ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Nanotoxicity of Silver Nanoparticles to Red Blood Cells: Size Dependent Adsorption, Uptake, and Hemolytic Activity

View Author Information
Asian International Rivers Center, Yunnan Key Laboratory of International Rivers and Trans-boundary Eco-Security, and College of Chemical Science and Technology, Yunnan University, Kunming, 650091, People’s Republic of China
§ Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
*(L.Q.C.) Tel/Fax: 86-871-65034577. E-mail: [email protected]
*(C.Z.H.) Tel/Fax: 86-23-68254659. E-mail: [email protected]
Cite this: Chem. Res. Toxicol. 2015, 28, 3, 501–509
Publication Date (Web):January 20, 2015
https://doi.org/10.1021/tx500479m
Copyright © 2015 American Chemical Society

    Article Views

    3282

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Silver nanoparticles (AgNPs) are increasingly being used as antimicrobial agents and drug carriers in biomedical fields. However, toxicological information on their effects on red blood cells (RBCs) and the mechanisms involved remain sparse. In this article, we examined the size dependent nanotoxicity of AgNPs using three different characteristic sizes of 15 nm (AgNPs15), 50 nm (AgNPs50), and 100 nm (AgNPs100) against fish RBCs. Optical microscopy and transmission electron microscopy observations showed that AgNPs exhibited a size effect on their adsorption and uptake by RBCs. The middle sized AgNPs50, compared with the smaller or bigger ones, showed the highest level of adsorption and uptake by the RBCs, suggesting an optimal size of ∼50 nm for passive uptake by RBCs. The toxic effects determined based on the hemolysis, membrane injury, lipid peroxidation, and antioxidant enzyme production were fairly size and dose dependent. In particular, the smallest sized AgNPs15 displayed a greater ability to induce hemolysis and membrane damage than AgNPs50 and AgNPs100. Such cytotoxicity induced by AgNPs should be attributed to the direct interaction of the nanoparticle with the RBCs, resulting in the production of oxidative stress, membrane injury, and subsequently hemolysis. Overall, the results suggest that particle size is a critical factor influencing the interaction between AgNPs and the RBCs.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 231 publications.

    1. Sara Takallu, Esmaeil Mirzaei, Abbas Zakeri Bazmandeh, Hamid Reza Ghaderi Jafarbeigloo, Hooman Khorshidi. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infectious Diseases 2024, 10 (3) , 779-807. https://doi.org/10.1021/acsinfecdis.3c00568
    2. Zhe Wang, Yijin Tian, Jinghua Hao, Ya Liu, Jie Tang, Zhenlan Xu, Yin Liu, Biao Tang, Xiu Huang, Nali Zhu, Zhigang Li, Ligang Hu, Lingxiangyu Li, Yawei Wang, Guibin Jiang. Chiral Nanoclusters as Alternative Therapeutic Strategies to Confront the Health Threat from Antibiotic-Resistant Pathogens. ACS Nano 2024, 18 (9) , 7253-7266. https://doi.org/10.1021/acsnano.3c13044
    3. Kevin D. Martínez-García, Tonatzin Zertuche-Arias, Johanna Bernáldez-Sarabia, Enrique Iñiguez, Thomas Kretzchmar, Tanya Amanda Camacho-Villegas, Pavel H. Lugo-Fabres, Alexei F. Licea Navarro, Jorge Bravo-Madrigal, Ana B. Castro-Ceseña. Radical Scavenging, Hemocompatibility, and Antibacterial Activity against MDR Acinetobacter baumannii in Alginate-Based Aerogels Containing Lipoic Acid-Capped Silver Nanoparticles. ACS Omega 2024, 9 (2) , 2350-2361. https://doi.org/10.1021/acsomega.3c06114
    4. Sofia G. Nikolopoulou, Beata Kalska, Anna Basa, Athina Papadopoulou, Eleni K. Efthimiadou. Novel Hybrid Silver–Silica Nanoparticles Synthesized by Modifications of the Sol–Gel Method and Their Theranostic Potential in Cancer. ACS Applied Bio Materials 2023, 6 (12) , 5235-5251. https://doi.org/10.1021/acsabm.3c00494
    5. Tanaz Islam, Olga N. Chesnokov, Andrew V. Oleinikov, Peng Yi. Supported Erythrocyte Membranes on Piezoelectric Sensors for Studying the Interactions with Nanoparticles. Langmuir 2023, 39 (49) , 17770-17781. https://doi.org/10.1021/acs.langmuir.3c02396
    6. Fangdi Wei, Yuan Yao, Qiutong Chen, Jiamei Song, Zhen Xie, Li Ai, Guanhong Xu, Yao Cen, Yuhui Lin, Jing Yang, Qin Hu, Rui Li. Dendrimer-Modified Carbon Nanoparticles with Excitation-Independent Long Wavelength Emission for siRNA Delivery. ACS Applied Nano Materials 2023, 6 (2) , 1083-1092. https://doi.org/10.1021/acsanm.2c04598
    7. Yue Tan, Wei Cai, Caiming Luo, Jiahao Tang, Ryan T. K. Kwok, Jacky W. Y. Lam, Jianwei Sun, Jinbin Liu, Ben Zhong Tang. Rapid Biotransformation of Luminescent Bimetallic Nanoparticles in Hepatic Sinusoids. Journal of the American Chemical Society 2022, 144 (45) , 20653-20660. https://doi.org/10.1021/jacs.2c07657
    8. Roshani R. Pagar, Shubham R. Musale, Ganesh Pawar, Deepak Kulkarni, Prabhanjan S. Giram. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials. ACS Biomaterials Science & Engineering 2022, 8 (6) , 2161-2195. https://doi.org/10.1021/acsbiomaterials.1c01304
    9. Neetu Tripathi, Manoj Kumar Goshisht. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS Applied Bio Materials 2022, 5 (4) , 1391-1463. https://doi.org/10.1021/acsabm.2c00014
    10. Danielle F. Mello, Laura L. Maurer, Ian T. Ryde, Dong Hoon Songr, Stella M. Marinakos, Chuanjia Jiang, Mark R. Wiesner, Heileen Hsu-Kim, Joel N. Meyer. In Vivo Effects of Silver Nanoparticles on Development, Behavior, and Mitochondrial Function are Altered by Genetic Defects in Mitochondrial Dynamics. Environmental Science & Technology 2022, 56 (2) , 1113-1124. https://doi.org/10.1021/acs.est.1c05915
    11. Shiying Lang, Chaojian Chen, Jun Xiang, Yuqi Liu, Kaijun Li, Qinsheng Hu, Gongyan Liu. Facile and Robust Antibacterial Functionalization of Medical Cotton Gauze with Gallic Acids to Accelerate Wound Healing. Industrial & Engineering Chemistry Research 2021, 60 (28) , 10225-10234. https://doi.org/10.1021/acs.iecr.1c01833
    12. Guoshuai Zhu, Zhencheng Sun, Ping Hui, Wenwen Chen, Xingyu Jiang. Composite Film with Antibacterial Gold Nanoparticles and Silk Fibroin for Treating Multidrug-Resistant E. coli-Infected Wounds. ACS Biomaterials Science & Engineering 2021, 7 (5) , 1827-1835. https://doi.org/10.1021/acsbiomaterials.0c01271
    13. Arbab Ali, Muhammad Ovais, Xuejing Cui, YuKui Rui, Chunying Chen. Safety Assessment of Nanomaterials for Antimicrobial Applications. Chemical Research in Toxicology 2020, 33 (5) , 1082-1109. https://doi.org/10.1021/acs.chemrestox.9b00519
    14. Surekha Barkur, Jijo Lukose, Santhosh Chidangil. Probing Nanoparticle–Cell Interaction Using Micro-Raman Spectroscopy: Silver and Gold Nanoparticle-Induced Stress Effects on Optically Trapped Live Red Blood Cells. ACS Omega 2020, 5 (3) , 1439-1447. https://doi.org/10.1021/acsomega.9b02988
    15. Fengbang Wang, Bolei Chen, Bing Yan, Yongguang Yin, Ligang Hu, Yong Liang, Maoyong Song, Guibin Jiang. Scattered Light Imaging Enables Real-Time Monitoring of Label-Free Nanoparticles and Fluorescent Biomolecules in Live Cells. Journal of the American Chemical Society 2019, 141 (36) , 14043-14047. https://doi.org/10.1021/jacs.9b05894
    16. Kiran Jadhav, Sharada Deore, Dinesh Dhamecha, Rajeshwari H R, Satveer Jagwani, Sunil Jalalpure, Raghvendra Bohara. Phytosynthesis of Silver Nanoparticles: Characterization, Biocompatibility Studies, and Anticancer Activity. ACS Biomaterials Science & Engineering 2018, 4 (3) , 892-899. https://doi.org/10.1021/acsbiomaterials.7b00707
    17. Hua Geng, Gowsihan Poologasundarampillai, Naomi Todd, Aine Devlin-Mullin, Katie L. Moore, Zahra Golrokhi, James B. Gilchrist, Eric Jones, Richard J. Potter, Chris Sutcliffe, Marie O’Brien, David W.L. Hukins, Sarah Cartmell, Christopher A. Mitchell, and Peter D. Lee . Biotransformation of Silver Released from Nanoparticle Coated Titanium Implants Revealed in Regenerating Bone. ACS Applied Materials & Interfaces 2017, 9 (25) , 21169-21180. https://doi.org/10.1021/acsami.7b05150
    18. Mandeep Singh Bakshi . Nanotoxicity in Systemic Circulation and Wound Healing. Chemical Research in Toxicology 2017, 30 (6) , 1253-1274. https://doi.org/10.1021/acs.chemrestox.7b00068
    19. Huiliang Cao, Wenjie Zhang, Fanhao Meng, Jinshu Guo, Donghui Wang, Shi Qian, Xinquan Jiang, Xuanyong Liu, and Paul K. Chu . Osteogenesis Catalyzed by Titanium-Supported Silver Nanoparticles. ACS Applied Materials & Interfaces 2017, 9 (6) , 5149-5157. https://doi.org/10.1021/acsami.6b15448
    20. Haiwei Xiong, Xiaoyan Nie, Wei Cao, Jia Zhu, Jian Chen, Ruihao Liu, Yingliang Li. Investigation of mitochondria-dependent apoptosis pathway and lipid peroxidation level induced by biosynthesized silver nanoparticles: caspase-3 activation, BAK1/BCLx regulation and malondialdehyde production. Cancer Nanotechnology 2024, 15 (1) https://doi.org/10.1186/s12645-024-00248-4
    21. Sushama Agarwalla, Sunil Kumar Singh, Mohammed Adil Ibrahim, Hemanth Noothalapati, Suhanya Duraiswamy. Antimicrobial Coatings. 2024, 231-274. https://doi.org/10.1002/9781394207305.ch9
    22. Anton Tkachenko. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicology in Vitro 2024, 98 , 105814. https://doi.org/10.1016/j.tiv.2024.105814
    23. Vrushti Kansara, Mitali Patel. Modulating the properties of graphene quantum dots by heteroatom doping for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 691 , 133906. https://doi.org/10.1016/j.colsurfa.2024.133906
    24. Fatma S. Abou-Elnour, Salma E. El-Habashy, Marwa M. Essawy, Ossama Y. Abdallah. Codelivery of ivermectin and methyl dihydrojasmonate in nanostructured lipid carrier for synergistic antileukemia therapy. International Journal of Pharmaceutics 2024, 656 , 124086. https://doi.org/10.1016/j.ijpharm.2024.124086
    25. Khalida Naseem, Asad Aziz, Mohammad Ehtisham Khan, Shahzaib Ali, Awais Khalid. Bioinorganic metal nanoparticles and their potential applications as antimicrobial, antioxidant and catalytic agents: a review. Reviews in Inorganic Chemistry 2024, Article ASAP.
