ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Metabolites in Safety Testing (MIST): Considerations of Mechanisms of Toxicity with Dose, Abundance, and Duration of Treatment

View Author Information
Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Sandwich, Kent, U.K., and Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
* To whom correspondence should be addressed. E-mail: [email protected]
†Pfizer Inc., Sandwich, Kent.
‡Pfizer Inc., Groton, Connecticut.
Cite this: Chem. Res. Toxicol. 2009, 22, 2, 267–279
Publication Date (Web):January 23, 2009
https://doi.org/10.1021/tx800415j
Copyright © 2009 American Chemical Society

    Article Views

    3210

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (449 KB)

    Abstract

    Abstract Image

    In previous papers, we have offered a strategic framework regarding metabolites of drugs in humans and the need to assess these in laboratory animal species (also termed Metabolites in Safety Testing or MIST; Smith and Obach, Chem. Res. Toxicol. (2006) 19, 1570−1579). Three main tenets of this framework were founded in (i) comparisons of absolute exposures (as circulating concentrations or total body burden), (ii) the nature of the toxicity mechanism (i.e., reversible interaction at specific targets versus covalent binding to multiple macromolecules), and (iii) the biological matrix in which the metabolite was observed (circulatory vs excretory). In the present review, this framework is expanded to include a fourth tenet: considerations for the duration of exposure. Basic concepts of pharmacology are utilized to rationalize the relationship between exposure (to parent drug or metabolite) and various effects ranging from desired therapeutic effects through to severe toxicities. Practical considerations of human ADME (absorption−distribution−metabolism−excretion) data, to determine which metabolites should be further evaluated for safety, are discussed. An analysis of recently published human ADME studies shows that the number of drug metabolites considered to be important for MIST can be excessively high if a simple percentage-of-parent-drug criterion is used without consideration of the aforementioned four tenets. Concern over unique human metabolites has diminished over the years as experience has shown that metabolites of drugs in humans will almost always be observed in laboratory animals, although the proportions may vary. Even if a metabolite represents a high proportion of the dose in humans and a low proportion in animals, absolute abundances in animals frequently exceed that in humans because the doses used in animal toxicology studies are much greater than therapeutic doses in humans. The review also updates the enzymatic basis for the differences between species and how these relate to MIST considerations.

    Cited By

    This article is cited by 123 publications.

    1. Alf Claesson, Alexander Minidis. Systematic Approach to Organizing Structural Alerts for Reactive Metabolite Formation from Potential Drugs. Chemical Research in Toxicology 2018, 31 (6) , 389-411. https://doi.org/10.1021/acs.chemrestox.8b00046
    2. Shuang Liu, Congxiang Zha, Kassoum Nacro, Min Hu, Wenge Cui, Yuh-Lin Yang, Ulhas Bhatt, Aruna Sambandam, Matthew Isherwood, Larry Yet, Michael T. Herr, Sarah Ebeltoft, Carla Hassler, Linda Fleming, Anthony D. Pechulis, Anne Payen-Fornicola, Nicholas Holman, Dennis Milanowski, Ian Cotterill, Vadim Mozhaev, Yuri Khmelnitsky, Peter R. Guzzo, Bruce J. Sargent, and Bruce F. Molino , Richard Olson, Dalton King, Snjezana Lelas, Yu-Wen Li, Kim Johnson, Thaddeus Molski, Anitra Orie, Alicia Ng, Roy Haskell, Wendy Clarke, Robert Bertekap, Jonathan O’Connell, Nicholas Lodge, Michael Sinz, Stephen Adams, Robert Zaczek, and John E. Macor . Design and Synthesis of 4-Heteroaryl 1,2,3,4-Tetrahydroisoquinolines as Triple Reuptake Inhibitors. ACS Medicinal Chemistry Letters 2014, 5 (7) , 760-765. https://doi.org/10.1021/ml500053b
    3. Johanna Haglund, Magnus M. Halldin, Åsa Brunnström, Göran Eklund, Antti Kautiainen, Anna Sandholm, and Suzanne L. Iverson . Pragmatic Approaches to Determine the Exposures of Drug Metabolites in Preclinical and Clinical Subjects in the MIST Evaluation of the Clinical Development Phase. Chemical Research in Toxicology 2014, 27 (4) , 601-610. https://doi.org/10.1021/tx400449z
    4. Dennis A. Smith . Evolution of ADME Science: Where Else Can Modeling and Simulation Contribute?. Molecular Pharmaceutics 2013, 10 (4) , 1162-1170. https://doi.org/10.1021/mp3005319
    5. Raman Sharma, Heather Eng, Gregory S. Walker, Gabriela Barreiro, Antonia F. Stepan, Kim F. McClure, Angela Wolford, Paul D. Bonin, Peter Cornelius, and Amit S. Kalgutkar . Oxidative Metabolism of a Quinoxaline Derivative by Xanthine Oxidase in Rodent Plasma. Chemical Research in Toxicology 2011, 24 (12) , 2207-2216. https://doi.org/10.1021/tx200329k
    6. James A. Southers, Jonathan N. Bauman, David A. Price, Paul S. Humphries, Gayatri Balan, John F. Sagal, Tristan S. Maurer, Yan Zhang, Robert Oliver, Michael Herr, David R. Healy, Mei Li, Brendon Kapinos, Gwendolyn D. Fate, Keith A. Riccardi, Vishwas M. Paralkar, Thomas A. Brown and Amit S. Kalgutkar. Metabolism-Guided Design of Short-Acting Calcium-Sensing Receptor Antagonists. ACS Medicinal Chemistry Letters 2010, 1 (5) , 219-223. https://doi.org/10.1021/ml100058w
    7. Akiko Baba and Tadao Yoshioka. Structure−Activity Relationships for the Degradation Reaction of 1-β-O-Acyl Glucuronides. Part 3: Electronic and Steric Descriptors Predicting the Reactivity of Aralkyl Carboxylic Acid 1-β-O-Acyl Glucuronides. Chemical Research in Toxicology 2009, 22 (12) , 1998-2008. https://doi.org/10.1021/tx9002963
    8. Aisar H. Atrakchi. Interpretation and Considerations on the Safety Evaluation of Human Drug Metabolites. Chemical Research in Toxicology 2009, 22 (7) , 1217-1220. https://doi.org/10.1021/tx900124j
    9. Debra Luffer-Atlas, R. Scott Obach, Dennis A. Smith. A MIST conception: what has been learned from twenty years of human metabolite safety assessment?. Medicinal Chemistry Research 2023, 32 (9) , 1933-1949. https://doi.org/10.1007/s00044-023-03089-9
    10. R. Lock, P. J. H. Webborn, C. W. Vose, R. M. J. Ings. Drug Metabolism. 2023, 265-297. https://doi.org/10.1039/9781788018982-00265
    11. Xinyu Ge, Sheng Ma, Shu Yan, Yali Wu, Chong Chen, Chongzhuang Tang, Yan Zhan, Yi-cong Bian, Kai Shen, Sheng Feng, Xuehu Gao, Dafang Zhong, Hua Zhang, Li-yan Miao, Xing-xing Diao. Mass balance study of [ 14 C]SHR0302, a selective and potent JAK1 inhibitor in humans. Xenobiotica 2023, 53 (2) , 69-83. https://doi.org/10.1080/00498254.2023.2176267
    12. Daigo Asano, Koichi Nakamura, Yumi Nishiya, Hideyuki Shiozawa, Hideo Takakusa, Takahiro Shibayama, Shin-ichi Inoue, Tsuyoshi Shinozuka, Takakazu Hamada, Chizuko Yahara, Nobuaki Watanabe, Kouichi Yoshinari. Physiologically Based Pharmacokinetic Modeling for Quantitative Prediction of Exposure to a Human Disproportionate Metabolite of the Selective Na V 1.7 Inhibitor DS-1971a, a Mixed Substrate of Cytochrome P450 and Aldehyde Oxidase, Using Chimeric Mice With Humanized Liver. Drug Metabolism and Disposition 2023, 51 (1) , 67-80. https://doi.org/10.1124/dmd.122.001000
    13. Lloyd Wei Tat Tang, Eric Chun Yong Chan. Metabolic activation of drugs by cytochrome P450 enzymes: Biochemical insights into mechanism-based inactivation by fibroblast growth factor receptor inhibitors and chemical approaches to attenuate reactive metabolite formation. Biochemical Pharmacology 2022, 206 , 115336. https://doi.org/10.1016/j.bcp.2022.115336
    14. Yu Yuan, Guangpeng Meng, Yuanbo Li, Chunjie Wu. Study on In Vitro Metabolism and In Vivo Pharmacokinetics of Beauvericin. Toxins 2022, 14 (7) , 477. https://doi.org/10.3390/toxins14070477
    15. Raine E.S. Thomson, Stephlina A. D’Cunha, Martin A. Hayes, Elizabeth M.J. Gillam. Use of engineered cytochromes P450 for accelerating drug discovery and development. 2022, 195-252. https://doi.org/10.1016/bs.apha.2022.06.001
    16. Bouchra Ezzamouri, Saeed Shoaie, Rodrigo Ledesma-Amaro. Synergies of Systems Biology and Synthetic Biology in Human Microbiome Studies. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.681982
    17. Larry C. Wienkers, Brooke M. Rock. Multienzyme Kinetics and Sequential Metabolism. 2021, 89-112. https://doi.org/10.1007/978-1-0716-1554-6_4
    18. Karen L. Blackburn, Gregory Carr, Jane L. Rose, Bastian G. Selman. An interim internal Threshold of Toxicologic Concern (iTTC) for chemicals in consumer products, with support from an automated assessment of ToxCast™ dose response data. Regulatory Toxicology and Pharmacology 2020, 114 , 104656. https://doi.org/10.1016/j.yrtph.2020.104656
    19. Yuuka Masuyama, Miyu Nishikawa, Kaori Yasuda, Toshiyuki Sakaki, Shinichi Ikushiro. Whole-cell dependent biosynthesis of N- and S-oxides using human flavin containing monooxygenases expressing budding yeast. Drug Metabolism and Pharmacokinetics 2020, 35 (3) , 274-280. https://doi.org/10.1016/j.dmpk.2020.01.007
    20. Kevin Johnson, Hoa Le, S. Cyrus Khojasteh. The use of stable isotopes in drug metabolism studies. 2020, 439-460. https://doi.org/10.1016/B978-0-12-820018-6.00015-6
    21. Vishal Shah, Chun Yang, Zancong Shen, Bradley M. Kerr, Kathy Tieu, David M. Wilson, Jesse Hall, Michael Gillen, Caroline A. Lee. Metabolism and disposition of lesinurad, a uric acid reabsorption inhibitor, in humans. Xenobiotica 2019, 49 (7) , 811-822. https://doi.org/10.1080/00498254.2018.1504257
    22. F. Zhang, M. Bartels, A. Clark, T. Erskine, T. Auernhammer, B. Bhhatarai, D. Wilson, S. Marty. Performance evaluation of the GastroPlus TM software tool for prediction of the toxicokinetic parameters of chemicals. SAR and QSAR in Environmental Research 2018, 29 (11) , 875-893. https://doi.org/10.1080/1062936X.2018.1518928
    23. Simone Schadt, Bojan Bister, Swapan K. Chowdhury, Christoph Funk, Cornelis E. C. A. Hop, W. Griffith Humphreys, Fumihiko Igarashi, Alexander D. James, Mark Kagan, S. Cyrus Khojasteh, Angus N. R. Nedderman, Chandra Prakash, Frank Runge, Holger Scheible, Douglas K. Spracklin, Piet Swart, Susanna Tse, Josh Yuan, R. Scott Obach. A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development under the “Metabolites in Safety Testing” Regulatory Guidance. Drug Metabolism and Disposition 2018, 46 (6) , 865-878. https://doi.org/10.1124/dmd.117.079848
    24. Debra Luffer-Atlas, Aisar Atrakchi. A decade of drug metabolite safety testing: industry and regulatory shared learning. Expert Opinion on Drug Metabolism & Toxicology 2017, 13 (9) , 897-900. https://doi.org/10.1080/17425255.2017.1364362
    25. J. Vrbanac, R. Slauter. ADME in Drug Discovery. 2017, 39-67. https://doi.org/10.1016/B978-0-12-803620-4.00003-7
    26. Julien Genovino, Dalibor Sames, Lawrence G. Hamann, B. Barry Touré. Die Erschließung von Wirkstoffmetaboliten durch übergangsmetallkatalysierte C‐H‐Oxidation: die Leber als Inspiration für die Synthese. Angewandte Chemie 2016, 128 (46) , 14430-14451. https://doi.org/10.1002/ange.201602644
    27. Julien Genovino, Dalibor Sames, Lawrence G. Hamann, B. Barry Touré. Accessing Drug Metabolites via Transition‐Metal Catalyzed C−H Oxidation: The Liver as Synthetic Inspiration. Angewandte Chemie International Edition 2016, 55 (46) , 14218-14238. https://doi.org/10.1002/anie.201602644
    28. B. Kevin Park, Dennis A. Smith. MIST AND THE FUTURE. 2016, 305-322. https://doi.org/10.1002/9781118949689.ch14
    29. Gordon J. Dear, Angus N. R. Nedderman. “MIST” AND OTHER METABOLITE GUIDELINES IN THE CONTEXT OF INDUSTRIAL DRUG METABOLISM. 2016, 17-43. https://doi.org/10.1002/9781118949689.ch2
    30. Lu Gaohua, Howard Burt, Helen Humphries, Amin Rostami‐Hodjegan, Masoud Jamei. IN SILICO MODELING OF METABOLITE KINETICS. 2016, 213-237. https://doi.org/10.1002/9781118949689.ch8
    31. Xin Zhou, Chang Chen, Fangrong Zhang, Yang Zhang, Yuling Feng, Hui Ouyang, Yong Xu, Hongliang Jiang. Metabolism and bioactivation of the tricyclic antidepressant amitriptyline in human liver microsomes and human urine. Bioanalysis 2016, 8 (13) , 1365-1381. https://doi.org/10.4155/bio-2016-0025
    32. J. Shen, M. Serby, B. Surber, A. J. Lee, J. Ma, P. Badri, R. Menon, O. Kavetskaia, S. M. de Morais, J. Sydor, V. Fischer. Metabolism and Disposition of Pan-Genotypic Inhibitor of Hepatitis C Virus NS5A Ombitasvir in Humans. Drug Metabolism and Disposition 2016, 44 (8) , 1148-1157. https://doi.org/10.1124/dmd.115.067496
    33. J. Iegre, M. A. Hayes, R. A. Thompson, L. Weidolf, E. M. Isin. Database Extraction of Metabolite Information of Drug Candidates: Analysis of 27 AstraZeneca Compounds with Human Absorption, Distribution, Metabolism, and Excretion Data. Drug Metabolism and Disposition 2016, 44 (5) , 732-740. https://doi.org/10.1124/dmd.115.067850
    34. Thomas A. Baillie, Deepak Dalvie, Ivonne M. C. M. Rietjens, S. Cyrus Khojasteh. Biotransformation and bioactivation reactions – 2015 literature highlights. Drug Metabolism Reviews 2016, 48 (2) , 113-138. https://doi.org/10.1080/03602532.2016.1195404
    35. S.-E. W. Huskey, C.-q. Zhu, M. M. Lin, R. R. Forseth, H. Gu, O. Simon, F. K. Eggimann, M. Kittelmann, A. Luneau, A. Vargas, H. Li, L. Wang, H. J. Einolf, J. Zhang, S. Favara, H. He, J. B. Mangold. Identification of Three Novel Ring Expansion Metabolites of KAE609, a New Spiroindolone Agent for the Treatment of Malaria, in Rats, Dogs, and Humans. Drug Metabolism and Disposition 2016, 44 (5) , 653-664. https://doi.org/10.1124/dmd.115.069112
    36. Dan Xu, Gary Peltz. Can Humanized Mice Predict Drug “Behavior” in Humans?. Annual Review of Pharmacology and Toxicology 2016, 56 (1) , 323-338. https://doi.org/10.1146/annurev-pharmtox-010715-103644
    37. Martina Geier, Thorsten Bachler, Steven P Hanlon, Fabian K Eggimann, Matthias Kittelmann, Hansjörg Weber, Stephan Lütz, Beat Wirz, Margit Winkler. Human FMO2-based microbial whole-cell catalysts for drug metabolite synthesis. Microbial Cell Factories 2015, 14 (1) https://doi.org/10.1186/s12934-015-0262-0
    38. J. Matthew Hutzler, Michael A. Zientek. Non-Cytochrome P450 Enzymes and Glucuronidation. 2015, 79-130. https://doi.org/10.1039/9781782622376-00079
    39. Thomas A. Baillie. Chemically Reactive Versus Stable Drug Metabolites: Role in Adverse Drug Reactions. 2015, 202-226. https://doi.org/10.1039/9781782622376-00202
    40. Jelle Reinen, Galvin Vredenburg, Karoline Klaering, Nico P.E. Vermeulen, Jan N.M. Commandeur, Maarten Honing, J. Chris Vos. Selective whole-cell biosynthesis of the designer drug metabolites 15- or 16-betahydroxynorethisterone by engineered Cytochrome P450 BM3 mutants. Journal of Molecular Catalysis B: Enzymatic 2015, 121 , 64-74. https://doi.org/10.1016/j.molcatb.2015.08.003
    41. Seigo Sanoh. In Vitro and in Vivo Assessments of Drug-induced Hepatotoxicity and Drug Metabolism in Humans. YAKUGAKU ZASSHI 2015, 135 (11) , 1273-1279. https://doi.org/10.1248/yakushi.15-00200
    42. Jan Kiebist, Wolfgang Holla, Johannes Heidrich, Marzena Poraj-Kobielska, Martin Sandvoss, Reiner Simonis, Glenn Gröbe, Jens Atzrodt, Martin Hofrichter, Katrin Scheibner. One-pot synthesis of human metabolites of SAR548304 by fungal peroxygenases. Bioorganic & Medicinal Chemistry 2015, 23 (15) , 4324-4332. https://doi.org/10.1016/j.bmc.2015.06.035
    43. Lars Dalgaard. Comparison of minipig, dog, monkey and human drug metabolism and disposition. Journal of Pharmacological and Toxicological Methods 2015, 74 , 80-92. https://doi.org/10.1016/j.vascn.2014.12.005
    44. Martijn P. Lolkema, Hilde H. Bohets, Hendrik-Tobias Arkenau, Ann Lampo, Erio Barale, Maja J.A. de Jonge, Leni van Doorn, Peter Hellemans, Johann S. de Bono, Ferry A.L.M. Eskens. The c-Met Tyrosine Kinase Inhibitor JNJ-38877605 Causes Renal Toxicity through Species-Specific Insoluble Metabolite Formation. Clinical Cancer Research 2015, 21 (10) , 2297-2304. https://doi.org/10.1158/1078-0432.CCR-14-3258
    45. Raman Sharma, John Litchfield, Arthur Bergman, Karen Atkinson, David Kazierad, Stephanie M. Gustavson, Li Di, Jeffrey A. Pfefferkorn, Amit S. Kalgutkar. Comparison of the Circulating Metabolite Profile of PF-04991532, a Hepatoselective Glucokinase Activator, Across Preclinical Species and Humans: Potential Implications in Metabolites in Safety Testing Assessment. Drug Metabolism and Disposition 2015, 43 (2) , 190-198. https://doi.org/10.1124/dmd.114.061218
    46. Marco Girhard, Patrick J. Bakkes, Osama Mahmoud, Vlada B. Urlacher. P450 Biotechnology. 2015, 451-520. https://doi.org/10.1007/978-3-319-12108-6_8
    47. Peter Ballard, Helen C. Swaisland, Michael D. Malone, Sunil Sarda, Serban Ghiorghiu, Darren Wilbraham. Metabolic disposition of AZD8931, an oral equipotent inhibitor of EGFR, HER2 and HER3 signalling, in rat, dog and man. Xenobiotica 2014, 44 (12) , 1083-1098. https://doi.org/10.3109/00498254.2014.938257
    48. Gregory S. Walker, Jonathan N. Bauman, Tim F. Ryder, Evan B. Smith, Douglas K. Spracklin, R. Scott Obach. Biosynthesis of Drug Metabolites and Quantitation Using NMR Spectroscopy for Use in Pharmacologic and Drug Metabolism Studies. Drug Metabolism and Disposition 2014, 42 (10) , 1627-1639. https://doi.org/10.1124/dmd.114.059204
    49. Dan Xu, Toshi Nishimura, Sachiko Nishimura, Haili Zhang, Ming Zheng, Ying-Ying Guo, Marylin Masek, Sara A. Michie, Jeffrey Glenn, Gary Peltz, . Fialuridine Induces Acute Liver Failure in Chimeric TK-NOG Mice: A Model for Detecting Hepatic Drug Toxicity Prior to Human Testing. PLoS Medicine 2014, 11 (4) , e1001628. https://doi.org/10.1371/journal.pmed.1001628
    50. Kristina Dunér, Pernilla Bottner, Anna‐Karin Norlén. Development of analytical methods for the quantification of metabolites of lesogaberan in a MIST investigation. Biomedical Chromatography 2014, 28 (3) , 362-368. https://doi.org/10.1002/bmc.3029
    51. Hongying Gao, R Scott Obach. Data-driven approach for cross-species comparative metabolite exposure assessment: how to establish fundamental bioanalytical parameters for the peak area ratio method. Bioanalysis 2014, 6 (5) , 641-650. https://doi.org/10.4155/bio.14.15
    52. W. Griffith Humphreys. In Vivo Experimental Models for Studying Drug Biotransformation. 2014, 1-10. https://doi.org/10.1002/9781118541203.xen0016
    53. Larry C. Wienkers, Brooke Rock. Multienzyme Kinetics and Sequential Metabolism. 2014, 93-118. https://doi.org/10.1007/978-1-62703-758-7_6
    54. David Falck, Fatie Rahimi Pirkolachachi, Martin Giera, Maarten Honing, Jeroen Kool, Wilfried M.A. Niessen. Comparison of (bio-)transformation methods for the generation of metabolite-like compound libraries of p38α MAP kinase inhibitors using high-resolution screening. Journal of Pharmaceutical and Biomedical Analysis 2014, 88 , 235-244. https://doi.org/10.1016/j.jpba.2013.08.045
    55. Ernesto Callegari, Amit S. Kalgutkar, Louis Leung, R. Scott Obach, David R. Plowchalk, Susanna Tse. Drug Metabolites as Cytochrome P450 Inhibitors: A Retrospective Analysis and Proposed Algorithm for Evaluation of the Pharmacokinetic Interaction Potential of Metabolites in Drug Discovery and Development. Drug Metabolism and Disposition 2013, 41 (12) , 2047-2055. https://doi.org/10.1124/dmd.113.052241
    56. Tonika Bohnert, Liang-Shang Gan. Plasma protein binding: From discovery to development. Journal of Pharmaceutical Sciences 2013, 102 (9) , 2953-2994. https://doi.org/10.1002/jps.23614
    57. Stephen Castellino, Lee Moss, David Wagner, Julie Borland, Ivy Song, Shuguang Chen, Yu Lou, Sherene S. Min, Igor Goljer, Amanda Culp, Stephen C. Piscitelli, Paul M. Savina. Metabolism, Excretion, and Mass Balance of the HIV-1 Integrase Inhibitor Dolutegravir in Humans. Antimicrobial Agents and Chemotherapy 2013, 57 (8) , 3536-3546. https://doi.org/10.1128/AAC.00292-13
    58. Jens Atzrodt, Volker Derdau. Selected Scientific Topics of the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds. Journal of Labelled Compounds and Radiopharmaceuticals 2013, 56 (9-10) , 408-416. https://doi.org/10.1002/jlcr.3096
    59. Marzena Poraj‐Kobielska, Jens Atzrodt, Wolfgang Holla, Martin Sandvoss, Glenn Gröbe, Katrin Scheibner, Martin Hofrichter. Preparation of labeled human drug metabolites and drug‐drug interaction‐probes with fungal peroxygenases. Journal of Labelled Compounds and Radiopharmaceuticals 2013, 56 (9-10) , 513-519. https://doi.org/10.1002/jlcr.3103
    60. Xiaochun Zhu, J. Greg Slatter, Maurice G. Emery, Molly R. Deane, Anna Akrami, Xiping Zhang, Dean Hickman, Gary L. Skiles, Raju Subramanian. Activity-based exposure comparisons among humans and nonclinical safety testing species in an extensively metabolized drug candidate. Xenobiotica 2013, 43 (7) , 617-627. https://doi.org/10.3109/00498254.2012.747711
    61. Gary Peltz. Can ‘humanized’ mice improve drug development in the 21st century?. Trends in Pharmacological Sciences 2013, 34 (5) , 255-260. https://doi.org/10.1016/j.tips.2013.03.005
    62. Minli Zhang, Christina M. Resuello, Jian Guo, Mark E. Powell, Charles S. Elmore, Jun Hu, Karthick Vishwanathan. Contribution of Artifacts to N -Methylated Piperazine Cyanide Adduct Formation In Vitro from N -Alkyl Piperazine Analogs. Drug Metabolism and Disposition 2013, 41 (5) , 1023-1034. https://doi.org/10.1124/dmd.112.050450
    63. Anja Ekdahl, Ann Aurell-Holmberg, Neal Castagnoli. Identification of the metabolites of lesogaberan using linear trap quadrupole orbitrap mass spectrometry and hydrophilic interaction liquid chromatography. Xenobiotica 2013, 43 (5) , 461-467. https://doi.org/10.3109/00498254.2012.725486
    64. Toshihiko Nishimura, Yajing Hu, Manhong Wu, Edward Pham, Hiroshi Suemizu, Menashe Elazar, Michael Liu, Ramazan Idilman, Cihan Yurdaydin, Peter Angus, Catherine Stedman, Brian Murphy, Jeffrey Glenn, Masato Nakamura, Tatsuji Nomura, Yuan Chen, Ming Zheng, William L. Fitch, Gary Peltz. Using Chimeric Mice with Humanized Livers to Predict Human Drug Metabolism and a Drug-Drug Interaction. Journal of Pharmacology and Experimental Therapeutics 2013, 344 (2) , 388-396. https://doi.org/10.1124/jpet.112.198697
    65. Kedan Lin, Jay Tibbitts, Ben-Quan Shen. Pharmacokinetics and ADME Characterizations of Antibody–Drug Conjugates. 2013, 117-131. https://doi.org/10.1007/978-1-62703-541-5_7
    66. Jim Vrbanac, Richard Slauter. ADME in Drug Discovery. 2013, 3-30. https://doi.org/10.1016/B978-0-12-387815-1.00002-2
    67. Vanina Rea, David Falck, Jeroen Kool, Frans J. J. de Kanter, Jan N. M. Commandeur, Nico P. E. Vermeulen, Wilfried M. A. Niessen, Maarten Honing. Combination of biotransformation by P450 BM3 mutants with on-line post-column bioaffinity and mass spectrometric profiling as a novel strategy to diversify and characterize p38α kinase inhibitors. Med. Chem. Commun. 2013, 4 (2) , 371-377. https://doi.org/10.1039/C2MD20283B
    68. Sebastian Schulz, Marco Girhard, Vlada B. Urlacher. Biocatalysis: Key to Selective Oxidations. ChemCatChem 2012, 4 (12) , 1889-1895. https://doi.org/10.1002/cctc.201200533
    69. Manhong Wu, Ming Zheng, Weiruo Zhang, Sundari Suresh, Ulrich Schlecht, William L. Fitch, Sofia Aronova, Stephan Baumann, Ronald Davis, Robert St.Onge, David L. Dill, Gary Peltz. Identification of drug targets by chemogenomic and metabolomic profiling in yeast. Pharmacogenetics and Genomics 2012, 22 (12) , 877-886. https://doi.org/10.1097/FPC.0b013e32835aa888
    70. Martina Geier, Andreas Braun, Anita Emmerstorfer, Harald Pichler, Anton Glieder. Production of human cytochrome P450 2D6 drug metabolites with recombinant microbes – a comparative study. Biotechnology Journal 2012, 7 (11) , 1346-1358. https://doi.org/10.1002/biot.201200187
    71. Manthena V. S. Varma, Zaher A. Radi, Charles J. Rotter, John Litchfield, Ayman F. El‐Kattan. Pharmacokinetics and Toxicokinetics in Drug Discovery and Development. 2012, 1-18. https://doi.org/10.1002/9780470921920.edm034
    72. Subrahmanyam Vangala, Jakir Pinjari, Prashant Patole, Selvan Ravindran, Rajeev Gangal, Pralhad Wangikar, Sudipta Basu, Tausif Ahmed, Himanshu Rastogi. Translational Drug Discovery Research: Integration of Medicinal Chemistry, Computational Modeling, Pharmacology, ADME , and Toxicology. 2012, 1-54. https://doi.org/10.1002/9780470921920.edm038
    73. Dennis A. Smith. When and How to Apply ADMET Principles to Drug Discovery and Development. 2012, 1-20. https://doi.org/10.1002/9780470921920.edm046
    74. David C. Evans. Covalent Drug–Protein Adducts: An Exploration of Their Role in Drug‐Induced Liver and General Organ Toxicity. 2012, 1-45. https://doi.org/10.1002/9780470921920.edm075
    75. Kiumars Shahrokh, Thomas E. Cheatham, Garold S. Yost. Conformational dynamics of CYP3A4 demonstrate the important role of Arg212 coupled with the opening of ingress, egress and solvent channels to dehydrogenation of 4-hydroxy-tamoxifen. Biochimica et Biophysica Acta (BBA) - General Subjects 2012, 1820 (10) , 1605-1617. https://doi.org/10.1016/j.bbagen.2012.05.011
    76. Kedan Lin, Jay Tibbitts. Pharmacokinetic Considerations for Antibody Drug Conjugates. Pharmaceutical Research 2012, 29 (9) , 2354-2366. https://doi.org/10.1007/s11095-012-0800-y
    77. Ryan D. Morrison, Anna L. Blobaum, Frank W. Byers, Tammy S. Santomango, Thomas M. Bridges, Donald Stec, Katrina A. Brewer, Raymundo Sanchez-Ponce, Melany M. Corlew, Roger Rush, Andrew S. Felts, Jason Manka, Brittney S. Bates, Daryl F. Venable, Alice L. Rodriguez, Carrie K. Jones, Colleen M. Niswender, P. Jeffrey Conn, Craig W. Lindsley, Kyle A. Emmitte, J. Scott Daniels. The Role of Aldehyde Oxidase and Xanthine Oxidase in the Biotransformation of a Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5. Drug Metabolism and Disposition 2012, 40 (9) , 1834-1845. https://doi.org/10.1124/dmd.112.046136
    78. Debra Luffer-Atlas. The early estimation of circulating drug metabolites in humans. Expert Opinion on Drug Metabolism & Toxicology 2012, 8 (8) , 985-997. https://doi.org/10.1517/17425255.2012.693159
    79. Hongying Gao, R. Scott Obach. A Simple Liquid Chromatography-Tandem Mass Spectrometry Method to Determine Relative Plasma Exposures of Drug Metabolites across Species for Metabolite Safety Assessments (Metabolites in Safety Testing). II. Application to Unstable Metabolites. Drug Metabolism and Disposition 2012, 40 (7) , 1290-1296. https://doi.org/10.1124/dmd.112.044552
    80. Chandra Prakash, Zhaoyang Li, Cesare Orlandi, Lewis Klunk. Assessment of Exposure of Metabolites in Preclinical Species and Humans at Steady State from the Single-Dose Radiolabeled Absorption, Distribution, Metabolism, and Excretion Studies: A Case Study. Drug Metabolism and Disposition 2012, 40 (7) , 1308-1320. https://doi.org/10.1124/dmd.112.044933
    81. Elizabeth Rayburn, Wei Wang, Mao Li, Xu Zhang, Hongxia Xu, Haibo Li, Jiang-Jiang Qin, Lee Jia, Joseph Covey, Moses Lee, Ruiwen Zhang. Preclinical pharmacology of novel indolecarboxamide ML-970, an investigative anticancer agent. Cancer Chemotherapy and Pharmacology 2012, 69 (6) , 1423-1431. https://doi.org/10.1007/s00280-012-1851-9
    82. Michael D. Coleman, Louis L. Radulovic. Clinical Aspects of Drug Biotransformation: An OverviewDedicated to the memory of Mark J. Winn, Ph.D.,1960–1993. 2012, 1-50. https://doi.org/10.1002/9780470921920.edm116
    83. W. Griffith Humphreys. Pharmacological and Toxicological Activity of Drug Metabolites. 2012, 55-65. https://doi.org/10.1002/9781118180778.ch4
    84. Asoka Ranasinghe, Ragu Ramanathan, Mohammed Jemal, Celia J D’Arienzo, W Griffith Humphreys, Timothy V Olah. Integrated quantitative and qualitative workflow for in vivo bioanalytical support in drug discovery using hybrid Q-TOF-MS. Bioanalysis 2012, 4 (5) , 511-528. https://doi.org/10.4155/bio.12.13
    85. Xinsheng Gu, Jose E. Manautou. Molecular mechanisms underlying chemical liver injury. Expert Reviews in Molecular Medicine 2012, 14 https://doi.org/10.1017/S1462399411002110
    86. Thomas A. Baillie. Drug Metabolism in Drug Safety Evaluation. 2012, 1-24. https://doi.org/10.1002/9780470921920.edm054
    87. Walter A. Korfmacher. Bioanalytical Support for Both In Vitro and In Vivo Assays Across Drug Discovery and Drug Development. 2012, 1-18. https://doi.org/10.1002/9780470921920.edm090
    88. Hannah M Jones, Maurice Dickins, Kuresh Youdim, James R Gosset, Neil J Attkins, Tanya L Hay, Ian K Gurrell, Y Raj Logan, Peter J Bungay, Barry C Jones, Iain B Gardner. Application of PBPK modelling in drug discovery and development at Pfizer. Xenobiotica 2012, 42 (1) , 94-106. https://doi.org/10.3109/00498254.2011.627477
    89. Dennis A. Smith, Deepak Dalvie. Why do metabolites circulate?. Xenobiotica 2012, 42 (1) , 107-126. https://doi.org/10.3109/00498254.2011.630110
    90. Vanina Rea, Sanja Dragovic, Jan Simon Boerma, Frans J. J. de Kanter, Nico P. E. Vermeulen, Jan N. M. Commandeur. Role of Residue 87 in the Activity and Regioselectivity of Clozapine Metabolism by Drug-Metabolizing CYP102A1 M11H: Application for Structural Characterization of Clozapine GSH Conjugates. Drug Metabolism and Disposition 2011, 39 (12) , 2411-2420. https://doi.org/10.1124/dmd.111.041046
    91. Jelle Reinen, Jolanda S. van Leeuwen, Yongmin Li, Lifang Sun, Peter D. J. Grootenhuis, Caroline J. Decker, John Saunders, Nico P. E. Vermeulen, Jan N. M. Commandeur. Efficient Screening of Cytochrome P450 BM3 Mutants for Their Metabolic Activity and Diversity toward a Wide Set of Drug-Like Molecules in Chemical Space. Drug Metabolism and Disposition 2011, 39 (9) , 1568-1576. https://doi.org/10.1124/dmd.111.039461
    92. Christiane K. Fæste, Lada Ivanova, Silvio Uhlig. In Vitro Metabolism of the Mycotoxin Enniatin B in Different Species and Cytochrome P450 Enzyme Phenotyping by Chemical Inhibitors. Drug Metabolism and Disposition 2011, 39 (9) , 1768-1776. https://doi.org/10.1124/dmd.111.039529
    93. Nigel Greene, Minghu Song. Predicting in vivo safety characteristics using physiochemical properties and in vitro assays. Future Medicinal Chemistry 2011, 3 (12) , 1503-1511. https://doi.org/10.4155/fmc.11.89
    94. Angus N.R. Nedderman, Gordon J. Dear, Stephanie North, R. Scott Obach, David Higton. From definition to implementation: a cross-industry perspective of past, current and future MIST strategies. Xenobiotica 2011, 41 (8) , 605-622. https://doi.org/10.3109/00498254.2011.562330
    95. Ronald E. White. Progression of Drug Metabolism. 2011, 1-12. https://doi.org/10.1002/9780470929278.ch1
    96. W. Griffith Humphreys. Drug Metabolism Research as Integral Part of Drug Discovery and Development Processes. 2011, 229-253. https://doi.org/10.1002/9780470929278.ch7
    97. Leposava Antonovic, Marilyn Martinez. Role of the cytochrome P450 enzyme system in veterinary pharmacokinetics: where are we now? Where are we going?. Future Medicinal Chemistry 2011, 3 (7) , 855-879. https://doi.org/10.4155/fmc.11.37
    98. Akiko Baba, Tadao Yoshioka. Characterization of chemo- and regioselectivity in enzyme-catalyzed consecutive hydrolytic deprotection of methyl acetyl derivatives of 1-β-O-acyl glucuronides. Journal of Molecular Catalysis B: Enzymatic 2011, 69 (1-2) , 74-82. https://doi.org/10.1016/j.molcatb.2010.12.014
    99. B. Kevin Park, Alan Boobis, Stephen Clarke, Chris E. P. Goldring, David Jones, J. Gerry Kenna, Craig Lambert, Hugh G. Laverty, Dean J. Naisbitt, Sidney Nelson, Deborah A. Nicoll-Griffith, R. Scott Obach, Philip Routledge, Dennis A. Smith, Donald J. Tweedie, Nico Vermeulen, Dominic P. Williams, Ian D. Wilson, Thomas A. Baillie. Managing the challenge of chemically reactive metabolites in drug development. Nature Reviews Drug Discovery 2011, 10 (4) , 292-306. https://doi.org/10.1038/nrd3408
    100. Wenying Jian, Yaodong Xu, Richard W Edom, Naidong Weng. Analysis of polar metabolites by hydrophilic interaction chromatography–MS/MS. Bioanalysis 2011, 3 (8) , 899-912. https://doi.org/10.4155/bio.11.51
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect