ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Assessment of Three Human in Vitro Systems in the Generation of Major Human Excretory and Circulating Metabolites

View Author Information
Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, San Diego California 92121, Pfizer Global Research and Development, Groton Connecticut 06340, and Pfizer Global Research and Development, Sandwich, Kent, United Kingdom
* To whom correspondence should be addressed. Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Science Center Drive, San Diego, CA 92121. Phone: (858) 622-8016. E-mail: [email protected]
†Pfizer Global Research and Development, San Diego, CA.
‡Pfizer Global Research and Development, Groton, CT.
§Pfizer Global Research and Development, Sandwich, Kent, U.K.
∥Current address: Biogen Idec, Cambridge, MA 02142.
⊥Current address: 3D BioOptima Co., Ltd., Suzhou, China 215104.
Cite this: Chem. Res. Toxicol. 2009, 22, 2, 357–368
Publication Date (Web):January 15, 2009
https://doi.org/10.1021/tx8004357
Copyright © 2009 American Chemical Society

    Article Views

    3086

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    An early understanding of key metabolites of drugs is crucial in drug discovery and development. As a result, several in vitro models typically derived from liver are frequently used to study drug metabolism. It is presumed that these in vitro systems provide an accurate view of the potential in vivo metabolites and metabolic pathways. However, no formal analysis has been conducted to validate their use. The goal of the present study was to conduct a comprehensive analysis to assess if the three commonly used in vitro systems, pooled human liver microsomes, liver S-9 fraction, and hepatocytes, adequately predict in vivo metabolic profiles for drugs. The second objective was to compare the overall capabilities of these three systems to generate in vivo metabolic profiles. Twenty-seven compounds in the Pfizer database and 21 additional commercially available compounds of diverse structure and routes of metabolism for which the human ADME data was available were analyzed in this study to assess the performance of the in vitro systems. The results suggested that all three systems reliably predicted human excretory and circulating metabolite profiles. Furthermore, the success in predicting primary metabolites and metabolic pathways was high (>70%), but the predictability of secondary metabolites was less reliable in the three systems. Thus, the analysis provides sufficient confidence in using in vitro systems to reliably produce primary in vivo human metabolites and supports their application in early discovery to identify metabolic spots for optimization of metabolic liabilities anticipated in humans in vivo. However, the in vitro systems cannot solely mitigate the risk of disproportionate circulating metabolites in humans and may need to be supplemented with metabolic profiling of plasma samples from first-in-human studies or early human radiolabeled studies.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 169 publications.

    1. Shuai Wang, T. Eric Ballard, Lisa J. Christopher, Robert S. Foti, Chungang Gu, S. Cyrus Khojasteh, Joyce Liu, Shuguang Ma, Bin Ma, R. Scott Obach, Simone Schadt, Zhoupeng Zhang, Donglu Zhang. The Importance of Tracking “Missing” Metabolites: How and Why?. Journal of Medicinal Chemistry 2023, 66 (23) , 15586-15612. https://doi.org/10.1021/acs.jmedchem.3c01293
    2. Vijayabhaskar Veeravalli, Ranjeet P. Dash. “Tofacitinib Is a Mechanism-Based Inactivator of Cytochrome P450 3A4”: Revisiting the Significance of the Epoxide Intermediate and Glutathione Trapping. Chemical Research in Toxicology 2020, 33 (2) , 281-282. https://doi.org/10.1021/acs.chemrestox.9b00455
    3. Keith Fraser, Dylan M. Bruckner, Jonathan S. Dordick. Advancing Predictive Hepatotoxicity at the Intersection of Experimental, in Silico, and Artificial Intelligence Technologies. Chemical Research in Toxicology 2018, 31 (6) , 412-430. https://doi.org/10.1021/acs.chemrestox.8b00054
    4. Ia Hultman, Charlotta Vedin, Anna Abrahamsson, Susanne Winiwarter, and Malin Darnell . Use of HμREL Human Coculture System for Prediction of Intrinsic Clearance and Metabolite Formation for Slowly Metabolized Compounds. Molecular Pharmaceutics 2016, 13 (8) , 2796-2807. https://doi.org/10.1021/acs.molpharmaceut.6b00396
    5. Johanna Haglund, Magnus M. Halldin, Åsa Brunnström, Göran Eklund, Antti Kautiainen, Anna Sandholm, and Suzanne L. Iverson . Pragmatic Approaches to Determine the Exposures of Drug Metabolites in Preclinical and Clinical Subjects in the MIST Evaluation of the Clinical Development Phase. Chemical Research in Toxicology 2014, 27 (4) , 601-610. https://doi.org/10.1021/tx400449z
    6. Natalia Penner, Lin Xu, and Chandra Prakash . Radiolabeled Absorption, Distribution, Metabolism, and Excretion Studies in Drug Development: Why, When, and How?. Chemical Research in Toxicology 2012, 25 (3) , 513-531. https://doi.org/10.1021/tx300050f
    7. Mark E. Flanagan, Todd A. Blumenkopf, William H. Brissette, Matthew F. Brown, Jeffrey M. Casavant, Chang Shang-Poa, Jonathan L. Doty, Eileen A. Elliott, Michael B. Fisher, Michael Hines, Craig Kent, Elizabeth M. Kudlacz, Brett M. Lillie, Kelly S. Magnuson, Sandra P. McCurdy, Michael J. Munchhof, Bret D. Perry, Perry S. Sawyer, Timothy J. Strelevitz, Chakrapani Subramanyam, Jianmin Sun, David A. Whipple, and Paul S. Changelian . Discovery of CP-690,550: A Potent and Selective Janus Kinase (JAK) Inhibitor for the Treatment of Autoimmune Diseases and Organ Transplant Rejection. Journal of Medicinal Chemistry 2010, 53 (24) , 8468-8484. https://doi.org/10.1021/jm1004286
    8. Don Walker, Joe Brady, Deepak Dalvie, John Davis, Martin Dowty, J. Neil Duncan, Angus Nedderman, R. Scott Obach and Pat Wright. A Holistic Strategy for Characterizing the Safety of Metabolites through Drug Discovery and Development. Chemical Research in Toxicology 2009, 22 (10) , 1653-1662. https://doi.org/10.1021/tx900213j
    9. Ulrik Jurva, Ann-Sofie Sandinge, Jong Min Baek, Mickaël Avanthay, Raine E. S. Thomson, Stephlina A. D’Cunha, Shalini Andersson, Martin A. Hayes, Elizabeth M. J. Gillam. Biocatalysis using Thermostable Cytochrome P450 Enzymes in Bacterial Membranes – Comparison of Metabolic Pathways with Human Liver Microsomes and Recombinant Human Enzymes. Drug Metabolism and Disposition 2024, 52 (3) , 242-251. https://doi.org/10.1124/dmd.123.001569
    10. Hannes Max Schwelm, Mattias Persson, Benedikt Pulver, Max Vincent Huß, Henrik Gréen, Volker Auwärter. Pharmacological profile, phase I metabolism, and excretion time profile of the new synthetic cathinone 3,4‐Pr‐PipVP. Drug Testing and Analysis 2024, 16 (3) , 277-288. https://doi.org/10.1002/dta.3538
    11. Hisayoshi Omori, Junko Chikamoto, Megumi Nagahara, Maki Hirata, Takeshige Otoi. Evaluating variations in bilirubin glucuronidation activity by protease inhibitors in canine and human primary hepatocytes cultured in a 3D culture system. Toxicology in Vitro 2023, 93 , 105689. https://doi.org/10.1016/j.tiv.2023.105689
    12. Jie Liu, Jian Lu, Bingyi Yao, Yuanjin Zhang, Shengbo Huang, Xi Chen, Yifei Shen, Xin Wang. Construction of humanized CYP1A2 rats using CRISPR/Cas9 to promote drug metabolism and pharmacokinetic research. Drug Metabolism and Disposition 2023, , DMD-AR-2023-001500. https://doi.org/10.1124/dmd.123.001500
    13. Paresh P. Chothe, Sean Xiaochun Zhu, Sandeepraj Pusalkar, Chuang Lu, Cindy Xia. Liver Perfusion and Primary Hepatocytes for Studying Drug Metabolism and Metabolite Excretion. 2023, 757-778. https://doi.org/10.1002/9781119660699.ch40
    14. Shuai Wang, Upendra A. Argikar, Lionel Cheruzel, Sungjoon Cho, Rachel D. Crouch, Deepika Dhaware, Carley J. S. Heck, Kevin M. Johnson, Amit S. Kalgutkar, Lloyd King, Joyce Liu, Bin Ma, Hlaing Maw, Grover P. Miller, Herana Kamal Seneviratne, Ryan H. Takahashi, Cong Wei, S. Cyrus Khojasteh. Bioactivation and reactivity research advances – 2022 year in review‡. Drug Metabolism Reviews 2023, 55 (4) , 267-300. https://doi.org/10.1080/03602532.2023.2244193
    15. Vincent-Alexander Scholz, Conrad Stork, Markus Frericks, Johannes Kirchmair. Computational prediction of the metabolites of agrochemicals formed in rats. Science of The Total Environment 2023, 895 , 165039. https://doi.org/10.1016/j.scitotenv.2023.165039
    16. Hidetaka Kamimura, Shotaro Uehara, Nao Yoneda, Hiroshi Suemizu. Empirical scaling factor for predicting human pharmacokinetic profiles of disproportionate metabolites using the Css–MRTpo method and chimeric mice with humanised livers. Xenobiotica 2023, 53 (8-9) , 523-535. https://doi.org/10.1080/00498254.2023.2280785
    17. Matthew A. Cerny, Douglas K. Spracklin, R. Scott Obach. Human Absorption, Distribution, Metabolism, and Excretion Studies: Origins, Innovations, and Importance. Drug Metabolism and Disposition 2023, 51 (6) , 647-656. https://doi.org/10.1124/dmd.122.001006
    18. Siva Nageswara Rao Gajula, Sakina Asgar Vora, Amol G. Dikundwar, Rajesh Sonti. In Vitro Drug Metabolism Studies Using Human Liver Microsomes. 2023https://doi.org/10.5772/intechopen.108246
    19. Umesh B. Gadgoli, Yelekere C. Sunil Kumar, Deepak Kumar. An Insight into the Metabolism of 2,5-Disubstituted Monotetrazole Bearing Bisphenol Structures: Emerging Bisphenol A Structural Congeners. Molecules 2023, 28 (3) , 1465. https://doi.org/10.3390/molecules28031465
    20. Matthew Boyce, Kristin A. Favela, Jessica A. Bonzo, Alex Chao, Lucina E. Lizarraga, Laura R. Moody, Elizabeth O. Owens, Grace Patlewicz, Imran Shah, Jon R. Sobus, Russell S. Thomas, Antony J. Williams, Alice Yau, John F. Wambaugh. Identifying xenobiotic metabolites with in silico prediction tools and LCMS suspect screening analysis. Frontiers in Toxicology 2023, 5 https://doi.org/10.3389/ftox.2023.1051483
    21. Simon G. Wong, Shuguang Ma. Design, conduct, and interpretation of human mass balance studies and strategies for assessing metabolites-in-safety testing (MIST) in drug development. 2023, 137-174. https://doi.org/10.1016/B978-0-12-817134-9.00004-0
    22. Chandra Prakash. Disproportionate drug metabolites: challenges and solutions. 2023, 223-238. https://doi.org/10.1016/B978-0-12-817134-9.00017-9
    23. Daiju Yamazaki, Kaoru Sato. In vitro in vivo extrapolation (IVIVE) in safety pharmacology to improve human predictability —new evaluation systems for new drug modalities—. Folia Pharmacologica Japonica 2023, 158 (1) , 77-81. https://doi.org/10.1254/fpj.22103
    24. Lulu Lan, Min Li, Yanjiao Xu, Xiuhua Ren, Chengliang Zhang. Evaluation on the Metabolic Activity of Two Carboxylesterase Isozymes in Mouse Liver Microsomes by a LC–MS/MS Method. Journal of Chromatographic Science 2022, 94 https://doi.org/10.1093/chromsci/bmac105
    25. Shotaro Uehara, Yuichi Iida, Miyuki Ida-Tanaka, Motohito Goto, Kenji Kawai, Masafumi Yamamoto, Yuichiro Higuchi, Satoshi Ito, Riichi Takahashi, Hidetaka Kamimura, Mamoru Ito, Hiroshi Yamazaki, Mitsuo Oshimura, Yasuhiro Kazuki, Hiroshi Suemizu. Humanized liver TK-NOG mice with functional deletion of hepatic murine cytochrome P450s as a model for studying human drug metabolism. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-19242-0
    26. Hisayoshi Omori, Junko Chikamoto, Takayuki Hirano, Kazuhiko Besshi, Naoaki Yoshimura, Maki Hirata, Takeshige Otoi. Comparative analysis of bilirubin glucuronidation activity in canine and human primary hepatocytes using a 3D culture system. In Vitro Cellular & Developmental Biology - Animal 2022, 58 (8) , 712-718. https://doi.org/10.1007/s11626-022-00711-9
    27. Daigo Asano, Syoya Hamaue, Hamim Zahir, Hideyuki Shiozawa, Yumi Nishiya, Takako Kimura, Miho Kazui, Naotoshi Yamamura, Marie Ikeguchi, Takahiro Shibayama, Shin-ichi Inoue, Tsuyoshi Shinozuka, Toshiyuki Watanabe, Chizuko Yahara, Nobuaki Watanabe, Kouichi Yoshinari. CYP2C8-Mediated Formation of a Human Disproportionate Metabolite of the Selective Na V 1.7 Inhibitor DS-1971a, a Mixed Cytochrome P450 and Aldehyde Oxidase Substrate. Drug Metabolism and Disposition 2022, 50 (3) , 235-242. https://doi.org/10.1124/dmd.121.000665
    28. L. Ward, J. Wilcock, Philip Butler. Drug Metabolism Assessment: Hepatocytes. 2022, 368-379. https://doi.org/10.1007/978-3-030-84860-6_146
    29. W. Griffith Humphreys. Biosynthesis using cytochrome P450 enzymes: Focus on synthesis of drug metabolites. 2022, 177-194. https://doi.org/10.1016/bs.apha.2022.05.007
    30. Pamela Bachour-El Azzi, Christophe Chesné, Shotaro Uehara. Expression and functional activity of cytochrome P450 enzymes in human hepatocytes with sustainable reproducibility for in vitro phenotyping studies. 2022, 285-305. https://doi.org/10.1016/bs.apha.2022.05.009
    31. Sonia Youhanna, Aurino M. Kemas, Lena Preiss, Yitian Zhou, Joanne X. Shen, Selgin D. Cakal, Francesco S. Paqualini, Sravan K. Goparaju, Reza Zandi Shafagh, Johan Ulrik Lind, Carl M. Sellgren, Volker M. Lauschke, . Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development—Current State-of-the-Art and Future Perspectives. Pharmacological Reviews 2022, 74 (1) , 141-206. https://doi.org/10.1124/pharmrev.120.000238
    32. Koya Sato, Seigo Sanoh, Yuji Ishida, Chise Tateno, Shigeru Ohta, Yaichiro Kotake. Assessment of metabolic activation of felbamate in chimeric mice with humanized liver in combination with in vitro metabolic assays. The Journal of Toxicological Sciences 2022, 47 (7) , 277-288. https://doi.org/10.2131/jts.47.277
    33. , Antonio F Hernandez‐Jerez, Paulien Adriaanse, Annette Aldrich, Philippe Berny, Tamara Coja, Sabine Duquesne, Andreas Focks, Marina Marinovich, Maurice Millet, Olavi Pelkonen, Silvia Pieper, Aaldrik Tiktak, Christopher J Topping, Anneli Widenfalk, Martin Wilks, Gerrit Wolterink, Ursula Gundert‐Remy, Jochem Louisse, Serge Rudaz, Emanuela Testai, Alfonso Lostia, Jean‐Lou Dorne, Juan Manuel Parra Morte. Scientific Opinion of the Scientific Panel on Plant Protection Products and their Residues (PPR Panel) on testing and interpretation of comparative in vitro metabolism studies. EFSA Journal 2021, 19 (12) https://doi.org/10.2903/j.efsa.2021.6970
    34. Daigo Asano, Takahiro Shibayama, Hideyuki Shiozawa, Shin-ichi Inoue, Tsuyoshi Shinozuka, Shinji Murata, Nobuaki Watanabe, Kouichi Yoshinari. Evaluation of species differences in the metabolism of the selective Na V 1.7 inhibitor DS-1971a, a mixed substrate of cytochrome P450 and aldehyde oxidase. Xenobiotica 2021, 51 (9) , 1060-1070. https://doi.org/10.1080/00498254.2021.1963009
    35. Jaydeep Yadav, Mehdi El Hassani, Jasleen Sodhi, Volker M. Lauschke, Jessica H. Hartman, Laura E. Russell. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metabolism Reviews 2021, 53 (2) , 207-233. https://doi.org/10.1080/03602532.2021.1922435
    36. L. Ward, J. Wilcock, P. Butler. Drug Metabolism Assessment: Hepatocytes. 2021, 1-12. https://doi.org/10.1007/978-3-030-51519-5_146-1
    37. Hirotaka Kushida, Takashi Matsumoto, Yasushi Ikarashi, Hiroaki Nishimura, Masahiro Yamamoto. Gender differences in plasma pharmacokinetics and hepatic metabolism of geissoschizine methyl ether from Uncaria hook in rats. Journal of Ethnopharmacology 2021, 264 , 113354. https://doi.org/10.1016/j.jep.2020.113354
    38. Kajsa P. Kanebratt, Annika Janefeldt, Liisa Vilén, Anna Vildhede, Kristin Samuelsson, Lucas Milton, Anders Björkbom, Marie Persson, Carina Leandersson, Tommy B. Andersson, Constanze Hilgendorf. Primary Human Hepatocyte Spheroid Model as a 3D In Vitro Platform for Metabolism Studies. Journal of Pharmaceutical Sciences 2021, 110 (1) , 422-431. https://doi.org/10.1016/j.xphs.2020.10.043
    39. Fabien Legros, Patricia Fernandez‐Rodriguez, Anurag Mishra, Remo Weck, Armin Bauer, Martin Sandvoss, Sven Ruf, María Méndez, Helena Mora‐Radó, Nils Rackelmann, Christoph Pöverlein, Volker Derdau. Photoredox‐Mediated Hydrogen Isotope Exchange Reactions of Amino‐Acids, Peptides, and Peptide‐Derived Drugs. Chemistry – A European Journal 2020, 26 (56) , 12738-12742. https://doi.org/10.1002/chem.202003464
    40. Suguru Kato, Abhi Shah, Mihaela Plesescu, Yoshinari Miyata, Jayaprakasam Bolleddula, Swapan Chowdhury, Xiaochun Zhu. Prediction of Human Disproportionate and Biliary Excreted Metabolites Using Chimeric Mice with Humanized Liver. Drug Metabolism and Disposition 2020, 48 (10) , 934-943. https://doi.org/10.1124/dmd.120.000128
    41. Kenta Mizoi, Hiroshi Arakawa, Kentaro Yano, Satoshi Koyama, Hajime Kojima, Takuo Ogihara. Utility of Three-Dimensional Cultures of Primary Human Hepatocytes (Spheroids) as Pharmacokinetic Models. Biomedicines 2020, 8 (10) , 374. https://doi.org/10.3390/biomedicines8100374
    42. Daria Stypinski, Luke Fostvedt, Justine L. Lam, Alfin Vaz, Theodore R. Johnson, Jan S. Boerma, Yazdi K. Pithavala. Metabolism, Excretion, and Pharmacokinetics of Lorlatinib (PF‐06463922) and Evaluation of the Impact of Radiolabel Position and Other Factors on Comparability of Data Across 2 ADME Studies. The Journal of Clinical Pharmacology 2020, 60 (9) , 1254-1267. https://doi.org/10.1002/jcph.1621
    43. Laura Peeters, Philippe Vervliet, Kenn Foubert, Nina Hermans, Luc Pieters, Adrian Covaci. A comparative study on the in vitro biotransformation of medicagenic acid using human liver microsomes and S9 fractions. Chemico-Biological Interactions 2020, 328 , 109192. https://doi.org/10.1016/j.cbi.2020.109192
    44. T. Eric Ballard, N. Kratochwil, Loretta M. Cox, Mark A. Moen, F. Klammers, A. Ekiciler, A. Goetschi, I. Walter. Simplifying the Execution of HepatoPac MetID Experiments: Metabolite Profile and Intrinsic Clearance Comparisons. Drug Metabolism and Disposition 2020, 48 (9) , 804-810. https://doi.org/10.1124/dmd.120.000013
    45. Vijayabhaskar Veeravalli, Ranjeet P. Dash, Jennifer A. Thomas, R. Jayachandra Babu, Lakshmi Mohan Vamsi Madgula, Nuggehally R. Srinivas. Critical Assessment of Pharmacokinetic Drug–Drug Interaction Potential of Tofacitinib, Baricitinib and Upadacitinib, the Three Approved Janus Kinase Inhibitors for Rheumatoid Arthritis Treatment. Drug Safety 2020, 43 (8) , 711-725. https://doi.org/10.1007/s40264-020-00938-z
    46. Shin-ichiro Ogawa, Shotaro Uehara, Yoshihiko Tsunenari, Hiroyuki Kawai, Hiroshi Suemizu, Hiroshi Yamazaki. Prediction of circulating human metabolites of pemafibrate, a novel antidyslipidemic drug, using chimeric mice with humanized liver. Xenobiotica 2020, 50 (7) , 769-775. https://doi.org/10.1080/00498254.2019.1694198
    47. Takayuki Hirano, Maki Hirata, Shigeyuki Fujimoto, Nhien Thi Nguyen, Quynh Anh Le, Fuminori Tanihara, Takeshige Otoi. Comparative analysis of bilirubin glucuronidation activity in 2D- and 3D-cultured human hepatocellular carcinoma HepG2 cells. In Vitro Cellular & Developmental Biology - Animal 2020, 56 (4) , 277-280. https://doi.org/10.1007/s11626-020-00451-8
    48. David Fabregat-Safont, Marie Mardal, Juan V. Sancho, Félix Hernández, Kristian Linnet, María Ibáñez. Metabolic profiling of four synthetic stimulants, including the novel indanyl-cathinone 5-PPDi, after human hepatocyte incubation. Journal of Pharmaceutical Analysis 2020, 10 (2) , 147-156. https://doi.org/10.1016/j.jpha.2019.12.006
    49. Hwa-Kyung Lee, Tae Yeon Kong, Won-Gu Choi, Ju-Hyun Kim, Yongho Shin, Hye Suk Lee, Yong Sang Lee, Jeong-Han Kim. Metabolite identification and profile of endosulfan sulfate in three human liver preparations using liquid chromatography-high resolution mass spectrometry. Journal of Chromatography B 2020, 1140 , 121996. https://doi.org/10.1016/j.jchromb.2020.121996
    50. Jose Castro-Perez, Chandra Prakash. Recent advances in mass spectrometric and other analytical techniques for the identification of drug metabolites. 2020, 39-71. https://doi.org/10.1016/B978-0-12-820018-6.00002-8
    51. Liam Evans, Richard Phipps, Julia Shanu-Wilson, Jonathan Steele, Stephen Wrigley. Methods for metabolite generation and characterization by NMR. 2020, 119-150. https://doi.org/10.1016/B978-0-12-820018-6.00004-1
    52. Simone Schadt, Filipe Lopes, Simon Hauri, Axel Pähler, Andreas Brink. Metabolites in safety testing (MIST). 2020, 419-438. https://doi.org/10.1016/B978-0-12-820018-6.00014-4
    53. Marco Corvaro, Michael Bartels. The ADME profile of the fungicide tricyclazole in rodent via the oral route: A critical review for human health safety assessment. Regulatory Toxicology and Pharmacology 2019, 108 , 104438. https://doi.org/10.1016/j.yrtph.2019.104438
    54. Yitian Zhou, Joanne X. Shen, Volker M. Lauschke. Comprehensive Evaluation of Organotypic and Microphysiological Liver Models for Prediction of Drug-Induced Liver Injury. Frontiers in Pharmacology 2019, 10 https://doi.org/10.3389/fphar.2019.01093
    55. David Fabregat‐Safont, Marie Mardal, Carolina Noble, Annelies Cannaert, Christophe P. Stove, Juan V. Sancho, Kristian Linnet, Félix Hernández, María Ibáñez. Comprehensive investigation on synthetic cannabinoids: Metabolic behavior and potency testing, using 5F‐APP‐PICA and AMB‐FUBINACA as model compounds. Drug Testing and Analysis 2019, 11 (9) , 1358-1368. https://doi.org/10.1002/dta.2659
    56. Mégane Valero, Anurag Mishra, Jennifer Blass, Remo Weck, Volker Derdau. Comparison of Iridium(I) Catalysts in Temperature Mediated Hydrogen Isotope Exchange Reactions. ChemistryOpen 2019, 8 (9) , 1183-1189. https://doi.org/10.1002/open.201900204
    57. Rhys Salter, Douglas C. Beshore, Steven L. Colletti, Liam Evans, Yong Gong, Roy Helmy, Yong Liu, Cheri M. Maciolek, Gary Martin, Natasa Pajkovic, Richard Phipps, James Small, Jonathan Steele, Ronald de Vries, Headley Williams, Iain J. Martin. Microbial biotransformation – an important tool for the study of drug metabolism. Xenobiotica 2019, 49 (8) , 877-886. https://doi.org/10.1080/00498254.2018.1512018
    58. Michael D. Aleo, Okechukwu Ukairo, Amanda Moore, Onyi Irrechukwu, David M. Potter, Richard P. Schneider. Liver safety evaluation of endothelin receptor antagonists using HepatoPac ® : A single model impact assessment on hepatocellular health, function and bile acid disposition. Journal of Applied Toxicology 2019, 39 (8) , 1192-1207. https://doi.org/10.1002/jat.3805
    59. Volker M. Lauschke, Reza Z. Shafagh, Delilah F. G. Hendriks, Magnus Ingelman‐Sundberg. 3D Primary Hepatocyte Culture Systems for Analyses of Liver Diseases, Drug Metabolism, and Toxicity: Emerging Culture Paradigms and Applications. Biotechnology Journal 2019, 14 (7) https://doi.org/10.1002/biot.201800347
    60. Shin‐ichiro Ogawa, Yoshihiko Tsunenari, Hiroyuki Kawai, Hiroshi Yamazaki. Pharmacokinetics and metabolism of pemafibrate, a novel selective peroxisome proliferator‐activated receptor‐ alpha modulator, in rats and monkeys. Biopharmaceutics & Drug Disposition 2019, 40 (1) , 12-17. https://doi.org/10.1002/bdd.2165
    61. Varvara Gouliarmou, Alfonso Maria Lostia, Sandra Coecke, Camilla Bernasconi, Jos Bessems, Jean Lou Dorne, Stephen Ferguson, Emanuela Testai, Ursula Gundert Remy, J. Brian Houston, Mario Monshouwer, Andy Nong, Olavi Pelkonen, Siegfried Morath, Barbara A. Wetmore, Andrew Worth, Ugo Zanelli, Maria Chiara Zorzoli, Maurice Whelan. Establishing a systematic framework to characterise in vitro methods for human hepatic metabolic clearance. Toxicology in Vitro 2018, 53 , 233-244. https://doi.org/10.1016/j.tiv.2018.08.004
    62. Richard D. Burton, Todd Hieronymus, Taysir Chamem, David Heim, Shelby Anderson, Xiaochun Zhu, J. Matthew Hutzler. Assessment of the Biotransformation of Low-Turnover Drugs in the H µ REL Human Hepatocyte Coculture Model. Drug Metabolism and Disposition 2018, 46 (11) , 1617-1625. https://doi.org/10.1124/dmd.118.082867
    63. Toshito Nakagawa, Stephen Fowler, Kenji Takanashi, Kuresh Youdim, Tsuyoshi Yamauchi, Kosuke Kawashima, Mika Sato-Nakai, Li Yu, Masaki Ishigai. In vitro metabolism of alectinib, a novel potent ALK inhibitor, in human: contribution of CYP3A enzymes. Xenobiotica 2018, 48 (6) , 546-554. https://doi.org/10.1080/00498254.2017.1344910
    64. Simone Schadt, Bojan Bister, Swapan K. Chowdhury, Christoph Funk, Cornelis E. C. A. Hop, W. Griffith Humphreys, Fumihiko Igarashi, Alexander D. James, Mark Kagan, S. Cyrus Khojasteh, Angus N. R. Nedderman, Chandra Prakash, Frank Runge, Holger Scheible, Douglas K. Spracklin, Piet Swart, Susanna Tse, Josh Yuan, R. Scott Obach. A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development under the “Metabolites in Safety Testing” Regulatory Guidance. Drug Metabolism and Disposition 2018, 46 (6) , 865-878. https://doi.org/10.1124/dmd.117.079848
    65. Satoshi Koyama, Hiroshi Arakawa, Manabu Itoh, Norio Masuda, Kentaro Yano, Hajime Kojima, Takuo Ogihara. Evaluation of the metabolic capability of primary human hepatocytes in three‐dimensional cultures on microstructural plates. Biopharmaceutics & Drug Disposition 2018, 39 (4) , 187-195. https://doi.org/10.1002/bdd.2125
    66. Jens Atzrodt, Volker Derdau, William J. Kerr, Marc Reid. Deuterium‐ und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angewandte Chemie 2018, 130 (7) , 1774-1802. https://doi.org/10.1002/ange.201704146
    67. Jens Atzrodt, Volker Derdau, William J. Kerr, Marc Reid. Deuterium‐ and Tritium‐Labelled Compounds: Applications in the Life Sciences. Angewandte Chemie International Edition 2018, 57 (7) , 1758-1784. https://doi.org/10.1002/anie.201704146
    68. Yoichi Naritomi, Seigo Sanoh, Shigeru Ohta. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery. Drug Metabolism and Pharmacokinetics 2018, 33 (1) , 31-39. https://doi.org/10.1016/j.dmpk.2017.11.001
    69. R. Scott Obach, Jian Lin, Emi Kimoto, Sridhar Duvvuri, Timothy Nicholas, Eugene P. Kadar, Larry M. Tremaine, Aarti Sawant-Basak. Estimation of Circulating Drug Metabolite Exposure in Human Using In Vitro Data and Physiologically Based Pharmacokinetic Modeling: Example of a High Metabolite/Parent Drug Ratio. Drug Metabolism and Disposition 2018, 46 (2) , 89-99. https://doi.org/10.1124/dmd.117.078279
    70. Seigo Sanoh, Shigeru Ohta. Contribution of chimeric mice with a humanized liver to the evaluation of pharmacology, toxicity, and pharmacokinetics in drug discovery and development. Folia Pharmacologica Japonica 2018, 151 (5) , 213-220. https://doi.org/10.1254/fpj.151.213
    71. Mercedes Barzi, Francis P. Pankowicz, Barry Zorman, Xing Liu, Xavier Legras, Diane Yang, Malgorzata Borowiak, Beatrice Bissig-Choisat, Pavel Sumazin, Feng Li, Karl-Dimiter Bissig. A novel humanized mouse lacking murine P450 oxidoreductase for studying human drug metabolism. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00049-x
    72. Andrew TL Wotherspoon, Mitra Safavi-Naeini, Richard B Banati. Microdosing, isotopic labeling, radiotracers and metabolomics: relevance in drug discovery, development and safety. Bioanalysis 2017, 9 (23) , 1913-1933. https://doi.org/10.4155/bio-2017-0137
    73. Paul M. Whalley, Michael Bartels, Karin S. Bentley, Marco Corvaro, Dorothee Funk, Matthew W. Himmelstein, Birgit Neumann, Christian Strupp, Fagen Zhang, Jyotigna Mehta. An in vitro approach for comparative interspecies metabolism of agrochemicals. Regulatory Toxicology and Pharmacology 2017, 88 , 322-327. https://doi.org/10.1016/j.yrtph.2017.03.020
    74. S. Cyrus Khojasteh, Ivonne M. C. M. Rietjens, Deepak Dalvie, Grover Miller. Biotransformation and bioactivation reactions – 2016 literature highlights. Drug Metabolism Reviews 2017, 49 (3) , 285-317. https://doi.org/10.1080/03602532.2017.1326498
    75. Hidetaka Kamimura, Satoshi Ito, Hiroyuki Chijiwa, Takeshi Okuzono, Tomohiro Ishiguro, Yosuke Yamamoto, Sho Nishinoaki, Shin-Ichi Ninomiya, Marina Mitsui, Amit S. Kalgutkar, Hiroshi Yamazaki, Hiroshi Suemizu. Simulation of human plasma concentration–time profiles of the partial glucokinase activator PF-04937319 and its disproportionate N-demethylated metabolite using humanized chimeric mice and semi-physiological pharmacokinetic modeling. Xenobiotica 2017, 47 (5) , 382-393. https://doi.org/10.1080/00498254.2016.1199063
    76. Naoyuki Nakada. Evaluation of the Utility of Chimeric Mice with Humanized Livers for the Characterization and Profiling of the Metabolites of a Selective Inhibitor (YM543) of the Sodium-Glucose Cotransporter 2. Pharmaceutical Research 2017, 34 (4) , 874-886. https://doi.org/10.1007/s11095-017-2116-4
    77. Annina Burhop, Remo Weck, Jens Atzrodt, Volker Derdau. Hydrogen‐Isotope Exchange (HIE) Reactions of Secondary and Tertiary Sulfonamides and Sulfonylureas with Iridium(I) Catalysts. European Journal of Organic Chemistry 2017, 2017 (11) , 1418-1424. https://doi.org/10.1002/ejoc.201601599
    78. Kar Lai Poon, Xingang Wang, Ashley S. Ng, Wei Huang Goh, Claudia McGinnis, Stephen Fowler, Tom J. Carney, Haishan Wang, Phillip W. Ingham. Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates. Archives of Toxicology 2017, 91 (3) , 1187-1197. https://doi.org/10.1007/s00204-016-1789-5
    79. Ryan H. Takahashi, Shuguang Ma, Qin Yue, Heasook Kim-Kang, Yijun Yi, Justin Ly, Jason W. Boggs, Alec Fettes, Andrew McClory, Yuzhong Deng, Cornelis E. C. A. Hop, S. Cyrus Khojasteh, Edna F. Choo. Absorption, metabolism and excretion of cobimetinib, an oral MEK inhibitor, in rats and dogs. Xenobiotica 2017, 47 (1) , 50-65. https://doi.org/10.3109/00498254.2016.1157645
    80. Jackie Bloomer, Claire Beaumont, Gordon J. Dear, Stephanie North, Graeme Young. THE VALUE OF METABOLITE IDENTIFICATION AND QUANTIFICATION IN CLINICAL STUDIES. SOME CASE STUDIES ENABLING EARLY ASSESSMENT OF SAFETY IN HUMANS. 2016, 275-291. https://doi.org/10.1002/9781118949689.ch12
    81. Gordon J. Dear, Angus N. R. Nedderman. “MIST” AND OTHER METABOLITE GUIDELINES IN THE CONTEXT OF INDUSTRIAL DRUG METABOLISM. 2016, 17-43. https://doi.org/10.1002/9781118949689.ch2
    82. R. Scott Obach, Amit S. Kalgutkar, Deepak K. Dalvie. IN VITRO METHODS FOR EVALUATION OF DRUG METABOLISM. 2016, 87-110. https://doi.org/10.1002/9781118949689.ch4
    83. Yvonne Aratyn-Schaus, Ragu Ramanathan. Advances in high-resolution MS and hepatocyte models solve a long-standing metabolism challenge: the loratadine story. Bioanalysis 2016, 8 (16) , 1645-1662. https://doi.org/10.4155/bio-2016-0094
    84. I. J. Martin, S. E. Hill, J. A. Baker, S. V. Deshmukh, E. F. Mulrooney. A Pharmacokinetic Modeling Approach to Predict the Contribution of Active Metabolites to Human Efficacious Dose. Drug Metabolism and Disposition 2016, 44 (8) , 1435-1440. https://doi.org/10.1124/dmd.116.070391
    85. U. A. Argikar, J. L. Dumouchel, C. E. Dunne, C. Saran, A. L. Cirello, M. Gunduz. Ocular Metabolism of Levobunolol: Historic and Emerging Metabolic Pathways. Drug Metabolism and Disposition 2016, 44 (8) , 1304-1312. https://doi.org/10.1124/dmd.116.070458
    86. Hidetaka Kamimura, Satoshi Ito. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound. Xenobiotica 2016, 46 (6) , 557-569. https://doi.org/10.3109/00498254.2015.1091113
    87. Kazutaka Sekiguchi, Takushi Kanazu, Norie Murayama, Hiroshi Yamazaki, Yoshitaka Yamaguchi. In vitro inhibition and enhancement of liver microsomal S-777469 metabolism by long-chain fatty acids and serum albumin: insight into in vitro and in vivo discrepancy of metabolite formation in humans. Xenobiotica 2016, 46 (6) , 495-502. https://doi.org/10.3109/00498254.2015.1091114
    88. J. Iegre, M. A. Hayes, R. A. Thompson, L. Weidolf, E. M. Isin. Database Extraction of Metabolite Information of Drug Candidates: Analysis of 27 AstraZeneca Compounds with Human Absorption, Distribution, Metabolism, and Excretion Data. Drug Metabolism and Disposition 2016, 44 (5) , 732-740. https://doi.org/10.1124/dmd.115.067850
    89. Dolores Diaz, Jonathan M. Maher. The Use of Genetically Modified Animals in Discovery Toxicology. 2016, 298-313. https://doi.org/10.1002/9781119053248.ch19
    90. Takashi Matsumoto, Hirotaka Kushida, Takeshi Maruyama, Hiroaki Nishimura, Junko Watanabe, Kazuya Maemura, Yoshio Kase. In vitro identification of human cytochrome P450 isoforms involved in the metabolism of Geissoschizine methyl ether, an active component of the traditional Japanese medicine Yokukansan. Xenobiotica 2016, 46 (4) , 325-334. https://doi.org/10.3109/00498254.2015.1076585
    91. S.-E. W. Huskey, C.-q. Zhu, M. M. Lin, R. R. Forseth, H. Gu, O. Simon, F. K. Eggimann, M. Kittelmann, A. Luneau, A. Vargas, H. Li, L. Wang, H. J. Einolf, J. Zhang, S. Favara, H. He, J. B. Mangold. Identification of Three Novel Ring Expansion Metabolites of KAE609, a New Spiroindolone Agent for the Treatment of Malaria, in Rats, Dogs, and Humans. Drug Metabolism and Disposition 2016, 44 (5) , 653-664. https://doi.org/10.1124/dmd.115.069112
    92. T. E. Ballard, S. Wang, L. M. Cox, M. A. Moen, S. Krzyzewski, O. Ukairo, R. S. Obach. Application of a Micropatterned Cocultured Hepatocyte System To Predict Preclinical and Human-Specific Drug Metabolism. Drug Metabolism and Disposition 2016, 44 (2) , 172-179. https://doi.org/10.1124/dmd.115.066688
    93. J. Matthew Hutzler, Barbara J. Ring, Shelby R. Anderson. Low-Turnover Drug Molecules: A Current Challenge for Drug Metabolism Scientists. Drug Metabolism and Disposition 2015, 43 (12) , 1917-1928. https://doi.org/10.1124/dmd.115.066431
    94. Thomas A. Baillie. Chemically Reactive Versus Stable Drug Metabolites: Role in Adverse Drug Reactions. 2015, 202-226. https://doi.org/10.1039/9781782622376-00202
    95. Seigo Sanoh. In Vitro and in Vivo Assessments of Drug-induced Hepatotoxicity and Drug Metabolism in Humans. YAKUGAKU ZASSHI 2015, 135 (11) , 1273-1279. https://doi.org/10.1248/yakushi.15-00200
    96. Naoyuki Nakada, Kazuo Oda. Identification and characterization of metabolites of ASP015K, a novel oral Janus kinase inhibitor, in rats, chimeric mice with humanized liver, and humans. Xenobiotica 2015, 45 (9) , 757-765. https://doi.org/10.3109/00498254.2015.1019594
    97. Kota Kato, Masato Ohbuchi, Satoko Hamamura, Hiroki Ohshita, Yasuhiro Kazuki, Mitsuo Oshimura, Koya Sato, Naoyuki Nakada, Akio Kawamura, Takashi Usui, Hidetaka Kamimura, Chise Tateno. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver. Drug Metabolism and Disposition 2015, 43 (8) , 1208-1217. https://doi.org/10.1124/dmd.115.063479
    98. Ari Tolonen, Olavi Pelkonen. Analytical challenges for conducting rapid metabolism characterization for QIVIVE. Toxicology 2015, 332 , 20-29. https://doi.org/10.1016/j.tox.2013.08.010
    99. Salman R. Khetani, Dustin R. Berger, Kimberly R. Ballinger, Matthew D. Davidson, Christine Lin, Brenton R. Ware. Microengineered Liver Tissues for Drug Testing. SLAS Technology 2015, 20 (3) , 216-250. https://doi.org/10.1177/2211068214566939
    100. Jessica A. Bonzo, Kelly Rose, Kimberly Freeman, Erica Deibert, Kirsten B. Amaral, Stephen S. Ferguson, Melvin E. Andersen, Rafal P. Witek, Edward L. LeCluyse. Differential Effects of Trovafloxacin on TNF-α and IL-6 Profiles in a Rat Hepatocyte–Kupffer Cell Coculture System. Applied In Vitro Toxicology 2015, 1 (1) , 45-54. https://doi.org/10.1089/aivt.2014.0004
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect