ACS Publications. Most Trusted. Most Cited. Most Read
Mechanisms Related to the Genotoxicity of Particles in the Subway and from Other Sources
My Activity

Figure 1Loading Img
    Article

    Mechanisms Related to the Genotoxicity of Particles in the Subway and from Other Sources
    Click to copy article linkArticle link copied!

    View Author Information
    Unit for Analytical Toxicology, Department of Biosciences and Nutrition at Novum, Karolinska Institutet, SE-141 57 Huddinge, Stockholm, Sweden, and Unit of Medical Radiation Biology, Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, SE-171 76 Stockholm, Sweden
    * To whom correspondence should be addressed. Professor Lennart Möller, Department of Biosciences and Nutrition at Novum, Karolinska Institutet, SE-141 57 Huddinge, Stockholm, Sweden. Tel: +46 8 608 91 89 . Fax: + 46 8 774 68 3. E-mail: [email protected]
    †Unit for Analytical Toxicology.
    ‡Unit of Medical Radiation Biology.
    §Current address: Roche AB, P.O. Box 47327, SE-100 74 Stockholm, Sweden.
    Other Access Options

    Chemical Research in Toxicology

    Cite this: Chem. Res. Toxicol. 2008, 21, 3, 726–731
    Click to copy citationCitation copied!
    https://doi.org/10.1021/tx7003568
    Published February 9, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Negative health effects of airborne particles have clearly been shown in epidemiological studies. People get exposed to particles from various sources such as the combustion of, for example, diesel and wood and also from particles arising from tire-road wear. Another source of importance for certain populations is exposure to particles in subway systems. We recently reported that these particles were more genotoxic when compared to that of several other particle types. The aim of this study was to further investigate and compare the toxicity of subway particles and particles from other sources as well as investigate some mechanisms behind the genotoxicity of subway particles. This was done by comparing the ability of subway particles and particles from a street, pure tire-road wear particles, and particles from wood and diesel combustion to cause mitochondrial depolarization and to form intracellular reactive oxygen species (ROS). Furthermore, the genotoxicity and ability to cause oxidative stress was compared to magnetite particles since this is a main component in subway particles. It was concluded that the subway particles and also street particles and particles from wood and diesel combustion caused mitochondrial depolarization. The ability to damage the mitochondria is thus not the only explanation for the high genotoxicity of subway particles. Subway particles also formed intracellular ROS. This effect may be part of the explanation as to why subway particles show such high genotoxicity when compared to that of other particles. Genotoxicity can, however, not be explained by the main component, magnetite, by water-soluble metals, or by intracellular mobilized iron. The genotoxicity is most likely caused by highly reactive surfaces giving rise to oxidative stress.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 119 publications.

    1. Julia C. Fussell, Meredith Franklin, David C. Green, Mats Gustafsson, Roy M. Harrison, William Hicks, Frank J. Kelly, Franceska Kishta, Mark R. Miller, Ian S. Mudway, Farzan Oroumiyeh, Liza Selley, Meng Wang, Yifang Zhu. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environmental Science & Technology 2022, 56 (11) , 6813-6835. https://doi.org/10.1021/acs.est.2c01072
    2. Long Jin, Stephen M. Griffith, Zhihan Sun, Jian Zhen Yu, Wan Chan. On the Flip Side of Mask Wearing: Increased Exposure to Volatile Organic Compounds and a Risk-Reducing Solution. Environmental Science & Technology 2021, 55 (20) , 14095-14104. https://doi.org/10.1021/acs.est.1c04591
    3. Wan Chan, Long Jin, Zhihan Sun, Stephen M. Griffith, Jian Zhen Yu. Fabric Masks as a Personal Dosimeter for Quantifying Exposure to Airborne Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology 2021, 55 (8) , 5128-5135. https://doi.org/10.1021/acs.est.0c08327
    4. Tomasz Gonet, Barbara A. Maher. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. Environmental Science & Technology 2019, 53 (17) , 9970-9991. https://doi.org/10.1021/acs.est.9b01505
    5. Hyo-Jin Eom, Hae-Jin Jung, Sophie Sobanska, Sang-Gwi Chung, Youn-Suk Son, Jo-Chun Kim, Young Sunwoo, and Chul-Un Ro . Iron Speciation of Airborne Subway Particles by the Combined Use of Energy Dispersive Electron Probe X-ray Microanalysis and Raman Microspectrometry. Analytical Chemistry 2013, 85 (21) , 10424-10431. https://doi.org/10.1021/ac402406n
    6. Pernille Høgh Danielsen, Peter Møller, Keld Alstrup Jensen, Anoop Kumar Sharma, Håkan Wallin, Rossana Bossi, Herman Autrup, Lars Mølhave, Jean-Luc Ravanat, Jacob Jan Briedé, Theo Martinus de Kok, and Steffen Loft . Oxidative Stress, DNA Damage, and Inflammation Induced by Ambient Air and Wood Smoke Particulate Matter in Human A549 and THP-1 Cell Lines. Chemical Research in Toxicology 2011, 24 (2) , 168-184. https://doi.org/10.1021/tx100407m
    7. Fanmei Zeng, Guanhua Pang, Liwen Hu, Yuan Sun, Wen Peng, Yuwei Chen, Dan Xu, Qing Xia, Luwei Zhao, Yifei Li, Miao He. Subway Fine Particles ( PM 2.5 )‐Induced Pro‐Inflammatory Response Triggers Airway Epithelial Barrier Damage Through the TLRs / NF ‐ κB ‐Dependent Pathway In Vitro. Environmental Toxicology 2024, 39 (12) , 5296-5308. https://doi.org/10.1002/tox.24403
    8. Suman Thodhal Yoganandham, Kang Daeho, Jang Heewon, Kailin Shen, Junho Jeon. Unveiling the environmental impact of tire wear particles and the associated contaminants: A comprehensive review of environmental and health risk. Journal of Hazardous Materials 2024, 480 , 136155. https://doi.org/10.1016/j.jhazmat.2024.136155
    9. Oluwatoyin Hannah Owokoniran, Akiko Honda, Takamichi Ichinose, Raga Ishikawa, Megumi Nagao, Natsuko Miyasaka, Zaoshi Wang, Satsuki Takai, Issei Omori, Kerui Zhang, Wei Liu, Yuya Higaki, Takayuki Kameda, Tomonari Matsuda, Taku Fujiwara, Tomoaki Okuda, Hirohisa Takano. Co-exposure of ferruginous components of subway particles with lipopolysaccharide impairs vascular function: A comparative study with ambient particulate matter. Ecotoxicology and Environmental Safety 2024, 288 , 117356. https://doi.org/10.1016/j.ecoenv.2024.117356
    10. Shunyao Wang, Ran Tu. Reply to Canu: Correspondence with reference to the review “Indoor Air Quality in Subway Microenvironments”. Environment International 2024, 194 , 109142. https://doi.org/10.1016/j.envint.2024.109142
    11. José Portugal, Carmen Bedia, Fulvio Amato, Ana T. Juárez-Facio, Rodopi Stamatiou, Antigone Lazou, Chiara E. Campiglio, Karine Elihn, Benjamin Piña. Toxicity of airborne nanoparticles: Facts and challenges. Environment International 2024, 190 , 108889. https://doi.org/10.1016/j.envint.2024.108889
    12. Shunyao Wang, Tianchen Qin, Ran Tu, Tianyuan Li, Gang Chen, David C. Green, Xin Zhang, Jialiang Feng, Haobin Liu, Ming Hu, Qingyan Fu. Indoor air quality in subway microenvironments: Pollutant characteristics, adverse health impacts, and population inequity. Environment International 2024, 39 , 108873. https://doi.org/10.1016/j.envint.2024.108873
    13. Minghui Tu, Ulf Olofsson. Estimating PM levels on an underground metro platform by exploring a new model-based factor research. Atmospheric Environment: X 2024, 22 , 100261. https://doi.org/10.1016/j.aeaoa.2024.100261
    14. Carsten Neukirchen, Thorsten Meiners, Jan Bendl, Ralf Zimmermann, Thomas Adam. Automated SEM/EDX imaging for the in-depth characterization of non-exhaust traffic emissions from the Munich subway system. Science of The Total Environment 2024, 915 , 170008. https://doi.org/10.1016/j.scitotenv.2024.170008
    15. Shoomaila Latif, Muhammad Imran, Hassan Siddique, Nazim Hussain. Toxicity of nanomaterials used in oil–water separation. 2024, 359-372. https://doi.org/10.1016/B978-0-323-95517-1.00014-7
    16. Rishikesh Kumar, Namrata Kumari, Ganesh C. Sahoo. Iron Oxide-Based Nanoparticles in Modern Antimicrobial and Antiviral Applications. 2024, 289-303. https://doi.org/10.1007/978-3-031-50093-0_13
    17. Wei Wang, Lei Zhang. Influence of subway entrance layout on indoor and outdoor environments in street canyons with different geometric form. Journal of Cleaner Production 2023, 425 , 138784. https://doi.org/10.1016/j.jclepro.2023.138784
    18. Abderrahmane Bouredji, Jérémie Pourchez, Valérie Forest. Biological effects of Tire and Road Wear Particles (TRWP) assessed by in vitro and in vivo studies – A systematic review. Science of The Total Environment 2023, 894 , 164989. https://doi.org/10.1016/j.scitotenv.2023.164989
    19. Jan Bendl, Carsten Neukirchen, Ajit Mudan, Sara Padoan, Ralf Zimmermann, Thomas Adam. Personal measurements and sampling of particulate matter in a subway – Identification of hot-spots, spatio-temporal variability and sources of pollutants. Atmospheric Environment 2023, 308 , 119883. https://doi.org/10.1016/j.atmosenv.2023.119883
    20. Kailash Arole, Mrudul Velhal, Mohsen Tajedini, Pedro Gunter Xavier, Ewa Bardasz, Micah J. Green, Hong Liang. Impacts of particles released from vehicles on environment and health. Tribology International 2023, 184 , 108417. https://doi.org/10.1016/j.triboint.2023.108417
    21. Krystyna Maciaszek, Suzanne Gillies, Sawaeng Kawichai, Tippawan Prapamontol, Teetawat Santijitpakdee, Wissanupong Kliengchuay, Narut Sahanavin, William Mueller, Sotiris Vardoulakis, Pawitrabhorn Samutrtai, John W Cherrie, David M Brown, Kraichat Tantrakarnapa, Helinor J Johnston. In vitro assessment of the pulmonary toxicity of particulate matter emitted during haze events in Chiang Mai, Thailand via investigation of macrophage responses. Environmental Research: Health 2023, 1 (2) , 025002. https://doi.org/10.1088/2752-5309/ac9748
    22. Ilias Vouitsis, José Portugal, Anastasios Kontses, Hanna L. Karlsson, Melissa Faria, Karine Elihn, Ana Teresa Juárez-Facio, Fulvio Amato, Benjamin Piña, Zisis Samaras. Transport-related airborne nanoparticles: Sources, different aerosol modes, and their toxicity. Atmospheric Environment 2023, 301 , 119698. https://doi.org/10.1016/j.atmosenv.2023.119698
    23. Shreya Singh, Ningombam Linthoingambi Devi. Heavy Metal Pollution in Atmosphere from Vehicular Emission. 2023, 183-207. https://doi.org/10.1007/978-981-99-0397-9_9
    24. H. A. Sheikh, P. Y. Tung, E. Ringe, R. J. Harrison. Magnetic and microscopic investigation of airborne iron oxide nanoparticles in the London Underground. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-24679-4
    25. Jean-Jacques Sauvain, Maud Hemmendinger, Guillaume Suárez, Camille Creze, Nancy B. Hopf, Valérie Jouannique, Amélie Debatisse, Jacques A. Pralong, Pascal Wild, Irina Guseva Canu. Malondialdehyde and anion patterns in exhaled breath condensate among subway workers. Particle and Fibre Toxicology 2022, 19 (1) https://doi.org/10.1186/s12989-022-00456-z
    26. Anup Adhikari, Kisan Chhetri, Debendra Acharya, Bishweshwar Pant, Achyut Adhikari. Green Synthesis of Iron Oxide Nanoparticles Using Psidium guajava L. Leaves Extract for Degradation of Organic Dyes and Anti-microbial Applications. Catalysts 2022, 12 (10) , 1188. https://doi.org/10.3390/catal12101188
    27. Renato Grillo, Leonardo F. Fraceto. Impacts of Magnetic Iron Oxide Nanoparticles in Terrestrial and Aquatic Environments. 2022, 147-164. https://doi.org/10.1002/9781119316329.ch7
    28. Lisa Miyashita, Rebecca Shears, Gary Foley, Sean Semple, Aras Kadioglu, Jonathan Grigg. Underground railway particulate matter and susceptibility to pneumococcal infection. eBioMedicine 2022, 80 , 104063. https://doi.org/10.1016/j.ebiom.2022.104063
    29. Estela Domingos Vicente, Isabel Lopes, Daniela Figueiredo, Cátia Gonçalves, Ana Vicente, Célia Alves. Mutagenicity of PM10-bound PAHs from non-exhaust sources. Air Quality, Atmosphere & Health 2022, 15 (4) , 657-665. https://doi.org/10.1007/s11869-021-01140-5
    30. Giusy Daniela Albano, Angela Marina Montalbano, Rosalia Gagliardo, Giulia Anzalone, Mirella Profita. Impact of Air Pollution in Airway Diseases: Role of the Epithelial Cells (Cell Models and Biomarkers). International Journal of Molecular Sciences 2022, 23 (5) , 2799. https://doi.org/10.3390/ijms23052799
    31. Carlos Angelé-Martínez, Fathima S. Ameer, Yash S. Raval, Guohui Huang, Tzuen-Rong J. Tzeng, Jeffrey N. Anker, Julia L. Brumaghim. Polyphenol effects on CuO-nanoparticle-mediated DNA damage, reactive oxygen species generation, and fibroblast cell death. Toxicology in Vitro 2022, 78 , 105252. https://doi.org/10.1016/j.tiv.2021.105252
    32. Lisa Miyashita, Rebecca Shears, Gary Foley, Sean Semple, Aras Kadioglu, Jonathan Grigg. Underground Railway Particulate Matter and Susceptibility to Pneumococcal Infection. SSRN Electronic Journal 2022, 374 https://doi.org/10.2139/ssrn.4019321
    33. Minghui Tu, Ulf Olofsson. PM levels on an underground metro platform: A study of the train, passenger flow, urban background, ventilation, and night maintenance effects. Atmospheric Environment: X 2021, 12 , 100134. https://doi.org/10.1016/j.aeaoa.2021.100134
    34. Uchechukwu S. Ezealigo, Blessing N. Ezealigo, Samson O. Aisida, Fabian I. Ezema. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open 2021, 4 , 100027. https://doi.org/10.1016/j.jciso.2021.100027
    35. Tae-Han Kim, Boo-Hun Choi, Moon-Sung Kang, Han-Ju Lee. Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea. Atmosphere 2021, 12 (11) , 1463. https://doi.org/10.3390/atmos12111463
    36. Shan Huang, Peixian Chen, Kuanyun Hu, Yecheng Qiu, Weiwei Feng, Zhipeng Ren, Xianglian Wang, Ting Huang, Daishe Wu. Characteristics and source identification of fine particles in the Nanchang subway, China. Building and Environment 2021, 199 , 107925. https://doi.org/10.1016/j.buildenv.2021.107925
    37. Wenjing Ji, Xiaofeng Li, Chunwang Wang. Composition and exposure characteristics of PM2.5 on subway platforms and estimates of exposure reduction by protective masks. Environmental Research 2021, 197 , 111042. https://doi.org/10.1016/j.envres.2021.111042
    38. Bianca D. Lima, Elba C. Teixeira, James C. Hower, Matheus S. Civeira, Omar Ramírez, Cheng-Xue Yang, Marcos L.S. Oliveira, Luis F.O. Silva. Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution. Geoscience Frontiers 2021, 12 (3) , 101129. https://doi.org/10.1016/j.gsf.2020.12.010
    39. Wenjing Ji, Chenghao Liu, Zhenzhe Liu, Chunwang Wang, Xiaofeng Li. Concentration, composition, and exposure contributions of fine particulate matter on subway concourses in China. Environmental Pollution 2021, 275 , 116627. https://doi.org/10.1016/j.envpol.2021.116627
    40. Wenjing Ji, Zhenzhe Liu, Chenghao Liu, Chunwang Wang, Xiaofeng Li. Characteristics of fine particulate matter and volatile organic compounds in subway station offices in China. Building and Environment 2021, 188 , 107502. https://doi.org/10.1016/j.buildenv.2020.107502
    41. Hongbiao Yu, Yijie Gao, Rong Zhou. Oxidative Stress From Exposure to the Underground Space Environment. Frontiers in Public Health 2020, 8 https://doi.org/10.3389/fpubh.2020.579634
    42. Beate Baensch-Baltruschat, Birgit Kocher, Friederike Stock, Georg Reifferscheid. Tyre and road wear particles (TRWP) - A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Science of The Total Environment 2020, 733 , 137823. https://doi.org/10.1016/j.scitotenv.2020.137823
    43. Jody Morgan, Robin Bell, Alison L. Jones. Endogenous doesn’t always mean innocuous: a scoping review of iron toxicity by inhalation. Journal of Toxicology and Environmental Health, Part B 2020, 23 (3) , 107-136. https://doi.org/10.1080/10937404.2020.1731896
    44. Liza Selley, Linda Schuster, Helene Marbach, Theresa Forsthuber, Ben Forbes, Timothy W Gant, Thomas Sandström, Nuria Camiña, Toby J Athersuch, Ian Mudway, Abhinav Kumar. Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. Metallomics 2020, 12 (3) , 371-386. https://doi.org/10.1039/c9mt00253g
    45. Yueming Wen, Jiawei Leng, Xiaobing Shen, Gang Han, Lijun Sun, Fei Yu. Environmental and Health Effects of Ventilation in Subway Stations: A Literature Review. International Journal of Environmental Research and Public Health 2020, 17 (3) , 1084. https://doi.org/10.3390/ijerph17031084
    46. Helinor J. Johnston, William Mueller, Susanne Steinle, Sotiris Vardoulakis, Kraichat Tantrakarnapa, Miranda Loh, John W. Cherrie. How Harmful Is Particulate Matter Emitted from Biomass Burning? A Thailand Perspective. Current Pollution Reports 2019, 5 (4) , 353-377. https://doi.org/10.1007/s40726-019-00125-4
    47. Matthew Loxham, Mark J. Nieuwenhuijsen. Health effects of particulate matter air pollution in underground railway systems – a critical review of the evidence. Particle and Fibre Toxicology 2019, 16 (1) https://doi.org/10.1186/s12989-019-0296-2
    48. Alba García-Rodríguez, Laura Rubio, Laura Vila, Noel Xamena, Antonia Velázquez, Ricard Marcos, Alba Hernández. The Comet Assay as a Tool to Detect the Genotoxic Potential of Nanomaterials. Nanomaterials 2019, 9 (10) , 1385. https://doi.org/10.3390/nano9101385
    49. Dawn M. Cooper, Matthew Loxham. Particulate matter and the airway epithelium: the special case of the underground?. European Respiratory Review 2019, 28 (153) , 190066. https://doi.org/10.1183/16000617.0066-2019
    50. J.J. Figueroa-Lara, J.M. Murcia-González, R. García-Martínez, M. Romero-Romo, M. Torres Rodríguez, V. Mugica-Álvarez. Effect of platform subway depth on the presence of Airborne PM2.5, metals, and toxic organic species. Journal of Hazardous Materials 2019, 377 , 427-436. https://doi.org/10.1016/j.jhazmat.2019.05.091
    51. M.C. Minguillón, C. Reche, V. Martins, F. Amato, E. de Miguel, M. Capdevila, S. Centelles, X. Querol, T. Moreno. Aerosol sources in subway environments. Environmental Research 2018, 167 , 314-328. https://doi.org/10.1016/j.envres.2018.07.034
    52. Yingying Cha, Ulf Olofsson. Effective density of airborne particles in a railway tunnel from field measurements of mobility and aerodynamic size distributions. Aerosol Science and Technology 2018, 52 (8) , 886-899. https://doi.org/10.1080/02786826.2018.1476750
    53. Shengquan He, Longzhe Jin, Tian Le, Chi Zhang, Xianan Liu, Xiaohong Ming. Commuter health risk and the protective effect of three typical metro environmental control systems in Beijing, China. Transportation Research Part D: Transport and Environment 2018, 62 , 633-645. https://doi.org/10.1016/j.trd.2018.04.015
    54. Teresa Moreno, Vânia Martins, Cristina Reche, Maria Cruz Minguillón, Eladio de Miguel, Xavier Querol. Air Quality in Subway Systems. 2018, 289-321. https://doi.org/10.1016/B978-0-12-811770-5.00013-3
    55. Bin Xu, Jinliang Hao. Air quality inside subway metro indoor environment worldwide: A review. Environment International 2017, 107 , 33-46. https://doi.org/10.1016/j.envint.2017.06.016
    56. C. Reche, T. Moreno, V. Martins, M.C. Minguillón, T. Jones, E. de Miguel, M. Capdevila, S. Centelles, X. Querol. Factors controlling particle number concentration and size at metro stations. Atmospheric Environment 2017, 156 , 169-181. https://doi.org/10.1016/j.atmosenv.2017.03.002
    57. Carlos Angelé-Martínez, Khanh Van T. Nguyen, Fathima S. Ameer, Jeffrey N. Anker, Julia L. Brumaghim. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology 2017, 11 (2) , 278-288. https://doi.org/10.1080/17435390.2017.1293750
    58. Teresa Moreno, Frank J. Kelly, Chrissi Dunster, Ana Oliete, Vânia Martins, Cristina Reche, Maria Cruz Minguillón, Fulvio Amato, Marta Capdevila, Eladio de Miguel, Xavier Querol. Oxidative potential of subway PM 2.5. Atmospheric Environment 2017, 148 , 230-238. https://doi.org/10.1016/j.atmosenv.2016.10.045
    59. Yingying Cha, Yolanda Hedberg, Nanxuan Mei, Ulf Olofsson. Airborne Wear Particles Generated from Conductor Rail and Collector Shoe Contact: Influence of Sliding Velocity and Particle Size. Tribology Letters 2016, 64 (3) https://doi.org/10.1007/s11249-016-0775-7
    60. Chiara Civardi, Lukas Schlagenhauf, Jean-Pierre Kaiser, Cordula Hirsch, Claudio Mucchino, Adrian Wichser, Peter Wick, Francis W. M. R. Schwarze. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion. Journal of Nanobiotechnology 2016, 14 (1) https://doi.org/10.1186/s12951-016-0232-7
    61. Bao-Qing Wang, Jian-Feng Liu, Zi-Hui Ren, Rong-Hui Chen. Concentrations, properties, and health risk of PM2.5 in the Tianjin City subway system. Environmental Science and Pollution Research 2016, 23 (22) , 22647-22657. https://doi.org/10.1007/s11356-016-7444-0
    62. Guipeng Cui, Liping Zhou, John Dearing. Granulometric and magnetic properties of deposited particles in the Beijing subway and the implications for air quality management. Science of The Total Environment 2016, 568 , 1059-1068. https://doi.org/10.1016/j.scitotenv.2016.06.154
    63. Jonas Hedberg, Hanna L. Karlsson, Yolanda Hedberg, Eva Blomberg, Inger Odnevall Wallinder. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity. Colloids and Surfaces B: Biointerfaces 2016, 141 , 291-300. https://doi.org/10.1016/j.colsurfb.2016.01.052
    64. Ashok K. Singh. Human and Environmental Risk Characterization of Nanoparticles. 2016, 451-514. https://doi.org/10.1016/B978-0-12-801406-6.00009-1
    65. Leonor C. Costa, Iram Mohmood, Tito Trindade, Mohammad Saleem, Armando C. Duarte, Eduarda Pereira, Iqbal Ahmad. Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.). Environmental Science and Pollution Research 2015, 22 (23) , 18574-18589. https://doi.org/10.1007/s11356-015-5375-9
    66. Shan Huang, Xingming Zhang, Masamoto Tafu, Takeshi Toshima, Youngmin Jo. Study on subway particle capture by ferromagnetic mesh filter in nonuniform magnetic field. Separation and Purification Technology 2015, 156 , 642-654. https://doi.org/10.1016/j.seppur.2015.10.060
    67. . Scientific Opinion on the re‐evaluation of iron oxides and hydroxides (E 172) as food additives. EFSA Journal 2015https://doi.org/10.2903/j.efsa.2015.4317
    68. Mihaela Radu, Ioana Din, Anca Hermenean, Otilia Cinteză, Radu Burlacu, Aurel Ardelean, Anca Dinischiotu. Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Biochemical and Histopathological Pulmonary Changes in Mice. International Journal of Molecular Sciences 2015, 16 (12) , 29417-29435. https://doi.org/10.3390/ijms161226173
    69. Suma Prabhu, Srinivas Mutalik, Sharada Rai, Nayanabhirama Udupa, Bola Sadashiva Satish Rao. PEGylation of superparamagnetic iron oxide nanoparticle for drug delivery applications with decreased toxicity: an in vivo study. Journal of Nanoparticle Research 2015, 17 (10) https://doi.org/10.1007/s11051-015-3216-x
    70. Mihaela Radu, Diana Dinu, Cornelia Sima, Radu Burlacu, Anca Hermenean, Aurel Ardelean, Anca Dinischiotu. Magnetite nanoparticles induced adaptive mechanisms counteract cell death in human pulmonary fibroblasts. Toxicology in Vitro 2015, 29 (7) , 1492-1502. https://doi.org/10.1016/j.tiv.2015.06.002
    71. Chiara Civardi, Francis W.M.R. Schwarze, Peter Wick. Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Environmental Pollution 2015, 200 , 126-132. https://doi.org/10.1016/j.envpol.2015.02.018
    72. Matthew Loxham, Rebecca J. Morgan-Walsh, Matthew J. Cooper, Cornelia Blume, Emily J. Swindle, Patrick W. Dennison, Peter H. Howarth, Flemming R. Cassee, Damon A. H. Teagle, Martin R. Palmer, Donna E. Davies. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station. Toxicological Sciences 2015, 145 (1) , 98-107. https://doi.org/10.1093/toxsci/kfv034
    73. Vânia Martins, Teresa Moreno, María Cruz Minguillón, Fulvio Amato, Eladio de Miguel, Marta Capdevila, Xavier Querol. Exposure to airborne particulate matter in the subway system. Science of The Total Environment 2015, 511 , 711-722. https://doi.org/10.1016/j.scitotenv.2014.12.013
    74. Anna Spagnolo, Gianluca Ottria, Fernanda Perdelli, Maria Cristina. Chemical Characterisation of the Coarse and Fine Particulate Matter in the Environment of an Underground Railway System: Cytotoxic Effects and Oxidative Stress—A Preliminary Study. International Journal of Environmental Research and Public Health 2015, 12 (4) , 4031-4046. https://doi.org/10.3390/ijerph120404031
    75. Peter Møller, Ditte Marie Jensen, Daniel Vest Christophersen, Ali Kermanizadeh, Nicklas Raun Jacobsen, Jette Gjerke Hemmingsen, Pernille Høgh Danielsen, Dorina Gabriela Karottki, Martin Roursgaard, Yi Cao, Kim Jantzen, Henrik Klingberg, Lars‐Georg Hersoug, Steffen Loft. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals. Environmental and Molecular Mutagenesis 2015, 56 (2) , 97-110. https://doi.org/10.1002/em.21899
    76. Teresa Moreno, Vânia Martins, Xavier Querol, Tim Jones, Kelly BéruBé, Maria Cruz Minguillón, Fulvio Amato, Marta Capdevila, Eladio de Miguel, Sonia Centelles, Wes Gibbons. A new look at inhalable metalliferous airborne particles on rail subway platforms. Science of The Total Environment 2015, 505 , 367-375. https://doi.org/10.1016/j.scitotenv.2014.10.013
    77. Sang-Hoon Byeon, Robert Willis, Thomas Peters. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0) and Coarse (PM10–2.5) Particulate Matter in Seoul (Korea) by Computer-Controlled Scanning Electron Microscopy (CCSEM). International Journal of Environmental Research and Public Health 2015, 12 (2) , 2090-2104. https://doi.org/10.3390/ijerph120202090
    78. Peter Møller, Pernille Høgh Danielsen, Dorina Gabriela Karottki, Kim Jantzen, Martin Roursgaard, Henrik Klingberg, Ditte Marie Jensen, Daniel Vest Christophersen, Jette Gjerke Hemmingsen, Yi Cao, Steffen Loft. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutation Research/Reviews in Mutation Research 2014, 762 , 133-166. https://doi.org/10.1016/j.mrrev.2014.09.001
    79. Li Guo, Yunjie Hu, Qingqing Hu, Jun Lin, Chunlin Li, Jianmin Chen, Lina Li, Hongbo Fu. Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China. Science of The Total Environment 2014, 496 , 443-452. https://doi.org/10.1016/j.scitotenv.2014.07.055
    80. L. Canivet, F.O. Denayer, Y. Champion, P. Cenedese, P. Dubot. Photoemission study of metallic iron nanoparticles surface aging in biological fluids. Influence on biomolecules adsorption. Applied Surface Science 2014, 307 , 272-279. https://doi.org/10.1016/j.apsusc.2014.04.024
    81. Nicole A.H. Janssen, Aileen Yang, Maciej Strak, Maaike Steenhof, Bryan Hellack, Miriam E. Gerlofs-Nijland, Thomas Kuhlbusch, Frank Kelly, Roy Harrison, Bert Brunekreef, Gerard Hoek, Flemming Cassee. Oxidative potential of particulate matter collected at sites with different source characteristics. Science of The Total Environment 2014, 472 , 572-581. https://doi.org/10.1016/j.scitotenv.2013.11.099
    82. Hanna L. Karlsson, Pontus Cronholm, Yolanda Hedberg, Malin Tornberg, Laura De Battice, Sofia Svedhem, Inger Odnevall Wallinder. Cell membrane damage and protein interaction induced by copper containing nanoparticles—Importance of the metal release process. Toxicology 2013, 313 (1) , 59-69. https://doi.org/10.1016/j.tox.2013.07.012
    83. Nidhi Joshi, Anindita Mukhopadhyay, Sujit Basak, Goutam De, Krishnananda Chattopadhyay. Surface Coating Rescues Proteins from Magnetite Nanoparticle Induced Damage. Particle & Particle Systems Characterization 2013, 30 (8) , 683-694. https://doi.org/10.1002/ppsc.201200148
    84. Hugo A.C. Denier van der Gon, Miriam E. Gerlofs-Nijland, Robert Gehrig, Mats Gustafsson, Nicole Janssen, Roy M. Harrison, Jan Hulskotte, Christer Johansson, Magdalena Jozwicka, Menno Keuken, Klaas Krijgsheld, Leonidas Ntziachristos, Michael Riediker, Flemming R. Cassee. The Policy Relevance of Wear Emissions from Road Transport, Now and in the Future—An International Workshop Report and Consensus Statement. Journal of the Air & Waste Management Association 2013, 63 (2) , 136-149. https://doi.org/10.1080/10962247.2012.741055
    85. Peter Møller, Pernille Høgh Danielsen, Kim Jantzen, Martin Roursgaard, Steffen Loft. Oxidatively damaged DNA in animals exposed to particles. Critical Reviews in Toxicology 2013, 43 (2) , 96-118. https://doi.org/10.3109/10408444.2012.756456
    86. Saeed Abbasi, Anders Jansson, Ulf Sellgren, Ulf Olofsson. Particle Emissions From Rail Traffic: A Literature Review. Critical Reviews in Environmental Science and Technology 2013, 43 (23) , 2511-2544. https://doi.org/10.1080/10643389.2012.685348
    87. Shigeaki Abe, Chika Koyama, Mami Mutoh, Tsukasa Akasaka, Motohiro Uo, Fumio Watari. Investigation of biodistribution behavior of platinum particles in mice: Correlation between inductively coupled plasma-atomic emission spectroscopy and X-ray scanning analytical microscopy. Applied Surface Science 2012, 262 , 125-128. https://doi.org/10.1016/j.apsusc.2012.03.080
    88. Shigeaki Abe, Nobuki Iwadera, Mitsue Esaki, Ken-Ichi Aoyama, Tsukasa Akasaka, Motohiro Uo, Manabu Morita, Yasutaka Yawaka, Fumio Watari. Morphology, size distribution and elemental composition of several dental debris. Applied Surface Science 2012, 262 , 248-252. https://doi.org/10.1016/j.apsusc.2012.07.126
    89. Mi Hyun Jung, Ha Ryong Kim, Yong Joo Park, Duck Shin Park, Kyu Hyuck Chung, Seung Min Oh. Genotoxic effects and oxidative stress induced by organic extracts of particulate matter (PM10) collected from a subway tunnel in Seoul, Korea. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2012, 749 (1-2) , 39-47. https://doi.org/10.1016/j.mrgentox.2012.08.002
    90. H. Maleki, A. Simchi, M. Imani, B.F.O. Costa. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. Journal of Magnetism and Magnetic Materials 2012, 324 (23) , 3997-4005. https://doi.org/10.1016/j.jmmm.2012.06.045
    91. Javed Ahmad, Sourabh Dwivedi, Saud Alarifi, Abdulaziz A. Al-Khedhairy, Javed Musarrat. Use of β-galactosidase (lacZ) gene α-complementation as a novel approach for assessment of titanium oxide nanoparticles induced mutagenesis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2012, 747 (2) , 246-252. https://doi.org/10.1016/j.mrgentox.2012.06.002
    92. Diana Jordanova, Neli Jordanova, Philippe Lanos, Petar Petrov, Tsenka Tsacheva. Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality. Geochemistry, Geophysics, Geosystems 2012, 13 (8) https://doi.org/10.1029/2012GC004160
    93. J. Kain, H. L. Karlsson, L. Moller. DNA damage induced by micro- and nanoparticles--interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 2012, 27 (4) , 491-500. https://doi.org/10.1093/mutage/ges010
    94. Y. Hedberg, I. Odnevall Wallinder. Transformation/dissolution studies on the release of iron and chromium from particles of alloys compared with their pure metals and selected metal oxides. Materials and Corrosion 2012, 63 (6) , 481-491. https://doi.org/10.1002/maco.201005943
    95. Klara Midander, Karine Elihn, Anna Wallén, Lyuba Belova, Anna-Karin Borg Karlsson, Inger Odnevall Wallinder. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach. Science of The Total Environment 2012, 427-428 , 390-400. https://doi.org/10.1016/j.scitotenv.2012.04.014
    96. Mats Gustafsson, Göran Blomqvist, Erik Swietlicki, Andreas Dahl, Anders Gudmundsson. Inhalable railroad particles at ground level and subterranean stations – Physical and chemical properties and relation to train traffic. Transportation Research Part D: Transport and Environment 2012, 17 (3) , 277-285. https://doi.org/10.1016/j.trd.2011.12.006
    97. Hae-Jin Jung, BoWha Kim, Md Abdul Malek, Yong Sung Koo, Jong Hoon Jung, Youn-Suk Son, Jo-Chun Kim, HyeKyoung Kim, Chul-Un Ro. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea. Journal of Hazardous Materials 2012, 213-214 , 331-340. https://doi.org/10.1016/j.jhazmat.2012.02.006
    98. Ki-Hyun Kim, Duy Xuan Ho, Jae-Sik Jeon, Jo-Chun Kim. A noticeable shift in particulate matter levels after platform screen door installation in a Korean subway station. Atmospheric Environment 2012, 49 , 219-223. https://doi.org/10.1016/j.atmosenv.2011.11.058
    99. Neenu Singh, Gareth J.S. Jenkins, Bryant C. Nelson, Bryce J. Marquis, Thierry G.G. Maffeis, Andy P. Brown, Paul M. Williams, Chris J. Wright, Shareen H. Doak. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials 2012, 33 (1) , 163-170. https://doi.org/10.1016/j.biomaterials.2011.09.087
    100. X. Querol, T. Moreno, A. Karanasiou, C. Reche, A. Alastuey, M. Viana, O. Font, J. Gil, E. de Miguel, M. Capdevila. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmospheric Chemistry and Physics 2012, 12 (11) , 5055-5076. https://doi.org/10.5194/acp-12-5055-2012
    Load all citations

    Chemical Research in Toxicology

    Cite this: Chem. Res. Toxicol. 2008, 21, 3, 726–731
    Click to copy citationCitation copied!
    https://doi.org/10.1021/tx7003568
    Published February 9, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1434

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.