    26. Yunxia Ji, Yunqing Wang, Xiaoyan Wang, Changjun Lv, Qunfang Zhou, Guibin Jiang, Bing Yan, Lingxin Chen. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. Journal of Hazardous Materials 2024, 468 , 133800. https://doi.org/10.1016/j.jhazmat.2024.133800
    27. Nishanthi Ramasami, Manikandan Dhayalan, Malathi Selvaraj, Savaas Umar Mohammed Riyaz, Palani Perumal, Santiagu Stephen Irudayaraj, Rajakrishnan Rajagopal, Ahmed Alfarhan, Antony Stalin. Enhanced Bioactivity of Streptomycin Bioconjugated Metal Nanoparticles Against Streptomycin Resistant Bacillus Sp. Indian Journal of Microbiology 2024, 257 https://doi.org/10.1007/s12088-024-01234-5
    28. Cristina-Maria Hirschbiegel, Mingdi Jiang, Jungmi Park, Vincent M. Rotello. A reflection on ‘Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles’. Materials Horizons 2024, 11 (5) , 1120-1125. https://doi.org/10.1039/D4MH90011A
    29. Shobha Nagarajaiah, Aladahalli Shivanna Giresha, Prashanth Gopala Krishna, Manoj Manikrao Gadewar, Manjappa Praveen, Nagappa Nanda, Deepadarshan Urs, Kattepura Krishnappa Dharmappa, Bhangi Mutta Nagabhushana, Srilatha Rao, Mallanna Mahadeva Swamy, Kalanakoppal Venkatesh Yatish. Anti‐oncogenic Potential and Inflammation Modulatory Response of Green Synthesized Biocompatible Silver Nanoparticles. Chemistry & Biodiversity 2024, 21 (3) https://doi.org/10.1002/cbdv.202301533
    30. Xiangqian Gao, Jing Lin, Chao Yu, Chengchun Tang, Yang Huang. Nanostructured Silver-Boron Nitride Hybrid Materials: Toward High-Performance Antibacterial Hydrogels with Enhanced Mechanical and Thermal Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 161 , 133459. https://doi.org/10.1016/j.colsurfa.2024.133459
    31. Sara Gimondi, Helena Ferreira, Rui L. Reis, Nuno M. Neves. Intracellular Trafficking of Size-Tuned Nanoparticles for Drug Delivery. International Journal of Molecular Sciences 2024, 25 (1) , 312. https://doi.org/10.3390/ijms25010312
    32. Maria-Argyro Karageorgou, Adamantia Apostolopoulou, Mina-Ermioni Tomazinaki, Dragana Stanković, Efstathios Stiliaris, Penelope Bouziotis, Dimosthenis Stamopoulos. Gamma-Camera Direct Imaging of the Plasma and On/Intra Cellular Distribution of the 99mTc-DPD-Fe3O4 Dual-Modality Contrast Agent in Peripheral Human Blood. Materials 2024, 17 (2) , 335. https://doi.org/10.3390/ma17020335
    33. Keethaanjali Palaniyappan, Rabiatul Basria S. M. N. Mydin, Darius Widera, Siti Salmah Noordin, Nor Hazliana Harun, Wan Nuramiera Wan Eddis Effendy, Roshasnorlyza Hazan, Srimala Sreekantan. Double-edged sword of biofouling potentials associated with haemocompatibility behaviour: titania nanotube arrays for medical implant surface technology. Beni-Suef University Journal of Basic and Applied Sciences 2023, 12 (1) https://doi.org/10.1186/s43088-023-00363-y
    34. Devesh U. Kapoor, Ravish J. Patel, Mansi Gaur, Shalin Parikh, Bhupendra G. Prajapati. Metallic and metal oxide nanoparticles in treating Pseudomonas aeruginosa infections. Journal of Drug Delivery Science and Technology 2023, 12 , 105290. https://doi.org/10.1016/j.jddst.2023.105290
    35. Vladislav Potseleev, Sergey Uspenskii, Elena Trofimchuk, Anastasia Bolshakova, Anna Kasatova, Dmitrii Kasatov, Sergey Taskaev. Nanocomposite Materials Based on Polylactide and Gold Complex Compounds for Absorbed Dose Diagnostics in BNCT. International Journal of Molecular Sciences 2023, 24 (22) , 16492. https://doi.org/10.3390/ijms242216492
    36. Adriano P. Pontes, Steffen van der Wal, Karin Roelofs, Anne Grobbink, Laura B. Creemers, Johan F.J. Engbersen, Jaap Rip. A poly(amidoamine)-based polymeric nanoparticle platform for efficient in vivo delivery of mRNA. Biomaterials Advances 2023, 6 , 213713. https://doi.org/10.1016/j.bioadv.2023.213713
    37. Cheng Chen, Jingrong Chen, Xinpei Lin, Jiafu Yang, Huimin Qu, Lisong Li, Duanyan Zhang, Wei Wang, Xiangyu Chang, Zhenkun Guo, Ping Cai, Guangxia Yu, Wenya Shao, Hong Hu, Siying Wu, Huangyuan Li, Julia Bornhorst, Michael Aschner, Fuli Zheng. Evaluation of neurotoxicity and the role of oxidative stress of cobalt nanoparticles, titanium dioxide nanoparticles, and multiwall carbon nanotubes in Caenorhabditis elegans. Toxicological Sciences 2023, 196 (1) , 85-98. https://doi.org/10.1093/toxsci/kfad084
    38. Yingshan Jin, Yuting Lu, Anbazhagan Sathiyaseelan, Xin Zhang, Kumar Vishven Naveen, Myeong-Hyeon Wang. A facile green synthesis of multifunctional silver nanoparticles using Paeonia suffruticosa seed extracts. Materials Letters 2023, 348 , 134653. https://doi.org/10.1016/j.matlet.2023.134653
    39. Qi Lu, Tian Liu, Zeyu Han, Jian Zhao, Xiaoyuan Fan, Helin Wang, Jiaxuan Song, Hao Ye, Jin Sun. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. Journal of Controlled Release 2023, 361 , 604-620. https://doi.org/10.1016/j.jconrel.2023.08.023
    40. Vemula Prasastha Ram, Jyothsna Yasur, Padikkamannil Abishad, Chatragadda Ramesh, Diksha Purushottam Gourkhede, Pokkittath Radhakrishnan Arya, Varsha Unni, Jess Vergis, Satya Veer Singh Malik, Megha Kaore, Nitin Vasantrao Kurkure, Byrappa Kullaiah, Sukhadeo Baliram Barbuddhe, Deepak Bhiwa Rawool. Enhanced therapeutic efficacy of biogenic nanosilver-conjugated thymol: In vitro and in vivo evaluation against emerging multi-drug resistant microbes. Journal of Drug Delivery Science and Technology 2023, 86 , 104741. https://doi.org/10.1016/j.jddst.2023.104741
    41. Ping Ping Hu, Bei Bei Zhu, Di Li, Wan Ping Zhang, Xiao Qing Fan, Chao Yu, Hui Liu. Single particle tracking in dissecting lipid droplet biology. TrAC Trends in Analytical Chemistry 2023, 166 , 117154. https://doi.org/10.1016/j.trac.2023.117154
    42. Muhammad Khawar Abbas, Yasir Javed, Yasir Jamil, Muhammad Shahid. Polyethylene glycol dictates the therapeutic response (anticancer and wound healing) of silver oxide nanomaterials. Polymers for Advanced Technologies 2023, 34 (8) , 2606-2619. https://doi.org/10.1002/pat.6076
    43. Aliasgar Shahiwala. Physiological determinants and plausible ‘6R’ roadmap for clinical success of nanomedicines. Nanomedicine 2023, 18 (18) , 1207-1222. https://doi.org/10.2217/nnm-2023-0114
    44. Kyra G. Kaiser, Victoire Delattre, Victoria J. Frost, Gregory W. Buck, Julianne V. Phu, Timea G. Fernandez, Ioana E. Pavel. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics 2023, 12 (8) , 1264. https://doi.org/10.3390/antibiotics12081264
    45. Anum Gul, Dania Ahmed, Madiha Muhammad Fazil, Tooba Aslam, Marium Abdul Rashid, Hanzala Khan, Ayesha Ali, Shaukat Ali. Biofabrication of silver nanoparticles using Spirulina platensis : In vitro anti‐coagulant, thrombolytic and catalytic dye degradation activity. Microscopy Research and Technique 2023, 86 (7) , 823-833. https://doi.org/10.1002/jemt.24344
    46. Karin Nienhaus, Gerd Ulrich Nienhaus. Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. Small 2023, 19 (28) https://doi.org/10.1002/smll.202301663
    47. Kelsey L. Wells, Praveen K. Alla, Kyra G. Kaiser, Ioana T. Murgulet, Norma C. Adragna, Ioana E. Pavel. SERS of Human Red Blood Cells in Non-Resonant Conditions: Benefits, Limitations, and Complementary Tools (CytoViva and GFAAS). Chemosensors 2023, 11 (7) , 353. https://doi.org/10.3390/chemosensors11070353
    48. Burcu YEŞİLBUDAK. Toxicological Aspects and Bioanalysis of Nanoparticles: Zebrafish Model. Open Journal of Nano 2023, 8 (1) , 22-35. https://doi.org/10.56171/ojn.1189800
    49. Lakkappa B. Anigol, Vinodkumar P. Sajjan, Prabhuodeyara M. Gurubasavaraj, Sharanabasava V. Ganachari, Dhanashree Patil. Study on the effect of pH on the biosynthesis of silver nanoparticles using Capparis moonii fruit extract: their applications in anticancer activity, biocompatibility and photocatalytic degradation. Chemical Papers 2023, 77 (6) , 3327-3345. https://doi.org/10.1007/s11696-023-02707-5
    50. Maryam Sadat Hassani, Majid Salehi, Arian Ehterami, Solmaz Mahami, Fateme Sadat Bitaraf, Majid Rahmati. Evaluation of collagen type I and III, TGF-β1, and VEGF gene expression in rat skin wound healing treated by alginate/chitosan hydrogel containing crocetin. Biochemical Engineering Journal 2023, 195 , 108895. https://doi.org/10.1016/j.bej.2023.108895
    51. Bo Si, Xue Wang, Yun Liu, Juan Wang, Yemian Zhou, Yaguang Nie, An Xu. Multi-locus deletion mutation induced by silver nanoparticles: Role of lysosomal-autophagy dysfunction. Ecotoxicology and Environmental Safety 2023, 257 , 114947. https://doi.org/10.1016/j.ecoenv.2023.114947
    52. Shilpa Mishra, Baranidharan Sundaram. Fate, transport, and toxicity of nanoparticles: An emerging pollutant on biotic factors. Process Safety and Environmental Protection 2023, 174 , 595-607. https://doi.org/10.1016/j.psep.2023.04.037
    53. Pattwat Maneewattanapinyo, Chaowalit Monton, Wiwat Pichayakorn, Nattakan Dangmanee, Thaniya Wunnakup, Jirapornchai Suksaeree. Plaster Gel Loaded with Silver Nanoparticle-Mediated Ganoderma applanatum: from Fabrication to Evaluation. AAPS PharmSciTech 2023, 24 (5) https://doi.org/10.1208/s12249-023-02566-z
    54. Svetlana Yefimova, Anatolii Onishchenko, Vladimir Klochkov, Valeriy Myasoedov, Yurii Kot, Liliya Tryfonyuk, Oleksandr Knigavko, Pavel Maksimchuk, Umut Kökbaş, Yuliia Kalashnyk-Vakulenko, Andrii Arkatov, Vladyslav Khanzhyn, Volodymyr Prokopyuk, Iryna Vyshnytska, Anton Tkachenko. Rare-earth orthovanadate nanoparticles trigger Ca 2+ -dependent eryptosis. Nanotechnology 2023, 34 (20) , 205101. https://doi.org/10.1088/1361-6528/acbb7f
    55. Sara Gimondi, Joana Vieira de Castro, Rui L. Reis, Helena Ferreira, Nuno M. Neves. On the size-dependent internalization of sub-hundred polymeric nanoparticles. Colloids and Surfaces B: Biointerfaces 2023, 225 , 113245. https://doi.org/10.1016/j.colsurfb.2023.113245
    56. Saikat Biswas, Nitin Yadav, Anjali Somanathan, Paushali Mukherjee, Virander Singh Chauhan. Modified dipeptide based nanospheres as a potent adjuvating delivery system for recombinant vaccines. Frontiers in Drug Delivery 2023, 3 https://doi.org/10.3389/fddev.2023.1135209
    57. Navid Mousazadeh, Farzad Seidi, Mohammadreza Ghaffarlou, Hamid Rashidzadeh, Ali Hosseinmirzaei, Faezeh Mozafari, Hossein Danafar, Hamed Nosrati. Silver sulfide coated alginate radioenhancer for enhanced X-ray radiation therapy of breast cancer. International Journal of Biological Macromolecules 2023, 234 , 123636. https://doi.org/10.1016/j.ijbiomac.2023.123636
    58. Muskan Goel, Anurag Sharma, Bechan Sharma. Recent Advances in Biogenic Silver Nanoparticles for Their Biomedical Applications. Sustainable Chemistry 2023, 4 (1) , 61-94. https://doi.org/10.3390/suschem4010007
    59. Loick Pradel Kojom Foko, Joseph Hawadak, Vaishali Verma, Philippe Belle Ebanda Kedi, Carole Else Eboumbou Moukoko, Raghavendra Kamaraju, Veena Pande, Vineeta Singh. Phytofabrication and characterization of Alchornea cordifolia silver nanoparticles and evaluation of antiplasmodial, hemocompatibility and larvicidal potential. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1109841
    60. Ayon Chakraborty, Saswati Soumya Mohapatra, Subhashree Barik, Ipsita Roy, Bhavika Gupta, Ashis Biswas. Impact of nanoparticles on amyloid β-induced Alzheimer’s disease, tuberculosis, leprosy and cancer: a systematic review. Bioscience Reports 2023, 43 (2) https://doi.org/10.1042/BSR20220324
    61. Meghana K. Navada, Nagaraja G. Karnikkar, Josline Neetha D’Souza, Sabia Kouser, Ganesha Aroor, Jyothi Kudva, Manasa D. Jayappa. Biosynthesis of phyto functionalized cerium oxide nanoparticles mediated from Scoparia dulsis L. for appraisal of anti-cancer potential against adenocarcinomic lung cancer cells and paracetamol sensing potentiality. Environmental Science and Pollution Research 2023, 30 (7) , 18901-18920. https://doi.org/10.1007/s11356-022-23500-z
    62. Maria Eleni Ioannou, Georgia K. Pouroutzidou, Iason Chatzimentor, Ioannis Tsamesidis, Nikoletta Florini, Ioannis Tsiaoussis, Evgenia Lymperaki, Philomela Komninou, Eleana Kontonasaki. Synthesis and Characterization of Cerium Oxide Nanoparticles: Effect of Cerium Precursor to Gelatin Ratio. Applied Sciences 2023, 13 (4) , 2676. https://doi.org/10.3390/app13042676
    63. Zannatul Ferdous, Ozaz Elzaki, Sumaya Beegam, Nur Elena Zaaba, Saeed Tariq, Ernest Adeghate, Abderrahim Nemmar. Comparative Evaluation of the Effects of Amorphous Silica Nanoparticles on the Erythrocytes of Wistar Normotensive and Spontaneously Hypertensive Rats. International Journal of Molecular Sciences 2023, 24 (4) , 3784. https://doi.org/10.3390/ijms24043784
    64. Konrad Kubiński, Kamila Górka, Monika Janeczko, Aleksandra Martyna, Mateusz Kwaśnik, Maciej Masłyk, Emil Zięba, Joanna Kowalczuk, Piotr Kuśtrowski, Mariusz Borkowski, Anna Boguszewska-Czubara, Agnieszka Klimeczek, Oleg M. Demchuk. Silver Is Not Equal to Silver: Synthesis and Evaluation of Silver Nanoparticles with Low Biological Activity, and Their Incorporation into C12Alanine-Based Hydrogel. Molecules 2023, 28 (3) , 1194. https://doi.org/10.3390/molecules28031194
    65. Arathi, K. B. Megha, X. Joseph, P. V. Mohanan. Biological Safety and Cellular Interactions of Nanoparticles. 2023, 559-587. https://doi.org/10.1007/978-981-19-7834-0_21
    66. Deepak Kumar Gupta, Akhilesh Tiwari, Megha Joshi, Muktika Tekade, Kuldeep Rajpoot, Nupur Vasdev, Omar Husham Ahmed Al-Attraqchi, Rakesh Kumar Tekade. Types of cellular responses to chemical toxicants. 2023, 169-206. https://doi.org/10.1016/B978-0-443-15840-7.00026-9
    67. Marina Yazykova, Maria Porochkina, Vladimir Podlipnov. The influence of silver nanoparticles stabilised by BNC on the metabolic status of human erythrocytes. 2023, 020009. https://doi.org/10.1063/5.0136248
    68. Yusuf Wibisono, Dikianur Alvianto, Bambang Dwi Argo, Mochamad Bagus Hermanto, Jatmiko Eko Witoyo, Muhammad Roil Bilad. Low-Fouling Plate-and-Frame Ultrafiltration for Juice Clarification: Part 1—Membrane Preparation and Characterization. Sustainability 2023, 15 (1) , 806. https://doi.org/10.3390/su15010806
    69. Giuliana Muraca, María Esperanza Ruiz, Rocío C Gambaro, Sebastián Scioli-Montoto, María Laura Sbaraglini, Gisel Padula, José Sebastián Cisneros, Cecilia Yamil Chain, Vera A Álvarez, Cristián Huck-Iriart, Guillermo R Castro, María Belén Piñero, Matias Ildebrando Marchetto, Catalina Alba Soto, Germán A Islan, Alan Talevi. Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies. Beilstein Journal of Nanotechnology 2023, 14 , 804-818. https://doi.org/10.3762/bjnano.14.66
    70. Salsabil Makky, Nouran Rezk, Abdallah S. Abdelsattar, Assmaa H. Hussein, Aalaa Eid, Kareem Essam, Azza G Kamel, Mohamed S. Fayez, Mohamed Azzam, Mona M. Agwa, Ayman El-Shibiny. Characterization of the biosynthesized Syzygium aromaticum-mediated silver nanoparticles and its antibacterial and antibiofilm activity in combination with bacteriophage. Results in Chemistry 2023, 5 , 100686. https://doi.org/10.1016/j.rechem.2022.100686
    71. Swarnali Das, Rubai Ahmed, Sovan Samanta, Jhimli Banerjee, Sandeep Kumar Dash. Challenges of Using Nanotechnology for Neurological Disorders and Alternate Solutions. 2023, 293-315. https://doi.org/10.1007/978-981-99-9510-3_13
    72. Joseph Hawadak, Loick Pradel Kojom Foko, Veena Pande, Vineeta Singh. In vitro antiplasmodial activity, hemocompatibility and temporal stability of Azadirachta indica silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology 2022, 50 (1) , 286-300. https://doi.org/10.1080/21691401.2022.2126979
    73. Bushra H. Shnawa, Parwin J. Jalil, Samir M. Hamad, Mukhtar H. Ahmed. Antioxidant, Protoscolicidal, Hemocompatibility, and Antibacterial Activity of Nickel Oxide Nanoparticles Synthesized by Ziziphus spina-christi. BioNanoScience 2022, 12 (4) , 1264-1278. https://doi.org/10.1007/s12668-022-01028-3
    74. Maria Theodosiou, Elias Sakellis, Nikos Boukos, Vladan Kusigerski, Beata Kalska-Szostko, Eleni Efthimiadou. Iron oxide nanoflowers encapsulated in thermosensitive fluorescent liposomes for hyperthermia treatment of lung adenocarcinoma. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-12687-3
    75. Yun Zeng, Tong Yi, Jingwen Ma, Ming Han, Xinyi Xu, Dan Chen, Xueli Chen, Risheng Wang, Yonghua Zhan. Precisely controlled polydopamine-mediated antibacterial system: mathematical model of polymerization, prediction of antibacterial capacity, and promotion of wound healing. Nanotechnology 2022, 33 (45) , 455102. https://doi.org/10.1088/1361-6528/ac85f2
    76. Doaa H. Assar, Abd-Allah A. Mokhbatly, Emad W. Ghazy, Zizy I. Elbialy, Ahmed A. Gaber, Ayman A. Hassan, Ahmed Nabil, Samah Abou Asa. Silver nanoparticles induced hepatoxicity via the apoptotic/antiapoptotic pathway with activation of TGFβ-1 and α-SMA triggered liver fibrosis in Sprague Dawley rats. Environmental Science and Pollution Research 2022, 29 (53) , 80448-80465. https://doi.org/10.1007/s11356-022-21388-3
    77. Hyun-Ju Cho, Wang Sik Lee, Jinyoung Jeong, Jeong-Soo Lee. A review on the impacts of nanomaterials on neuromodulation and neurological dysfunction using a zebrafish animal model. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2022, 261 , 109428. https://doi.org/10.1016/j.cbpc.2022.109428
    78. Mamta Kumawat, Harishkumar Madhyastha, Mandeep Singh, Neerish Revaprasadu, Sangly P. Srinivas, Hemant Kumar Daima, . Double functionalized haemocompatible silver nanoparticles control cell inflammatory homeostasis. PLOS ONE 2022, 17 (10) , e0276296. https://doi.org/10.1371/journal.pone.0276296
    79. Yi Xie, Shengqiu Chen, Xu Peng, Xiaoling Wang, Zhiwei Wei, Joseph J. Richardson, Kang Liang, Hirotaka Ejima, Junling Guo, Changsheng Zhao. Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization. Bioactive Materials 2022, 16 , 95-106. https://doi.org/10.1016/j.bioactmat.2022.03.004
    80. Volodymyr Prokopiuk, Anatolii Onishchenko, Svetlana Yefimova, Pavel Maksimchuk, Vladyslav Seminko, Oksana Nakonechna, Vladimir Klochkov, Nataliya Kavok, Anton Tkachenko. Size-dependent Effect of CeO 2 Nanoparticles on ROS Generation in Red Blood Cells. 2022, NRA07-1-NRA07-4. https://doi.org/10.1109/NAP55339.2022.9934177
    81. Kiseok Han, Anbazhagan Sathiyaseelan, Kandasamy Saravanakumar, Myeong-Hyeon Wang. Synthesis of Biomolecule Functionalized Biocompatible Silver Nanoparticles for Antioxidant and Antibacterial Applications. Coatings 2022, 12 (9) , 1292. https://doi.org/10.3390/coatings12091292
    82. Vemula Prasastha Ram, Jyothsna Yasur, Padikkamannil Abishad, Varsha Unni, Diksha Purushottam Gourkhede, Maria Anto Dani Nishanth, Pollumahanti Niveditha, Jess Vergis, Satya Veer Singh Malik, Byrappa Kullaiah, Nitin Vasantrao Kurkure, Chatragadda Ramesh, Laurent Dufossé, Deepak B. Rawool, Sukhadeo B. Barbuddhe. Antimicrobial Efficacy of Green Synthesized Nanosilver with Entrapped Cinnamaldehyde against Multi-Drug-Resistant Enteroaggregative Escherichia coli in Galleria mellonella. Pharmaceutics 2022, 14 (9) , 1924. https://doi.org/10.3390/pharmaceutics14091924
    83. Vellingiri Yasothamani, Raju Vivek. Targeted NIR-responsive theranostic immuno-nanomedicine combined TLR7 agonist with immune checkpoint blockade for effective cancer photothermal immunotherapy. Journal of Materials Chemistry B 2022, 10 (33) , 6392-6403. https://doi.org/10.1039/D2TB01195F
    84. T. Ngake, S. Nqayi, M. Gulumian, S. Cronjé, R.A. Harris. Recent developments in computational and experimental studies of physicochemical properties of Au and Ag nanostructures on cellular uptake and nanostructure toxicity. Biochimica et Biophysica Acta (BBA) - General Subjects 2022, 1866 (8) , 130170. https://doi.org/10.1016/j.bbagen.2022.130170
    85. Hafiza Sumaiyya Jamal, Rameez Raja, Syed Waseem Ahmed, Muhammad Raza Shah, Shakil Ahmed, Syed Abid Ali. Simultaneous Colorimetric Sensing of Anion (I−) and Cation (Fe2+) by Protein Functionalized Silver Nanoparticles in Real Samples. Journal of Cluster Science 2022, 33 (4) , 1501-1514. https://doi.org/10.1007/s10876-021-02074-9
    86. Priyanka Maurya, Ravi Saklani, Samipta Singh, Raquibun Nisha, Ravi Raj Pal, Nidhi Mishra, Priya Singh, Abhiram Kumar, Manish K. Chourasia, Shubhini A. Saraf. Appraisal of fluoroquinolone-loaded carubinose-linked hybrid nanoparticles for glycotargeting to alveolar macrophages. Drug Delivery and Translational Research 2022, 12 (7) , 1640-1658. https://doi.org/10.1007/s13346-021-01055-9
    87. Natalia Pajares-Chamorro, Neal D. Hammer, Xanthippi Chatzistavrou. Materials for restoring lost Activity: Old drugs for new bugs. Advanced Drug Delivery Reviews 2022, 186 , 114302. https://doi.org/10.1016/j.addr.2022.114302
    88. Virva Kinnunen, Siiri Perämäki, Rose Matilainen. Solid phase extraction materials as a key for improving the accuracy of silver nanoparticle characterization with single-particle inductively coupled plasma mass spectrometry in natural waters through dissolved silver removal. Spectrochimica Acta Part B: Atomic Spectroscopy 2022, 193 , 106431. https://doi.org/10.1016/j.sab.2022.106431
    89. Anqi Sun, Wen-Xiong Wang. A yeast-based biosensor for silver nanoparticle accumulation and cellular dissolution. Biosensors and Bioelectronics 2022, 205 , 114082. https://doi.org/10.1016/j.bios.2022.114082
    90. Satheesh Kumar Balu, Swetha Andra, Fouad Damiri, Anandhi Sivaramalingam, Manisha Vidyavathy Sudandaradoss, Karthikeyan Kumarasamy, Kishore Bhakthavachalam, Faraat Ali, Milton Kumar Kundu, Md. Habibur Rahman, Mohammed Berrada, Simona Cavalu. Size-Dependent Antibacterial, Antidiabetic, and Toxicity of Silver Nanoparticles Synthesized Using Solvent Extraction of Rosa indica L. Petals. Pharmaceuticals 2022, 15 (6) , 689. https://doi.org/10.3390/ph15060689
    91. Charles Arokiyaraj, Ezhumalai Parthiban, Ravichandran Ramanibai, Sundaram Janarthanan. Facile green approach for solar energy assisted biogenic nanoparticles synthesis mediated by seed kernel aqueous extract of Trichosanthes tricupsidata and its potential biomedical applications. Inorganic and Nano-Metal Chemistry 2022, 4 , 1-15. https://doi.org/10.1080/24701556.2022.2069121
    92. Wenjun Sun, Yang Tian, Zengming Wang, Hui Zhang, Aiping Zheng. The Study of Cyclosporin A Nanocrystals Uptake and Transport across an Intestinal Epithelial Cell Model. Polymers 2022, 14 (10) , 1975. https://doi.org/10.3390/polym14101975
    93. Fernanda Rosário, Jan Creylman, Geert Verheyen, Sabine Van Miert, Conceição Santos, Peter Hoet, Helena Oliveira. Impact of Particle Size on Toxicity, Tissue Distribution and Excretion Kinetics of Subchronic Intratracheal Instilled Silver Nanoparticles in Mice. Toxics 2022, 10 (5) , 260. https://doi.org/10.3390/toxics10050260
    94. Lichuan Tan, Guangsong Yuan, Peng Wang, Siwen Feng, Yan Tong, Cuijuan Wang. pH-responsive Ag-Phy@ZIF-8 nanoparticles modified by hyaluronate for efficient synergistic bacteria disinfection. International Journal of Biological Macromolecules 2022, 206 , 605-613. https://doi.org/10.1016/j.ijbiomac.2022.02.097
    95. Prabhu Raju, Karthiyayini Balakrishnan, Monali Mishra, Thirumurugan Ramasamy, Suganthy Natarajan. Fabrication of pH responsive FU@Eu-MOF nanoscale metal organic frameworks for lung cancer therapy. Journal of Drug Delivery Science and Technology 2022, 70 , 103223. https://doi.org/10.1016/j.jddst.2022.103223
    96. Johanna Simon, Michael Fichter, Gabor Kuhn, Maximilian Brückner, Cinja Kappel, Jenny Schunke, Tanja Klaus, Stephan Grabbe, Katharina Landfester, Volker Mailänder. Achieving dendritic cell subset-specific targeting in vivo by site-directed conjugation of targeting antibodies to nanocarriers. Nano Today 2022, 43 , 101375. https://doi.org/10.1016/j.nantod.2022.101375
    97. Roberto Luna-Vázquez-Gómez, María Evarista Arellano-García, Yanis Toledano-Magaña, Juan Carlos García-Ramos, Patricia Radilla-Chávez, David Sergio Salas-Vargas, Francisco Casillas-Figueroa, Balam Ruiz-Ruiz, Alexey Pestryakov, Nina Bogdanchikova. Bell Shape Curves of Hemolysis Induced by Silver Nanoparticles: Review and Experimental Assay. Nanomaterials 2022, 12 (7) , 1066. https://doi.org/10.3390/nano12071066
    98. Pravin Dudhagara, Jemisha Alagiya, Chintan Bhagat, Dushyant Dudhagara, Anjana Ghelani, Jigna Desai, Rajesh Patel, Ashaka Vansia, Dao Ngoc Nhiem, Yih-Yuan Chen, Douglas J. H. Shyu. Biogenic Synthesis of Antibacterial, Hemocompatible, and Antiplatelets Lysozyme Functionalized Silver Nanoparticles through the One-Step Process for Therapeutic Applications. Processes 2022, 10 (4) , 623. https://doi.org/10.3390/pr10040623
    99. Nadia Ghaffar, Sumera Javad, Muhammad Akhyar Farrukh, Anis Ali Shah, Mansour K. Gatasheh, Bander M. A. AL-Munqedhi, Ozair Chaudhry, . Metal nanoparticles assisted revival of Streptomycin against MDRS Staphylococcus aureus. PLOS ONE 2022, 17 (3) , e0264588. https://doi.org/10.1371/journal.pone.0264588
    100. Qamar A. Alshammari, Rajasekharreddy Pala, Ayan K. Barui, Saud O. Alshammari, Andromeda M. Nauli, Nir Katzir, Ashraf M. Mohieldin, Surya M. Nauli. The use of advanced spectral imaging to reveal nanoparticle identity in biological samples. Nanoscale 2022, 14 (11) , 4065-4072. https://doi.org/10.1039/D1NR07551A
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect