner, K. Martin Beckmann, Sean Hatherill, Stephen Stathis, Krystal Dixon, Alexander E. Ryan, Brett C. McWhinney, Jacobus P. J. Ungerer, Michael Berk, Olivia M. Dean, Sukanta Saha, John McGrath. Effect of Sodium Benzoate vs Placebo Among Individuals With Early Psychosis. JAMA Network Open 2020, 3 (11) , e2024335. https://doi.org/10.1001/jamanetworkopen.2020.24335
    19. Tomonori Kimura, Atsushi Hesaka, Yoshitaka Isaka. Utility of d-serine monitoring in kidney disease. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2020, 1868 (9) , 140449. https://doi.org/10.1016/j.bbapap.2020.140449
    20. Xiaoyun Deng, Yiding Zhang, Zhen Chen, Katsushi Kumata, Richard Van, Jian Rong, Tuo Shao, Akiko Hatori, Wakana Mori, Qingzhen Yu, Kuan Hu, Masayuki Fujinaga, Hsiao-Ying Wey, Yihan Shao, Lee Josephson, Giulia Murtas, Loredano Pollegioni, Ming-Rong Zhang, Steven Liang. Synthesis and preliminary evaluation of 4-hydroxy-6-(3-[11C]methoxyphenethyl)pyridazin-3(2H)-one, a 11C-labeled -amino acid oxidase (DAAO) inhibitor for PET imaging. Bioorganic & Medicinal Chemistry Letters 2020, 30 (16) , 127326. https://doi.org/10.1016/j.bmcl.2020.127326
    21. Tomonori Kimura, Atsushi Hesaka, Yoshitaka Isaka. d-Amino acids and kidney diseases. Clinical and Experimental Nephrology 2020, 24 (5) , 404-410. https://doi.org/10.1007/s10157-020-01862-3
    22. Bahareh Peyrovian, Joshua D. Rosenblat, Zihang Pan, Michelle Iacobucci, Elisa Brietzke, Roger S. McIntyre. The glycine site of NMDA receptors: A target for cognitive enhancement in psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019, 92 , 387-404. https://doi.org/10.1016/j.pnpbp.2019.02.001
    23. Hidehiro Iwakawa, Shin Makabe, Tomokazu Ito, Tohru Yoshimura, Hiroyuki Watanabe. Urinary D-serine level as a predictive biomarker for deterioration of renal function in patients with atherosclerotic risk factors. Biomarkers 2019, 24 (2) , 159-165. https://doi.org/10.1080/1354750X.2018.1528632
    24. Taiki Nagano, Shunsuke Yamao, Anju Terachi, Hidetora Yarimizu, Haruki Itoh, Ryoko Katasho, Kosuke Kawai, Akio Nakashima, Tetsushi Iwasaki, Ushio Kikkawa, Shinji Kamada. d-amino acid oxidase promotes cellular senescence via the production of reactive oxygen species. Life Science Alliance 2019, 2 (1) , e201800045. https://doi.org/10.26508/lsa.201800045
    25. Hiroshi Hasegawa, Nami Masuda, Hiromi Natori, Yoshihiko Shinohara, Kimiyoshi Ichida. Pharmacokinetics and toxicokinetics of d-serine in rats. Journal of Pharmaceutical and Biomedical Analysis 2019, 162 , 264-271. https://doi.org/10.1016/j.jpba.2018.09.026
    26. Loredano Pollegioni, Silvia Sacchi, Giulia Murtas. Human D-Amino Acid Oxidase: Structure, Function, and Regulation. Frontiers in Molecular Biosciences 2018, 5 https://doi.org/10.3389/fmolb.2018.00107
    27. Yusuke Nakade, Yasunori Iwata, Kengo Furuichi, Masashi Mita, Kenji Hamase, Ryuichi Konno, Taito Miyake, Norihiko Sakai, Shinji Kitajima, Tadashi Toyama, Yasuyuki Shinozaki, Akihiro Sagara, Taro Miyagawa, Akinori Hara, Miho Shimizu, Yasutaka Kamikawa, Kouichi Sato, Megumi Oshima, Shiori Yoneda-Nakagawa, Yuta Yamamura, Shuichi Kaneko, Tetsuya Miyamoto, Masumi Katane, Hiroshi Homma, Hidetoshi Morita, Wataru Suda, Masahira Hattori, Takashi Wada. Gut microbiota–derived D-serine protects against acute kidney injury. JCI Insight 2018, 3 (20) https://doi.org/10.1172/jci.insight.97957
    28. Bence Szilágyi, György G. Ferenczy, György M. Keserű. Drug discovery strategies and the preclinical development of D-amino-acid oxidase inhibitors as antipsychotic therapies. Expert Opinion on Drug Discovery 2018, 13 (10) , 973-982. https://doi.org/10.1080/17460441.2018.1524459
    29. Laura Walrave, Anouk Pierre, Giulia Albertini, Najat Aourz, Dimitri De Bundel, Ann Van Eeckhaut, Mathieu Vinken, Christian Giaume, Luc Leybaert, Ilse Smolders. I nhibition of astroglial connexin43 hemichannels with TAT ‐ G ap19 exerts anticonvulsant effects in rodents. Glia 2018, 66 (8) , 1788-1804. https://doi.org/10.1002/glia.23341
    30. Silvia Sacchi, Pamela Cappelletti, Giulia Murtas. Biochemical Properties of Human D-amino Acid Oxidase Variants and Their Potential Significance in Pathologies. Frontiers in Molecular Biosciences 2018, 5 https://doi.org/10.3389/fmolb.2018.00055
    31. Gerson D. Guercio, Rogerio Panizzutti. Potential and Challenges for the Clinical Use of d-Serine As a Cognitive Enhancer. Frontiers in Psychiatry 2018, 9 https://doi.org/10.3389/fpsyt.2018.00014
    32. Alex Ryan, Andrea Baker, Frances Dark, Sharon Foley, Anne Gordon, Sean Hatherill, Stephen Stathis, Sukanta Saha, George Bruxner, Martin Beckman, Drew Richardson, Michael Berk, Olivia Dean, John McGrath, Cadence Working Group, James Scott. The efficacy of sodium benzoate as an adjunctive treatment in early psychosis - CADENCE-BZ: study protocol for a randomized controlled trial. Trials 2017, 18 (1) https://doi.org/10.1186/s13063-017-1908-5
    33. Akira Okada, Masaomi Nangaku, Tzu-Ming Jao, Hiroshi Maekawa, Yu Ishimono, Takahisa Kawakami, Reiko Inagi. D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-11049-8
    34. Alexander Cartus. d -Amino Acids and Cross-Linked Amino Acids in Food. 2017, 251-278. https://doi.org/10.1016/B978-0-08-100674-0.00012-6
    35. Dongsheng Xie, Jun Lu, Jin Xie, Junjun Cui, Teng-Fei Li, Yan-Chao Wang, Yuan Chen, Nian Gong, Xin-Yan Li, Lei Fu, Yong-Xiang Wang. Discovery and analgesic evaluation of 8-chloro-1,4-dihydropyrido[2,3- b ]pyrazine-2,3-dione as a novel potent d -amino acid oxidase inhibitor. European Journal of Medicinal Chemistry 2016, 117 , 19-32. https://doi.org/10.1016/j.ejmech.2016.04.017
    36. Camila Montesinos Guevara, Ali R. Mani. The role of D-serine in peripheral tissues. European Journal of Pharmacology 2016, 780 , 216-223. https://doi.org/10.1016/j.ejphar.2016.03.054
    37. Camilo Rojas, Jesse Alt, Nancy A Ator, Ajit G Thomas, Ying Wu, Niyada Hin, Krystyna Wozniak, Dana Ferraris, Rana Rais, Takashi Tsukamoto, Barbara S Slusher. D-Amino-Acid Oxidase Inhibition Increases D-Serine Plasma Levels in Mouse But not in Monkey or Dog. Neuropsychopharmacology 2016, 41 (6) , 1610-1619. https://doi.org/10.1038/npp.2015.319
    38. Sebastiaan Wesseling, Joost O Fledderus, Marianne C Verhaar, Jaap A Joles. Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal. British Journal of Pharmacology 2015, 172 (6) , 1607-1619. https://doi.org/10.1111/bph.12674
    39. Jumpei Sasabe, Masataka Suzuki, Yurika Miyoshi, Yosuke Tojo, Chieko Okamura, Sonomi Ito, Ryuichi Konno, Masashi Mita, Kenji Hamase, Sadakazu Aiso, . Ischemic Acute Kidney Injury Perturbs Homeostasis of Serine Enantiomers in the Body Fluid in Mice: Early Detection of Renal Dysfunction Using the Ratio of Serine Enantiomers. PLoS ONE 2014, 9 (1) , e86504. https://doi.org/10.1371/journal.pone.0086504
    40. Zaher A. Radi, Zachary S. Stewart, Felicity A. Grzemski, Walter F. Bobrowski. Renal Pathophysiologic Role of Cortical Tubular Inclusion Bodies. Toxicologic Pathology 2013, 41 (1) , 32-37. https://doi.org/10.1177/0192623312450629
    41. Masahiro Yamanaka, Yurika Miyoshi, Hiroko Ohide, Kenji Hamase, Ryuichi Konno. d-Amino acids in the brain and mutant rodents lacking d-amino-acid oxidase activity. Amino Acids 2012, 43 (5) , 1811-1821. https://doi.org/10.1007/s00726-012-1384-x
    42. Rana Rais, Ajit G. Thomas, Krystyna Wozniak, Ying Wu, Hanna Jaaro-Peled, Akira Sawa, Christine A. Strick, Sandra J. Engle, Nicholas J. Brandon, Camilo Rojas, Barbara S. Slusher, Takashi Tsukamoto. Pharmacokinetics of Oral d-Serine in d-Amino Acid Oxidase Knockout Mice. Drug Metabolism and Disposition 2012, 40 (11) , 2067-2073. https://doi.org/10.1124/dmd.112.046482
    43. Mendel Friedman, Carol E. Levin. Nutritional and medicinal aspects of d-amino acids. Amino Acids 2012, 42 (5) , 1553-1582. https://doi.org/10.1007/s00726-011-0915-1
    44. Haizhi Zhang, Li Qi, Yuqing Lin, Lanqun Mao, Yi Chen. Study on the decrease of renal d-amino acid oxidase activity in the rat after renal ischemia by chiral ligand exchange capillary electrophoresis. Amino Acids 2012, 42 (1) , 337-345. https://doi.org/10.1007/s00726-010-0811-0
    45. A.T. Cartus. d-Amino acids and cross-linked amino acids as food contaminants. 2012, 286-319. https://doi.org/10.1533/9780857095794.2.286
    46. Matthew Whiteman, Sophie Le Trionnaire, Mohit Chopra, Bridget Fox, Jacqueline Whatmore. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clinical Science 2011, 121 (11) , 459-488. https://doi.org/10.1042/CS20110267
    47. Bríd Áine Nic Dhonnchadha, Kathleen M. Kantak. Cognitive enhancers for facilitating drug cue extinction: Insights from animal models. Pharmacology Biochemistry and Behavior 2011, 99 (2) , 229-244. https://doi.org/10.1016/j.pbb.2011.01.018
    48. Hiroshi Hasegawa, Yoshihiko Shinohara, Nami Masuda, Takao Hashimoto, Kimiyoshi Ichida. Simultaneous determination of serine enantiomers in plasma using Mosher's reagent and stable isotope dilution gas chromatography‐mass spectrometry. Journal of Mass Spectrometry 2011, 46 (5) , 502-507. https://doi.org/10.1002/jms.1917
    49. Colm M. P. O’Tuathaigh, Lieve Desbonnet, Paula M. Moran, John L. Waddington. Susceptibility Genes for Schizophrenia: Mutant Models, Endophenotypes and Psychobiology. 2011, 209-250. https://doi.org/10.1007/7854_2011_194
    50. Ryuichi Konno, Kenji Hamase, Rindo Maruyama, Kiyoshi Zaitsu. Mutant Mice and Rats Lacking D ‐Amino Acid Oxidase. Chemistry & Biodiversity 2010, 7 (6) , 1450-1458. https://doi.org/10.1002/cbdv.200900303
    51. Mendel Friedman. Origin, Microbiology, Nutrition, and Pharmacology of D ‐Amino Acids. Chemistry & Biodiversity 2010, 7 (6) , 1491-1530. https://doi.org/10.1002/cbdv.200900225
    52. K. N. Chandrashekar, Muralidhara. d-Aspartic acid induced oxidative stress and mitochondrial dysfunctions in testis of prepubertal rats. Amino Acids 2010, 38 (3) , 817-827. https://doi.org/10.1007/s00726-009-0288-x
    53. Gary R. Martin, G. Webb McKnight, Michael S. Dicay, Carla S. Coffin, Jose G.P. Ferraz, John L. Wallace. Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Digestive and Liver Disease 2010, 42 (2) , 103-109. https://doi.org/10.1016/j.dld.2009.05.016
    54. Viviane Labrie, John C. Roder. The involvement of the NMDA receptor d-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neuroscience & Biobehavioral Reviews 2010, 34 (3) , 351-372. https://doi.org/10.1016/j.neubiorev.2009.08.002
    55. L Verrall, P W J Burnet, J F Betts, P J Harrison. The neurobiology of D-amino acid oxidase and its involvement in schizophrenia. Molecular Psychiatry 2010, 15 (2) , 122-137. https://doi.org/10.1038/mp.2009.99
    56. V. Labrie, W. Wang, S. W. Barger, G. B. Baker, J. C. Roder. Genetic loss of D‐amino acid oxidase activity reverses schizophrenia‐like phenotypes in mice. Genes, Brain and Behavior 2010, 9 (1) , 11-25. https://doi.org/10.1111/j.1601-183X.2009.00529.x
    57. Yukie Tada, Norio Yano, Hiroshi Takahashi, Katsuhiro Yuzawa, Hiroshi Ando, Yoshikazu Kubo, Akemichi Nagasawa, Keigi Chin, Yasuko Kawamata, Ryosei Sakai, Norio Ohashi, Akio Ogata, Dai Nakae. A 90-day Feeding Toxicity Study of L-Serine in Male and Female Fischer 344 Rats. Journal of Toxicologic Pathology 2010, 23 (1) , 39-47. https://doi.org/10.1293/tox.23.39
    58. Nina A. Bonekamp, Alfred Völkl, H. Dariush Fahimi, Michael Schrader. Reactive oxygen species and peroxisomes: Struggling for balance. BioFactors 2009, 35 (4) , 346-355. https://doi.org/10.1002/biof.48
    59. Lucila de Bortoli da Silva, Guilhian Leipnitz, Bianca Seminotti, Carolina G. Fernandes, Ana Paula Beskow, Alexandre U. Amaral, Moacir Wajner. D-Serine induces lipid and protein oxidative damage and decreases glutathione levels in brain cortex of rats. Brain Research 2009, 1256 , 34-42. https://doi.org/10.1016/j.brainres.2008.12.036
    60. Viviane Labrie, Steven Duffy, Wei Wang, Steven W. Barger, Glen B. Baker, John C. Roder. Genetic inactivation of D-amino acid oxidase enhances extinction and reversal learning in mice. Learning & Memory 2009, 16 (1) , 28-37. https://doi.org/10.1101/lm.1112209
    61. Gen Zheng, Wei Liu, Yanhua Gong, Hongbo Yang, Bin Yin, JingXi Zhu, Yi Xie, Xiaozhong Peng, Boqin Qiang, Jiangang Yuan. Human D -Tyr-tRNATyr deacylase contributes to the resistance of the cell to D -amino acids. Biochemical Journal 2009, 417 (1) , 85-97. https://doi.org/10.1042/BJ20080617
    62. Mendel Friedman. Dietary Significance of Processing‐Induced D‐Amino Acids. 2008, 509-537. https://doi.org/10.1002/9780470430101.ch6b
    63. D.R. Dietrich, A.H. Heussner, E. O'Brien, T. Gramatté, M. Runkel, S. Rumpf, B.W. Day. Propiverine-induced accumulation of nuclear and cytosolic protein in F344 rat kidneys: Isolation and identification of the accumulating protein. Toxicology and Applied Pharmacology 2008, 233 (3) , 411-419. https://doi.org/10.1016/j.taap.2008.09.014
    64. Nandi Zhou, Zhenyu Shao, Yinxi Huang, Tongyang Zhu, Genxi Li. Electroanalysis of D-Amino Acid Oxidase and Its Interaction with Hydrogen Peroxide. Analytical Letters 2008, 41 (8) , 1408-1418. https://doi.org/10.1080/00032710802119376
    65. Armando Soto, Nicholas J. DelRaso, John J. Schlager, Victor T. Chan. d-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response. Toxicology 2008, 243 (1-2) , 177-192. https://doi.org/10.1016/j.tox.2007.10.009
    66. Alexander W. Krug, Katharina Völker, William H. Dantzler, Stefan Silbernagl. Why is d -serine nephrotoxic and α-aminoisobutyric acid protective?. American Journal of Physiology-Renal Physiology 2007, 293 (1) , F382-F390. https://doi.org/10.1152/ajprenal.00441.2006
    67. Marisol Orozco-Ibarra, Omar Noel Medina-Campos, Dolores Javier Sánchez-González, Claudia María Martínez-Martínez, Esaú Floriano-Sánchez, Abel Santamaría, Victoria Ramirez, Norma A. Bobadilla, José Pedraza-Chaverri. Evaluation of oxidative stress in d-serine induced nephrotoxicity. Toxicology 2007, 229 (1-2) , 123-135. https://doi.org/10.1016/j.tox.2006.10.008

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect