ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Thiophene Sulfoxides as Reactive Metabolites:  Formation upon Microsomal Oxidation of a 3-Aroylthiophene and Fate in the Presence of Nucleophiles in Vitro and in Vivo

View Author Information
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400 CNRS, Université Paris V, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
Cite this: Chem. Res. Toxicol. 1996, 9, 8, 1403–1413
Publication Date (Web):November 27, 1996
https://doi.org/10.1021/tx9601622
Copyright © 1996 American Chemical Society

    Article Views

    737

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (391 KB)

    Abstract

    Oxidative metabolism of a 3-aroylthiophene, 1, by rat liver microsomes in the presence of mercaptoethanol as a trapping agent led to the isolation of four main compounds, 25, which have been isolated and characterized by UV, 1H NMR, and mass spectroscopy. They all derive from two primary metabolites, 2 and 3, which result from the nucleophilic addition of mercaptoethanol to a reactive, very electrophilic intermediate formed by sulfoxidation of the thiophene ring of 1. Further reactions of diastereoisomers 2 and 3 with mercaptoethanol led to compound 4 that is opened at the level of its thiophene ring and, eventually, to a final metabolite 5 resulting formally from the addition of mercaptoethanol on the 4,5-double bond of the thiophene ring of 1. Compound 5 is very stable even in the presence of a large excess of mercaptoethanol. Similar reactions were observed upon microsomal oxidation of 1 in the presence of another thiol, N-acetylcysteine. Final metabolites 8a and 8b equivalent to 5 except for the replacement of its mercaptoethanol substituent with an N-acetylcysteinyl group were isolated and characterized by UV, 1H NMR, and mass spectroscopy. Interestingly, after treatment of rats with 1, metabolites 8a and 8b could be detected in urine, indicating that the successive reactions, that were observed in vitro after microsomal oxidation of 1 in the presence of a thiol-containing trapping agent, also occur in vivo, glutathione acting as a nucleophile in that case. These data provide clear evidence for the intermediate formation of a reactive, electrophilic thiophene sulfoxide in metabolic oxidation of 1in vitro and in vivo. They also provide the first data on the complex reactivity of such thiophene sulfoxides, whose chemistry is poorly known, and on their fates in living organisms.

    *

     Address correspondence to Dr. Daniel Mansuy, URA 400, 45, Rue des Saints-Pères, 75270 Paris Cedex 06, France. Phone:  (33) 01 42.86.21.87; FAX:  (33) 01 42.86.83.87; E. Mail:  [email protected].

     Abstract published in Advance ACS Abstracts, November 1, 1996.

    Cited By

    This article is cited by 78 publications.

    1. Chaitanya K. Jaladanki, Samima Khatun, Holger Gohlke, Prasad V. Bharatam. Reactive Metabolites from Thiazole-Containing Drugs: Quantum Chemical Insights into Biotransformation and Toxicity. Chemical Research in Toxicology 2021, 34 (6) , 1503-1517. https://doi.org/10.1021/acs.chemrestox.0c00450
    2. M. Saeed Mirzaei, Maxim V. Ivanov, Avat Arman Taherpour, Saber Mirzaei. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chemical Research in Toxicology 2021, 34 (4) , 959-987. https://doi.org/10.1021/acs.chemrestox.0c00483
    3. George A. Naclerio, Nader S. Abutaleb, Daoyi Li, Mohamed N. Seleem, Herman O. Sintim. Ultrapotent Inhibitor of Clostridioides difficile Growth, Which Suppresses Recurrence In Vivo. Journal of Medicinal Chemistry 2020, 63 (20) , 11934-11944. https://doi.org/10.1021/acs.jmedchem.0c01198
    4. Renhe Li, Yun Zhou, Xiaolong Xu, Guangbin Dong. Direct Vicinal Difunctionalization of Thiophenes Enabled by the Palladium/Norbornene Cooperative Catalysis. Journal of the American Chemical Society 2019, 141 (48) , 18958-18963. https://doi.org/10.1021/jacs.9b10857
    5. Chaitanya K. Jaladanki, Nikhil Taxak, Rohith A. Varikoti, and Prasad V. Bharatam . Toxicity Originating from Thiophene Containing Drugs: Exploring the Mechanism using Quantum Chemical Methods. Chemical Research in Toxicology 2015, 28 (12) , 2364-2376. https://doi.org/10.1021/acs.chemrestox.5b00364
    6. Shanshan He, Prashi Jain, Billy Lin, Marc Ferrer, Zongyi Hu, Noel Southall, Xin Hu, Wei Zheng, Benjamin Neuenswander, Chul-Hee Cho, Yu Chen, Shilpa A. Worlikar, Jeffrey Aubé, Richard C. Larock, Frank J. Schoenen, Juan J. Marugan, T. Jake Liang, and Kevin J. Frankowski . High-Throughput Screening, Discovery, and Optimization To Develop a Benzofuran Class of Hepatitis C Virus Inhibitors. ACS Combinatorial Science 2015, 17 (10) , 641-652. https://doi.org/10.1021/acscombsci.5b00101
    7. Darja Gramec, Lucija Peterlin Mašič, and Marija Sollner Dolenc . Bioactivation Potential of Thiophene-Containing Drugs. Chemical Research in Toxicology 2014, 27 (8) , 1344-1358. https://doi.org/10.1021/tx500134g
    8. G. P. Kapungu and G. Rukweza , Thai Tran, Wilbes Mbiya, Risikat Adigun, Patrick Ndungu, Bice Martincigh, and Reuben H. Simoyi . Oxyhalogen–Sulfur Chemistry: Kinetics and Mechanism of Oxidation of Captopril by Acidified Bromate and Aqueous Bromine. The Journal of Physical Chemistry A 2013, 117 (13) , 2704-2717. https://doi.org/10.1021/jp312672w
    9. Yakov M. Koen, Diganta Sarma, Todd D. Williams, Nadezhda A. Galeva, R. Scott Obach, and Robert P. Hanzlik . Identification of Protein Targets of Reactive Metabolites of Tienilic Acid in Human Hepatocytes. Chemical Research in Toxicology 2012, 25 (5) , 1145-1154. https://doi.org/10.1021/tx300103j
    10. Peter M. Rademacher, Caleb M. Woods, Qingbiao Huang, Grazyna D. Szklarz, and Sidney D. Nelson . Differential Oxidation of Two Thiophene-Containing Regioisomers to Reactive Metabolites by Cytochrome P450 2C9. Chemical Research in Toxicology 2012, 25 (4) , 895-903. https://doi.org/10.1021/tx200519d
    11. Weiqi Chen, Janet Caceres-Cortes, Haiying Zhang, Donglu Zhang, W. Griffith Humphreys, and Jinping Gan . Bioactivation of Substituted Thiophenes Including α-Chlorothiophene-Containing Compounds in Human Liver Microsomes. Chemical Research in Toxicology 2011, 24 (5) , 663-669. https://doi.org/10.1021/tx100386z
    12. Guosheng Wu, Sarvesh C. Vashishtha and John C. L. Erve . Characterization of Glutathione Conjugates of Duloxetine by Mass Spectrometry and Evaluation of in Silico Approaches to Rationalize the Site of Conjugation for Thiophene Containing Drugs. Chemical Research in Toxicology 2010, 23 (8) , 1393-1404. https://doi.org/10.1021/tx100141d
    13. Qian Ruan and Mingshe Zhu. Investigation of Bioactivation of Ticlopidine Using Linear Ion Trap/Orbitrap Mass Spectrometry and an Improved Mass Defect Filtering Technique. Chemical Research in Toxicology 2010, 23 (5) , 909-917. https://doi.org/10.1021/tx1000046
    14. Christine Medower, