Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Quantitative Structure−Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure
My Activity

Figure 1Loading Img
    Article

    Quantitative Structure−Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure
    Click to copy article linkArticle link copied!

    View Author Information
    Carolina Environmental Bioinformatics Research Center, Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7568, 327 Beard Hall, Chapel Hill, North Carolina 27599-7568, and Sustainable Technology Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
    * To whom correspondence should be addressed. Tel: 919-966-2955. Fax: 919-966-0204. E-mail: [email protected]
    †Carolina Environmental Bioinformatics Research Center.
    ‡University of North Carolina at Chapel Hill.
    §U.S. Environmental Protection Agency.
    Other Access Options

    Chemical Research in Toxicology

    Cite this: Chem. Res. Toxicol. 2009, 22, 12, 1913–1921
    Click to copy citationCitation copied!
    https://doi.org/10.1021/tx900189p
    Published October 21, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Few quantitative structure−activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT’s training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 207 publications.

    1. Maciej Noga, Kamil Jurowski. Toxicity of Bromo-DragonFLY as a New Psychoactive Substance: Application of In Silico Methods for the Prediction of Key Toxicological Parameters Important to Clinical and Forensic Toxicology. Chemical Research in Toxicology 2024, Article ASAP.
    2. Sebastian Schieferdecker, Florian Rottach, Esther Vock. In Silico Prediction of Oral Acute Rodent Toxicity Using Consensus Machine Learning. Journal of Chemical Information and Modeling 2024, 64 (8) , 3114-3122. https://doi.org/10.1021/acs.jcim.4c00056
    3. Xuelian Jia, Tong Wang, Hao Zhu. Advancing Computational Toxicology by Interpretable Machine Learning. Environmental Science & Technology 2023, 57 (46) , 17690-17706. https://doi.org/10.1021/acs.est.3c00653
    4. Thi Tuyet Van Tran, Agung Surya Wibowo, Hilal Tayara, Kil To Chong. Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives. Journal of Chemical Information and Modeling 2023, 63 (9) , 2628-2643. https://doi.org/10.1021/acs.jcim.3c00200
    5. Zhong-Qin Pan, Sha-Li Yu, Zeng-Qiang Wu, Kang Wang. Construction and Evaluation of Zeolitic Imidazolate Framework-Encapsulated Hemoglobin Microparticles as Oxygen Carriers. ACS Applied Bio Materials 2023, 6 (4) , 1471-1478. https://doi.org/10.1021/acsabm.2c01013
    6. Peibo Liang, Jingmin Li, Wei Chen, Jianyang Li, Qing Yang, Jianjun Zhang. Application of Natural Bioresources to Sustainable Agriculture: A C-Glycoside Insecticide Based on N-Acetyl-glucosamine for Regulating Insect Molting of Ostrinia furnacalis. Journal of Agricultural and Food Chemistry 2023, 71 (14) , 5496-5506. https://doi.org/10.1021/acs.jafc.2c08760
    7. Thomas R. Lane, Joshua Harris, Fabio Urbina, Sean Ekins. Comparing LD50/LC50 Machine Learning Models for Multiple Species. ACS Chemical Health & Safety 2023, 30 (2) , 83-97. https://doi.org/10.1021/acs.chas.2c00088
    8. Tatsuya Yoshizawa, Shoichi Ishida, Tomohiro Sato, Masateru Ohta, Teruki Honma, Kei Terayama. Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search. Journal of Chemical Information and Modeling 2022, 62 (22) , 5351-5360. https://doi.org/10.1021/acs.jcim.2c00787
    9. Matteo Aldeghi, David E. Graff, Nathan Frey, Joseph A. Morrone, Edward O. Pyzer-Knapp, Kirk E. Jordan, Connor W. Coley. Roughness of Molecular Property Landscapes and Its Impact on Modellability. Journal of Chemical Information and Modeling 2022, 62 (19) , 4660-4671. https://doi.org/10.1021/acs.jcim.2c00903
    10. Xudong Zhang, Jun Mao, Min Wei, Yifei Qi, John Z. H. Zhang. HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models. Journal of Chemical Information and Modeling 2022, 62 (8) , 1830-1839. https://doi.org/10.1021/acs.jcim.2c00256
    11. Lingyan Dai, Lingxin Kong, Xiao Cai, Peng Jiang, Nian Liu, Dongjie Zhang, Zhijiang Li. Analysis of the Structure and Activity of Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Oligopeptides from Sorghum Kafirin. Journal of Agricultural and Food Chemistry 2022, 70 (6) , 2010-2017. https://doi.org/10.1021/acs.jafc.1c04484
    12. Jeremy P. Koelmel, Elizabeth Z. Lin, Kayley DeLay, Antony J. Williams, Yakun Zhou, Riana Bornman, Muvhulawa Obida, Jonathan Chevrier, Krystal J. Godri Pollitt. Assessing the External Exposome Using Wearable Passive Samplers and High-Resolution Mass Spectrometry among South African Children Participating in the VHEMBE Study. Environmental Science & Technology 2022, 56 (4) , 2191-2203. https://doi.org/10.1021/acs.est.1c06481
    13. Jeremy Feinstein, Ganesh Sivaraman, Kurt Picel, Brian Peters, Álvaro Vázquez-Mayagoitia, Arvind Ramanathan, Margaret MacDonell, Ian Foster, Eugene Yan. Uncertainty-Informed Deep Transfer Learning of Perfluoroalkyl and Polyfluoroalkyl Substance Toxicity. Journal of Chemical Information and Modeling 2021, 61 (12) , 5793-5803. https://doi.org/10.1021/acs.jcim.1c01204
    14. Tao Chen, Wen-Qin Li, Zheng Liu, Wen Jiang, Tian Liu, Qing Yang, Xiao-Lei Zhu, Guang-Fu Yang. Discovery of Biphenyl–Sulfonamides as Novel β-N-Acetyl-d-Hexosaminidase Inhibitors via Structure-Based Virtual Screening. Journal of Agricultural and Food Chemistry 2021, 69 (40) , 12039-12047. https://doi.org/10.1021/acs.jafc.1c01642
    15. Ava P. Soleimany, Alexander Amini, Samuel Goldman, Daniela Rus, Sangeeta N. Bhatia, Connor W. Coley. Evidential Deep Learning for Guided Molecular Property Prediction and Discovery. ACS Central Science 2021, 7 (8) , 1356-1367. https://doi.org/10.1021/acscentsci.1c00546
    16. Jesse R. Vanderveen, Philip G. Jessop. An Exercise Demonstrating the Selection of Greener Compounds for a Specified Application. Journal of Chemical Education 2021, 98 (7) , 2341-2346. https://doi.org/10.1021/acs.jchemed.1c00128
    17. Jeremy P. Koelmel, Elizabeth Z. Lin, Amy Nichols, Pengfei Guo, Yakun Zhou, Krystal J. Godri Pollitt. Head, Shoulders, Knees, and Toes: Placement of Wearable Passive Samplers Alters Exposure Profiles Observed. Environmental Science & Technology 2021, 55 (6) , 3796-3806. https://doi.org/10.1021/acs.est.0c05522
    18. Sankalp Jain, Vishal B. Siramshetty, Vinicius M. Alves, Eugene N. Muratov, Nicole Kleinstreuer, Alexander Tropsha, Marc C. Nicklaus, Anton Simeonov, Alexey V. Zakharov. Large-Scale Modeling of Multispecies Acute Toxicity End Points Using Consensus of Multitask Deep Learning Methods. Journal of Chemical Information and Modeling 2021, 61 (2) , 653-663. https://doi.org/10.1021/acs.jcim.0c01164
    19. Yaroslav Chushak, Jeffery M. Gearhart, Darrin Ott. In Silico Assessment of Acute Oral Toxicity for Mixtures. Chemical Research in Toxicology 2021, 34 (2) , 345-354. https://doi.org/10.1021/acs.chemrestox.0c00256
    20. Suman K. Chakravarti. Reason Vectors: Abstract Representation of Chemistry–Biology Interaction Outcomes, for Reasoning and Prediction. Journal of Chemical Information and Modeling 2020, 60 (10) , 4614-4628. https://doi.org/10.1021/acs.jcim.0c00601
    21. Eni Minerali, Daniel H. Foil, Kimberley M. Zorn, Sean Ekins. Evaluation of Assay Central Machine Learning Models for Rat Acute Oral Toxicity Prediction. ACS Sustainable Chemistry & Engineering 2020, 8 (42) , 16020-16027. https://doi.org/10.1021/acssuschemeng.0c06348
    22. Jian Jiang, Rui Wang, Menglun Wang, Kaifu Gao, Duc Duy Nguyen, Guo-Wei Wei. Boosting Tree-Assisted Multitask Deep Learning for Small Scientific Datasets. Journal of Chemical Information and Modeling 2020, 60 (3) , 1235-1244. https://doi.org/10.1021/acs.jcim.9b01184
    23. Pravin Ambure, Agnieszka Gajewicz-Skretna, M. Natalia D. S. Cordeiro, Kunal Roy. New Workflow for QSAR Model Development from Small Data Sets: Small Dataset Curator and Small Dataset Modeler. Integration of Data Curation, Exhaustive Double Cross-Validation, and a Set of Optimal Model Selection Techniques. Journal of Chemical Information and Modeling 2019, 59 (10) , 4070-4076. https://doi.org/10.1021/acs.jcim.9b00476
    24. César R. García-Jacas, Yovani Marrero-Ponce, Fernando Cortés-Guzmán, José Suárez-Lezcano, Felix O. Martinez-Rios, Luis A. García-González, Mario Pupo-Meriño, Karina Martinez-Mayorga. Enhancing Acute Oral Toxicity Predictions by using Consensus Modeling and Algebraic Form-Based 0D-to-2D Molecular Encodes. Chemical Research in Toxicology 2019, 32 (6) , 1178-1192. https://doi.org/10.1021/acs.chemrestox.9b00011
    25. Xiaowei Zhou, Zachary J. Brentzel, George A. Kraus, Peter L. Keeling, James A. Dumesic, Brent H. Shanks, Linda J. Broadbelt. Computational Framework for the Identification of Bioprivileged Molecules. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2414-2428. https://doi.org/10.1021/acssuschemeng.8b05275
    26. Kedi Wu and Guo-Wei Wei . Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks. Journal of Chemical Information and Modeling 2018, 58 (2) , 520-531. https://doi.org/10.1021/acs.jcim.7b00558
    27. Wenyi Wang, Alexander Sedykh, Hainan Sun, Linlin Zhao, Daniel P. Russo, Hongyu Zhou, Bing Yan, and Hao Zhu . Predicting Nano–Bio Interactions by Integrating Nanoparticle Libraries and Quantitative Nanostructure Activity Relationship Modeling. ACS Nano 2017, 11 (12) , 12641-12649. https://doi.org/10.1021/acsnano.7b07093
    28. Youjun Xu, Jianfeng Pei, and Luhua Lai . Deep Learning Based Regression and Multiclass Models for Acute Oral Toxicity Prediction with Automatic Chemical Feature Extraction. Journal of Chemical Information and Modeling 2017, 57 (11) , 2672-2685. https://doi.org/10.1021/acs.jcim.7b00244
    29. Linlin Zhao, Wenyi Wang, Alexander Sedykh, and Hao Zhu . Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do. ACS Omega 2017, 2 (6) , 2805-2812. https://doi.org/10.1021/acsomega.7b00274
    30. Oren E. Nahum, Abraham Yosipof, and Hanoch Senderowitz . A Multi-Objective Genetic Algorithm for Outlier Removal. Journal of Chemical Information and Modeling 2015, 55 (12) , 2507-2518. https://doi.org/10.1021/acs.jcim.5b00515
    31. Tiago B. Oliveira, Leonardo Gobbo-Neto, Thomas J. Schmidt, and Fernando B. Da Costa . Study of Chromatographic Retention of Natural Terpenoids by Chemoinformatic Tools. Journal of Chemical Information and Modeling 2015, 55 (1) , 26-38. https://doi.org/10.1021/ci500581q
    32. Xiao Li, Lei Chen, Feixiong Cheng, Zengrui Wu, Hanping Bian, Congying Xu, Weihua Li, Guixia Liu, Xu Shen, and Yun Tang . In Silico Prediction of Chemical Acute Oral Toxicity Using Multi-Classification Methods. Journal of Chemical Information and Modeling 2014, 54 (4) , 1061-1069. https://doi.org/10.1021/ci5000467
    33. Alexey V. Zakharov, Megan L. Peach, Markus Sitzmann, and Marc C. Nicklaus . A New Approach to Radial Basis Function Approximation and Its Application to QSAR. Journal of Chemical Information and Modeling 2014, 54 (3) , 713-719. https://doi.org/10.1021/ci400704f
    34. Tomohiro Kinjo, Yuji Koseki, Maiko Kobayashi, Atsumi Yamada, Koji Morita, Kento Yamaguchi, Ryoya Tsurusawa, Gulcin Gulten, Hideyuki Komatsu, Hiroshi Sakamoto, James C. Sacchettini, Mitsuru Kitamura, and Shunsuke Aoki . Identification of Compounds with Potential Antibacterial Activity against Mycobacterium through Structure-Based Drug Screening. Journal of Chemical Information and Modeling 2013, 53 (5) , 1200-1212. https://doi.org/10.1021/ci300571n
    35. Renee Solimeo, Jun Zhang, Marlene Kim, Alexander Sedykh, and Hao Zhu . Predicting Chemical Ocular Toxicity Using a Combinatorial QSAR Approach. Chemical Research in Toxicology 2012, 25 (12) , 2763-2769. https://doi.org/10.1021/tx300393v
    36. Feixiong Cheng, Weihua Li, Yadi Zhou, Jie Shen, Zengrui Wu, Guixia Liu, Philip W. Lee, and Yun Tang . admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. Journal of Chemical Information and Modeling 2012, 52 (11) , 3099-3105. https://doi.org/10.1021/ci300367a
    37. Todd M. Martin, Paul Harten, Douglas M. Young, Eugene N. Muratov, Alexander Golbraikh, Hao Zhu, and Alexander Tropsha . Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling?. Journal of Chemical Information and Modeling 2012, 52 (10) , 2570-2578. https://doi.org/10.1021/ci300338w
    38. Ruifeng Liu, Gregory Tawa, and Anders Wallqvist . Locally Weighted Learning Methods for Predicting Dose-Dependent Toxicity with Application to the Human Maximum Recommended Daily Dose. Chemical Research in Toxicology 2012, 25 (10) , 2216-2226. https://doi.org/10.1021/tx300279f
    39. Daniel A. Vallero. Scientific principles. 2025, 45-59. https://doi.org/10.1016/B978-0-443-28987-3.00018-7
    40. Swapna Upadhyay, Mizanur Rahman, Selina Rinaldi, Jeremy Koelmel, Elizabeth Z. Lin, Padukudru Anand Mahesh, Johannes Beckers, Gunnar Johanson, Krystal J. Godri Pollitt, Lena Palmberg, Martin Irmler, Koustav Ganguly. Assessment of wood smoke induced pulmonary toxicity in normal- and chronic bronchitis-like bronchial and alveolar lung mucosa models at air–liquid interface. Respiratory Research 2024, 25 (1) https://doi.org/10.1186/s12931-024-02686-5
    41. Hocheol Lim. Development of scoring-assisted generative exploration (SAGE) and its application to dual inhibitor design for acetylcholinesterase and monoamine oxidase B. Journal of Cheminformatics 2024, 16 (1) https://doi.org/10.1186/s13321-024-00845-w
    42. Başak Özay, Ezgi Yağmur Tükel, Gizem Ayna Duran, Yağmur Kiraz. Identification of potential inhibitors for drug resistance in acute lymphoblastic leukemia through differentially expressed gene analysis and in silico screening. Analytical Biochemistry 2024, 694 , 115619. https://doi.org/10.1016/j.ab.2024.115619
    43. Andrey Massarsky, Ernest S Fung, Veneese JB Evans, Andrew Maier. In silico occupational exposure banding framework for data poor compounds in biotechnology. Toxicology and Industrial Health 2024, 12 https://doi.org/10.1177/07482337241289184
    44. Janus Isaiah R. Quiambao, Peter Matthew Paul T. Fowler, Lemmuel L. Tayo. Potential Role of Tarantula Venom Peptides in Targeting Human Death Receptors: A Computational Study. Applied Sciences 2024, 14 (19) , 8701. https://doi.org/10.3390/app14198701
    45. Lisa M. Sweeney, Teresa R. Sterner. Toxicity reference values (TRVs) for force health protection: Gap identification and TRV prediction. Regulatory Toxicology and Pharmacology 2024, 152 , 105685. https://doi.org/10.1016/j.yrtph.2024.105685
    46. Tejas Goculdas, Maximus Ramirez, Michael Crossley, Sunitha Sadula, Dionisios G. Vlachos. Biomass‐Derived, Target Specific, and Ecologically Safer Insecticide Active Ingredients. ChemSusChem 2024, 29 https://doi.org/10.1002/cssc.202400824
    47. Maciej Noga, Agata Michalska, Kamil Jurowski. The estimation of acute oral toxicity (LD50) of G-series organophosphorus-based chemical warfare agents using quantitative and qualitative toxicology in silico methods. Archives of Toxicology 2024, 98 (6) , 1809-1825. https://doi.org/10.1007/s00204-024-03714-5
    48. Kamil Jurowski, Łukasz Niżnik. Toxicity of the New Psychoactive Substance (NPS) Clephedrone (4-Chloromethcathinone, 4-CMC): Prediction of Toxicity Using In Silico Methods for Clinical and Forensic Purposes. International Journal of Molecular Sciences 2024, 25 (11) , 5867. https://doi.org/10.3390/ijms25115867
    49. Shilpayan Ghosh, Kunal Roy. Quantitative read-across structure-activity relationship (q-RASAR): A novel approach to estimate the subchronic oral safety (NOAEL) of diverse organic chemicals in rats. Toxicology 2024, 505 , 153824. https://doi.org/10.1016/j.tox.2024.153824
    50. Pascal Emmanuel Owona, Yolande Sandrine Mengue Ngadena, Danielle Claude Bilanda, Madeleine Chantal Ngoungouré, Lohik Mbolang Nguegan, Ronald Bidingha A Goufani, Rivaldo Bernes Kahou Tadah, Michel Noubom, Armand Fils Ella, Yannick Carlos Tcheutchoua, Bruno Dupon Ambamba Akamba, Paule Cynthia Bouguem Yandja, Paulin Keumedjio Teko, Paul Desire Dzeufiet Djomeni, Pierre Kamtchouing. Pterocarpus soyauxii (Fabaceae) aqueous extract to prevent neuropsychiatric disorders associated with menopause by triggering ROS-dependent oxidative damage and inhibiting acetylcholinesterase, GABA-transaminase, and monoamine oxidase A: in vitro, in vivo, and in silico approaches. Heliyon 2024, 329 , e33843. https://doi.org/10.1016/j.heliyon.2024.e33843
    51. Maciej Noga, Agata Michalska, Kamil Jurowski. The acute toxicity of Novichok's degradation products using quantitative and qualitative toxicology in silico methods. Archives of Toxicology 2024, 98 (5) , 1469-1483. https://doi.org/10.1007/s00204-024-03695-5
    52. Pooja Sharma, Prabhat Ranjan, Tanmoy Chakraborty. Applications of conceptual density functional theory in reference to quantitative structure–activity / property relationship. Molecular Physics 2024, 11 https://doi.org/10.1080/00268976.2024.2331620
    53. Muhammad Ayyaz, Muhammad Sarfraz, Muhammad Arshad, Asma Yaqoob, Sabir Ali Siddique, Safdar Hussain, Muhammad Arif Ali, Ashfaq Mahmood Qureshi, Abdul Rauf. Design, synthesis, in-vitro biological screening and in-silico studies of 2-thioxodihydropyrimidinone based new aminomethylene scaffolds. Journal of Molecular Structure 2024, 1299 , 137153. https://doi.org/10.1016/j.molstruc.2023.137153
    54. Ulan Kemelbekov, Vitaly Volynkin, Symbat Zhumakova, Kulpan Orynbassarova, Marina Papezhuk, Valentina Yu. Comparative Analysis of the Structure and Pharmacological Properties of Some Piperidines and Host–Guest Complexes of β-Cyclodextrin. Molecules 2024, 29 (5) , 1098. https://doi.org/10.3390/molecules29051098
    55. Rahmanto Aryabraga Rusdipoetra, Hery Suwito, Ni Nyoman Tri Puspaningsih, Kautsar Ul Haq. Theoretical insight of reactive oxygen species scavenging mechanism in lignin waste depolymerization products. RSC Advances 2024, 14 (9) , 6310-6323. https://doi.org/10.1039/D3RA08346B
    56. Shiman Zhou, Qianqian Zhu, Denan Li, Lifeng Zhang, Yanshuo Li, Zhenxin Zhang. Structure induced activity enhancement of tungsten oxide for tetrabromobisphenol A photodegradation under visible light illumination. New Journal of Chemistry 2024, 48 (6) , 2558-2568. https://doi.org/10.1039/D3NJ05274E
    57. Antoine Daina, María José Ojeda‐Montes, Maiia E. Bragina, Alessandro Cuozzo, Ute F. Röhrig, Marta A.S. Perez, Vincent Zoete. Open Access Databases and Datasets for Computer‐Aided Drug Design. A Short List Used in the Molecular Modelling Group of the SIB. 2024, 1-38. https://doi.org/10.1002/9783527830497.ch1
    58. Daniel A. Vallero, Trevor M. Letcher. Science. 2024, 57-92. https://doi.org/10.1016/B978-0-443-18651-6.00007-X
    59. Gül KARADUMAN, Feyza KELLECİ ÇELİK. A MULTIVARIATE INTERPOLATION APPROACH FOR PREDICTING DRUG LD50 VALUE. Ankara Universitesi Eczacilik Fakultesi Dergisi 2024, 48 (1) , 3-3. https://doi.org/10.33483/jfpau.1322948
    60. Reyhan Akpınar, Gizem Yıldırım Baştemur, Bilge Bıçak, Nazmiye Ozlem Sanli, Elif Mertoğlu Kamalı, Murat Pekmez, Serda Kecel Gündüz, Sabriye Perçin Özkorucuklu. Phytochemical profiling, in vitro biological activities, and in silico (molecular docking and absorption, distribution, metabolism, excretion, toxicity) studies of Polygonum cognatum Meissn. Journal of Separation Science 2024, 47 (1) https://doi.org/10.1002/jssc.202300750
    61. Qianyuan Wu, Liu He, Xiao Xiao, DeXiu Wu, Ron Hofmann. DBP Formation and Control in Water Reuse. 2024https://doi.org/10.1007/698_2024_1149
    62. Nazlıgül Keske, Başak Özay, Ezgi Yağmur Tükel, Muratcan Menteş, Cihangir Yandım. In silico drug screen reveals potential competitive MTHFR inhibitors for clinical repurposing. Journal of Biomolecular Structure and Dynamics 2023, 41 (21) , 11818-11831. https://doi.org/10.1080/07391102.2022.2163697
    63. Oluwafemi Adeleke Ojo, Akingbolabo Daniel Ogunlakin, Gideon Ampoma Gyebi, Damilare IyinKristi Ayokunle, Adeshina Isaiah Odugbemi, Dare Ezekiel Babatunde, Emmanuel Adewuni Akintunde, Samson Chukwuemeka Ezea, Nnaemeka Tobechukwu Asogwa, Rotdelmwa Maimako Asaleye, Adebola Busola Ojo. Profiling the antidiabetic potential of GC–MS compounds identified from the methanolic extract of Spilanthes filicaulis : experimental and computational insight. Journal of Biomolecular Structure and Dynamics 2023, 2 , 1-22. https://doi.org/10.1080/07391102.2023.2291828
    64. Zhiyong Liu, Junhong Gao, Cunzhi Li, Lihong Xu, Xiaoqiang Lv, Hui Deng, Yongchao Gao, Hong Wang, Huan Li, Zhigang Wang. Application of QSAR models for acute toxicity of tetrazole compounds administrated orally and intraperitoneally in rat and mouse. Toxicology 2023, 500 , 153679. https://doi.org/10.1016/j.tox.2023.153679
    65. Fatima Zohra Yasmine Bettadj, Wafaa Benchouk. Computer-aided analysis for identification of novel analogues of ketoprofen based on molecular docking, ADMET, drug-likeness and DFT studies for the treatment of inflammation. Journal of Biomolecular Structure and Dynamics 2023, 41 (19) , 9915-9930. https://doi.org/10.1080/07391102.2022.2148750
    66. Oluwafemi Adeleke Ojo, Akingbolabo Daniel Ogunlakin, Rotdelmwa Filibis Maimako, Gideon Ampoma Gyebi, Christopher Busayo Olowosoke, Odunayo Anthonia Taiwo, Tobiloba Christiana Elebiyo, David Adeniyi, Bolaji David, Matthew Iyobhebhe, Juliana Bunmi Adetunji, Damilare IyinKristi Ayokunle, Adebola Busola Ojo, Ramzi A. Mothana, Abdullah R. Alanzi. Therapeutic Study of Cinnamic Acid Derivative for Oxidative Stress Ablation: The Computational and Experimental Answers. Molecules 2023, 28 (21) , 7425. https://doi.org/10.3390/molecules28217425
    67. Muratcan Menteş, Cihangir Yandım. Identification of PPA1 inhibitor candidates for potential repurposing in cancer medicine. Journal of Cellular Biochemistry 2023, 124 (10) , 1646-1663. https://doi.org/10.1002/jcb.30475
    68. Hezha O. Rasul, Bakhtyar K. Aziz, Dlzar D. Ghafour, Arif Kivrak. Screening the possible anti-cancer constituents of Hibiscus rosa-sinensis flower to address mammalian target of rapamycin: an in silico molecular docking, HYDE scoring, dynamic studies, and pharmacokinetic prediction. Molecular Diversity 2023, 27 (5) , 2273-2296. https://doi.org/10.1007/s11030-022-10556-9
    69. Saisai Teng, Chenglin Yin, Yu Wang, Xiandong Chen, Zhongmin Yan, Lizhen Cui, Leyi Wei. MolFPG: Multi-level fingerprint-based Graph Transformer for accurate and robust drug toxicity prediction. Computers in Biology and Medicine 2023, 164 , 106904. https://doi.org/10.1016/j.compbiomed.2023.106904
    70. Wafa Benselama, Wafaa Benchouk. In silico design based on quantum chemical, molecular docking studies and ADMET predictions of ciprofloxacin derivatives as novel potential antibacterial and antimycrobacterium agents. Journal of Biomolecular Structure and Dynamics 2023, 97 , 1-17. https://doi.org/10.1080/07391102.2023.2240906
    71. Oluwafemi Adeleke Ojo, Akingbolabo Daniel Ogunlakin, Gideon Ampoma Gyebi, Damilare IyinKristi Ayokunle, Adeshina Isaiah Odugbemi, Dare Ezekiel Babatunde, Omolola Adenike Ajayi-Odoko, Matthew Iyobhebhe, Samson Chukwuemeka Ezea, Christopher Oloruntoba Akintayo, Ademola Ayeleso, Adebola Busola Ojo, Omolara Olajumoke Ojo. GC-MS chemical profiling, antioxidant, anti-diabetic, and anti-inflammatory activities of ethyl acetate fraction of Spilanthes filicaulis (Schumach. and Thonn.) C.D. Adams leaves: experimental and computational studies. Frontiers in Pharmacology 2023, 14 https://doi.org/10.3389/fphar.2023.1235810
    72. Hilbert Yuen In Lam, Robbe Pincket, Hao Han, Xing Er Ong, Zechen Wang, Jamie Hinks, Yanjie Wei, Weifeng Li, Liangzhen Zheng, Yuguang Mu. Application of variational graph encoders as an effective generalist algorithm in computer-aided drug design. Nature Machine Intelligence 2023, 5 (7) , 754-764. https://doi.org/10.1038/s42256-023-00683-9
    73. Hezha O. Rasul, Bakhtyar K. Aziz, Dlzar D. Ghafour, Arif Kivrak. Discovery of potential mTOR inhibitors from Cichorium intybus to find new candidate drugs targeting the pathological protein related to the breast cancer: an integrated computational approach. Molecular Diversity 2023, 27 (3) , 1141-1162. https://doi.org/10.1007/s11030-022-10475-9
    74. Tanuja T. Yadav, Maushmi S. Kumar, Mayur YC. Synthesis, cytotoxicity, and docking based analysis of acridone-N-acetamides as AKT kinase inhibitors. Chemical Papers 2023, 77 (6) , 3129-3144. https://doi.org/10.1007/s11696-023-02692-9
    75. Sanjeeva J Wijeyesakere, Tyler Auernhammer, Amanda Parks, Dan Wilson. Profiling mechanisms that drive acute oral toxicity in mammals and its prediction via machine learning. Toxicological Sciences 2023, 193 (1) , 18-30. https://doi.org/10.1093/toxsci/kfad025
    76. Jayanti Mukherjee, Ramesh Sharma, Prasenjit Dutta, Biswanath Bhunia. Artificial intelligence in healthcare: a mastery. Biotechnology and Genetic Engineering Reviews 2023, 5 , 1-50. https://doi.org/10.1080/02648725.2023.2196476
    77. Tanuja T Yadav, Maushmi S Kumar, Shalini Bajaj, Mayur YC. Design, Synthesis and Evaluation of acridone-2-carbohydrazide Derivatives As p-AKT Ser 473 Kinase Inhibitors. Future Medicinal Chemistry 2023, 15 (8) , 699-716. https://doi.org/10.4155/fmc-2022-0271
    78. Yimeng Wang, Mengting Huang, Hua Deng, Weihua Li, Zengrui Wu, Yun Tang, Guixia Liu. Identification of vital chemical information via visualization of graph neural networks. Briefings in Bioinformatics 2023, 24 (1) https://doi.org/10.1093/bib/bbac577
    79. Wei Shi, Jing Guo, Tong Bao. QSAR tools for toxicity prediction in risk assessment—Comparative analysis. 2023, 203-218. https://doi.org/10.1016/B978-0-443-15339-6.00016-3
    80. Bhakti Pawar, Santosh Kumar Behera, Muktika Tekade, Nizar Al-Shar'i, Rakesh Kumar Tekade. Computer-aided technologies in drug discovery and toxicity prediction. 2023, 239-254. https://doi.org/10.1016/B978-0-443-15840-7.00004-X
    81. Gulcin Tugcu, Hande Sipahi, Mohammad Charehsaz, Ahmet Aydın, Melek Türker Saçan. Computational toxicology of pharmaceuticals. 2023, 519-537. https://doi.org/10.1016/B978-0-443-18638-7.00007-4
    82. Gideon A. Gyebi, Oludare M. Ogunyemi, Ibrahim M. Ibrahim, Saheed O. Afolabi, Rotimi J. Ojo, Uju D.I. Ejike, Joseph O. Adebayo. Inhibitory potentials of phytocompounds from Ocimum gratissimum against anti-apoptotic BCL-2 proteins associated with cancer: an integrated computational study. Egyptian Journal of Basic and Applied Sciences 2022, 9 (1) , 588-608. https://doi.org/10.1080/2314808X.2022.2106095
    83. Linrong Xiao, Jiyong Deng, Liping Yang, Xianwei Huang, Xinliang Yu. Random forest algorithm-based accurate prediction of rat acute oral toxicity. Molecular Physics 2022, 120 (24) https://doi.org/10.1080/00268976.2022.2140083
    84. Sepideh Kalhor, Alireza Fattahi. Design of ionic liquids containing glucose and choline as drug carriers, finding the link between QM and MD studies. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-25963-z
    85. Min Wei, Xudong Zhang, Xiaolin Pan, Bo Wang, Changge Ji, Yifei Qi, John Z. H. Zhang. HobPre: accurate prediction of human oral bioavailability for small molecules. Journal of Cheminformatics 2022, 14 (1) https://doi.org/10.1186/s13321-021-00580-6
    86. Francesco Trotta, Thorsteinn Loftsson, R.S. Gaud, Riddhi Trivedi, Pravin Shende. Integration of cyclodextrins and associated toxicities: A roadmap for high quality biomedical applications. Carbohydrate Polymers 2022, 295 , 119880. https://doi.org/10.1016/j.carbpol.2022.119880
    87. M.J. McCarthy, Y. Chushak, J.M. Gearhart. Reverse molecular docking and deep-learning to make predictions of receptor activity for neurotoxicology. Computational Toxicology 2022, 24 , 100238. https://doi.org/10.1016/j.comtox.2022.100238
    88. Craig M. Zwickl, Jessica C. Graham, Robert A. Jolly, Arianna Bassan, Ernst Ahlberg, Alexander Amberg, Lennart T. Anger, Lisa Beilke, Phillip Bellion, Alessandro Brigo, Heather Burleigh-Flayer, Mark T.D. Cronin, Amy A. Devlin, Trevor Fish, Susanne Glowienke, Kamila Gromek, Agnes L. Karmaus, Ray Kemper, Sunil Kulkarni, Elena Lo Piparo, Federica Madia, Matthew Martin, Melisa Masuda-Herrera, Britt L. McAtee, Jordi Mestres, Lawrence Milchak, Chandrika Moudgal, Moiz Mumtaz, Wolfgang Muster, Louise Neilson, Grace Patlewicz, Alexandre Paulino, Alessandra Roncaglioni, Patricia Ruiz, David T. Szabo, Jean-Pierre Valentin, Ioanna Vardakou, David Woolley, Glenn J. Myatt. Principles and procedures for assessment of acute toxicity incorporating in silico methods. Computational Toxicology 2022, 24 , 100237. https://doi.org/10.1016/j.comtox.2022.100237
    89. Daniel A. Vallero. Introduction: Importance of Systems Sciences and First Principles. 2022, 1-1-1-20. https://doi.org/10.1063/9780735424357_001
    90. S. Sinha, A. Hazarika, S. Johari, B. Neog, S. Rajkhowa, A. Biswas. IMPDB: Indian Medicinal Phytochemical Database Curated for Drug Designing. Journal of Computational Biophysics and Chemistry 2022, 21 (06) , 709-728. https://doi.org/10.1142/S2737416522500302
    91. Marta Swirog, Alicja Mikolajczyk, Karolina Jagiello, Jaak Jänes, Kaido Tämm, Tomasz Puzyn. Predicting electrophoretic mobility of TiO2, ZnO, and CeO2 nanoparticles in natural waters: The importance of environment descriptors in nanoinformatics models. Science of The Total Environment 2022, 840 , 156572. https://doi.org/10.1016/j.scitotenv.2022.156572
    92. Gulam Moin Shaikh, Manikanta Murahari, Shikha Thakur, Maushmi S. Kumar, Mayur YC. Studies on ligand-based pharmacophore modeling approach in identifying potent future EGFR inhibitors. Journal of Molecular Graphics and Modelling 2022, 112 , 108114. https://doi.org/10.1016/j.jmgm.2021.108114
    93. Anik Banik, Md. Fuad Mondal, Md. Mostafigur Rahman Khan, Sheikh Rashel Ahmed, Md. Mehedi Hasan. Screening and potent applicability analysis of commonly used pesticides against Schistocerca gregaria and Locusta migratoria: an integrative computational approach. International Journal of Tropical Insect Science 2022, 42 (2) , 1971-1986. https://doi.org/10.1007/s42690-021-00726-x
    94. Haiyang Yu, Qihua Ling, Jingwen Cai, Mengzhi Zhang, Huaiquan Liu, Yunzhi Chen, . Utilising Network Pharmacology to Explore Underlying Mechanism of Astragalus membranaceus in Improving Sepsis-Induced Inflammatory Response by Regulating the Balance of IκBα and NF-κB in Rats. Evidence-Based Complementary and Alternative Medicine 2022, 2022 , 1-22. https://doi.org/10.1155/2022/7141767
    95. Douglas E V Pires, Keith A Stubbs, Joshua S Mylne, David B Ascher. cropCSM: designing safe and potent herbicides with graph-based signatures. Briefings in Bioinformatics 2022, 23 (2) https://doi.org/10.1093/bib/bbac042
    96. Maciej Staszak, Katarzyna Staszak, Karolina Wieszczycka, Anna Bajek, Krzysztof Roszkowski, Bartosz Tylkowski. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. WIREs Computational Molecular Science 2022, 12 (2) https://doi.org/10.1002/wcms.1568
    97. Kamila Gromek, William Hawkins, Zoe Dunn, Maciej Gawlik, Davide Ballabio. Evaluation of the predictivity of Acute Oral Toxicity (AOT) structure-activity relationship models. Regulatory Toxicology and Pharmacology 2022, 129 , 105109. https://doi.org/10.1016/j.yrtph.2021.105109
    98. Ivanka Tsakovska, Antonia Diukendjieva, Andrew P. Worth. In Silico Models for Predicting Acute Systemic Toxicity. 2022, 259-289. https://doi.org/10.1007/978-1-0716-1960-5_12
    99. Alexander Golbraikh, Rong Wang, Vinicius M. Alves, Inta Liepina, Eugene Muratov, Alexander Tropsha. Dataset Modelability by QSAR: Continuous Response Variable. 2022, 233-253. https://doi.org/10.1007/978-3-030-83244-5_7
    100. Xiliang Yan, Tongtao Yue, Hao Zhu, Bing Yan. Bridging the Gap Between Nanotoxicological Data and the Critical Structure–Activity Relationships. 2022, 161-183. https://doi.org/10.1007/978-981-16-9116-4_7
    Load more citations

    Chemical Research in Toxicology

    Cite this: Chem. Res. Toxicol. 2009, 22, 12, 1913–1921
    Click to copy citationCitation copied!
    https://doi.org/10.1021/tx900189p
    Published October 21, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    3149

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.