Identification of Cytochrome P450 3A4 Modification Site with Reactive Metabolite Using Linear Ion Trap-Fourier Transform Mass Spectrometry
- Hideo Yukinaga
- ,
- Tomonori Takami
- ,
- Sho-hei Shioyama
- ,
- Zenzaburo Tozuka
- ,
- Hiroshi Masumoto
- ,
- Osamu Okazaki
- , and
- Ken-ichi Sudo
Abstract

Covalent binding of reactive metabolites to cytochrome P450s (P450s) often causes their mechanism-based inactivation (MBI), resulting in drug–drug interactions or toxicity. The detection and identification of the P450 sites to which reactive metabolites bind would elucidate MBI mechanisms. We describe a proteomic approach using nano-LC/linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to characterize the binding of a reactive metabolite of raloxifene, which is a known P450 3A4 inhibitor, to the P450 3A4 isozyme. LTQ-FT analyses revealed that the metabolic reaction of raloxifene in a reconstituted P450 3A4 system formed a reactive metabolite adduct to P450 3A4 apoprotein, accompanied by a mass shift of 471 Da relative to intact P450 3A4 apoprotein. The reaction mixtures were digested with trypsin, and then the tryptic digests were analyzed by nano-LC-MS/MS. This technique revealed that VWGFYDGQQPVLAITDPDMIK (position 71–91) was a tryptic peptide modified by the reactive metabolite derived from raloxifene. The site of adduction with the reactive metabolite was further postulated to be the nucleophilic OH group of Tyr-75 of P450 3A4. A proteomic approach using LTQ-FT can yield direct information on the P450 3A4 modification site without radiolabeled compounds. In addition, this information can elucidate mechanisms involved in the covalent binding of reactive metabolites and the inactivation of P450 3A4.
Cited By
This article is cited by 35 publications.
- Yang Zhou, Junhao Li, Glib Baryshnikov, Yaoquan Tu. Unraveling the Abnormal Molecular Mechanism of Suicide Inhibition of Cytochrome P450 3A4. Journal of Chemical Information and Modeling 2022, 62
(23)
, 6172-6181. https://doi.org/10.1021/acs.jcim.2c01035
- Michael Riffle, Michael R. Hoopmann, Daniel Jaschob, Guo Zhong, Robert L. Moritz, Michael J. MacCoss, Trisha N. Davis, Nina Isoherranen, Alex Zelter. Discovery and Visualization of Uncharacterized Drug–Protein Adducts Using Mass Spectrometry. Analytical Chemistry 2022, 94
(8)
, 3501-3509. https://doi.org/10.1021/acs.analchem.1c04101
- John C. L. Erve, Shawn Gauby, John W. Maynard, Jr., Mats A. Svensson, George Tonn, and Kevin P. Quinn . Bioactivation of Sitaxentan in Liver Microsomes, Hepatocytes, and Expressed Human P450s with Characterization of the Glutathione Conjugate by Liquid Chromatography Tandem Mass Spectrometry. Chemical Research in Toxicology 2013, 26
(6)
, 926-936. https://doi.org/10.1021/tx4001144
- Gang Chang, Yoshinao Mori, Saori Mori, Takashi Irie, Hidenori Nagai, Tatsushi Goto, Yoshiro Tatsu, Hiromasa Imaishi, and Kenichi Morigaki . Microarray of Human P450 with an Integrated Oxygen Sensing Film for High-Throughput Detection of Metabolic Activities. Analytical Chemistry 2012, 84
(12)
, 5292-5297. https://doi.org/10.1021/ac300355w
- Suvi T. M. Orr, Sharon L. Ripp, T. Eric Ballard, Jaclyn L. Henderson, Dennis O. Scott, R. Scott Obach, Hao Sun, and Amit S. Kalgutkar . Mechanism-Based Inactivation (MBI) of Cytochrome P450 Enzymes: Structure–Activity Relationships and Discovery Strategies To Mitigate Drug–Drug Interaction Risks. Journal of Medicinal Chemistry 2012, 55
(11)
, 4896-4933. https://doi.org/10.1021/jm300065h
- Chad D. Moore, Kiumars Shahrokh, Stephen F. Sontum, Thomas E. Cheatham, III, and Garold S. Yost . Improved Cytochrome P450 3A4 Molecular Models Accurately Predict the Phe215 Requirement for Raloxifene Dehydrogenation Selectivity. Biochemistry 2010, 49
(41)
, 9011-9019. https://doi.org/10.1021/bi101139q
- Chad D. Moore, Christopher A. Reilly and Garold S. Yost . CYP3A4-Mediated Oxygenation versus Dehydrogenation of Raloxifene. Biochemistry 2010, 49
(21)
, 4466-4475. https://doi.org/10.1021/bi902213r
- Manuel Tzouros and Axel Pähler. A Targeted Proteomics Approach to the Identification of Peptides Modified by Reactive Metabolites. Chemical Research in Toxicology 2009, 22
(5)
, 853-862. https://doi.org/10.1021/tx800426x
- Wiebke Lohmann, Heiko Hayen and Uwe Karst. Covalent Protein Modification by Reactive Drug Metabolites Using Online Electrochemistry/Liquid Chromatography/Mass Spectrometry. Analytical Chemistry 2008, 80
(24)
, 9714-9719. https://doi.org/10.1021/ac801699g
- UMESH M. HANUMEGOWDA, CARL DAVIS. The Role of Drug Metabolism in Toxicity. 2022, 605-676. https://doi.org/10.1002/9781119851042.ch19
- Slobodan P. Rendic, F. Peter Guengerich. Human Family 1–4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Archives of Toxicology 2021, 95
(2)
, 395-472. https://doi.org/10.1007/s00204-020-02971-4
- Michael Mohutsky, Stephen D. Hall. Irreversible Enzyme Inhibition Kinetics and Drug–Drug Interactions. 2021, 51-88. https://doi.org/10.1007/978-1-0716-1554-6_3
- Chuong Pham, Swati Nagar, Ken Korzekwa. Numerical analysis of time-dependent inhibition kinetics: comparison between rat liver microsomes and rat hepatocyte data for mechanistic model fitting. Xenobiotica 2020, 50
(11)
, 1301-1310. https://doi.org/10.1080/00498254.2017.1345020
- Hao Sun, Dennis Scott. Using Crystal Structures of Drug‐Metabolizing Enzymes in Mechanism‐Based Modeling for Drug Design. 2020, 567-585. https://doi.org/10.1002/9781118681121.ch24
- F. Peter Guengerich. Human Cytochrome P450 Enzymes. 2015, 523-785. https://doi.org/10.1007/978-3-319-12108-6_9
- Amanda K. Bolles, Rina Fujiwara, Erran D. Briggs, Amin A. Nomeir, Laura Lowe Furge. Mechanism-Based Inactivation of Human Cytochrome P450 3A4 by Two Piperazine-Containing Compounds. Drug Metabolism and Disposition 2014, 42
(12)
, 2087-2096. https://doi.org/10.1124/dmd.114.060459
- Ronald E. White. Role of Biotransformation in Drug Discovery. 2014, 1-15. https://doi.org/10.1002/9781118541203.xen0007
- Michael Mohutsky, Stephen D. Hall. Irreversible Enzyme Inhibition Kinetics and Drug–Drug Interactions. 2014, 57-91. https://doi.org/10.1007/978-1-62703-758-7_5
- Patrick B. Kyle, Stanley V. Smith, Rodney C. Baker, Robert E. Kramer. Mass spectrometric detection of CYP450 adducts following oxidative desulfuration of methyl parathion. Journal of Applied Toxicology 2013, 33
(7)
, 644-651. https://doi.org/10.1002/jat.1792
- Bo-lan Yu, Zi-xin Mai, Xu-xiang Liu, Zhao-feng Huang. Selective estrogen receptor modulator BC-1 activates antioxidant signaling pathway in vitro via formation of reactive metabolites. Acta Pharmacologica Sinica 2013, 34
(3)
, 373-379. https://doi.org/10.1038/aps.2012.168
- Brooke M. VandenBrink, John A. Davis, Josh T. Pearson, Robert S. Foti, Larry C. Wienkers, Dan A. Rock. Cytochrome P450 Architecture and Cysteine Nucleophile Placement Impact Raloxifene-Mediated Mechanism-Based Inactivation. Molecular Pharmacology 2012, 82
(5)
, 835-842. https://doi.org/10.1124/mol.112.080739
- . Bioactivation and Inactivation of Cytochrome P450 and Other Drug‐Metabolizing Enzymes. 2012, 43-70. https://doi.org/10.1002/9783527655748.ch3
- Hideo Yukinaga, Haruo Iwabuchi, Osamu Okazaki, Takashi Izumi. Glutathione S-transferase pi trapping method for generation and characterization of drug–protein adducts in human liver microsomes using liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2012, 67-68 , 186-192. https://doi.org/10.1016/j.jpba.2012.04.035
- Heng-Keang Lim, Min Yang, Wing Lam, Fran Xu, Jie Chen, Yaodong Xu, H. Umesha Shetty, Ke Yang, Jose Silva, David C. Evans. Free radical metabolism of raloxifene in human liver microsomes. Xenobiotica 2012, 42
(8)
, 737-747. https://doi.org/10.3109/00498254.2012.662306
- Wei Tang, Zhoupeng Zhang. Bioactivation and Reactive Metabolite Assays. 2012, 1-30. https://doi.org/10.1002/9780470921920.edm113
- Hsia-lien Lin, Cesar Kenaan, Paul F. Hollenberg. Identification of the Residue in Human CYP3A4 That Is Covalently Modified by Bergamottin and the Reactive Intermediate That Contributes to the Grapefruit Juice Effect. Drug Metabolism and Disposition 2012, 40
(5)
, 998-1006. https://doi.org/10.1124/dmd.112.044560
- Tina Trdan Lušin, Tihomir Tomašić, Jurij Trontelj, Aleš Mrhar, Lucija Peterlin-Mašič. In vitro bioactivation of bazedoxifene and 2-(4-hydroxyphenyl)-3-methyl-1H-indol-5-ol in human liver microsomes. Chemico-Biological Interactions 2012, 197
(1)
, 8-15. https://doi.org/10.1016/j.cbi.2012.03.001
- Hideo Takakusa, Michelle D. Wahlin, Chunsheng Zhao, Kelsey L. Hanson, Lee Sun New, Eric Chun Yong Chan, Sidney D. Nelson. Metabolic Intermediate Complex Formation of Human Cytochrome P450 3A4 by Lapatinib. Drug Metabolism and Disposition 2011, 39
(6)
, 1022-1030. https://doi.org/10.1124/dmd.110.037531
- Hsia-lien Lin, Haoming Zhang, Monica Jushchyshyn, Paul F. Hollenberg. Covalent Modification of Thr302 in Cytochrome P450 2B1 by the Mechanism-Based Inactivator 4-
tert
-Butylphenylacetylene. Journal of Pharmacology and Experimental Therapeutics 2010, 333
(3)
, 663-669. https://doi.org/10.1124/jpet.109.164350
- Carl D. Davis, Umesh M. Hanumegowda. The Role of Drug Metabolism in Toxicity. 2010, 1-68. https://doi.org/10.1002/9780470571224.pse120
- A. Srivastava, J. L. Maggs, D. J. Antoine, D. P. Williams, D. A. Smith, B. K. Park. Role of Reactive Metabolites in Drug-Induced Hepatotoxicity. 2010, 165-194. https://doi.org/10.1007/978-3-642-00663-0_7
- Hao Sun, Dennis O. Scott. Structure‐based Drug Metabolism Predictions for Drug Design. Chemical Biology & Drug Design 2010, 75
(1)
, 3-17. https://doi.org/10.1111/j.1747-0285.2009.00899.x
- Olavi Pelkonen, Ari Tolonen, Timo Korjamo, Miia Turpeinen, Hannu Raunio. From known knowns to known unknowns: predicting
in vivo
drug metabolites. Bioanalysis 2009, 1
(2)
, 393-414. https://doi.org/10.4155/bio.09.32
- Carl D. Davis, Umesh M. Hanumegowda. The Role of Drug Metabolism in Toxicity. 2009, 559-628. https://doi.org/10.1002/9780470439265.ch21
- . Current literature in mass spectrometry. Journal of Mass Spectrometry 2008, 687-698. https://doi.org/10.1002/jms.1302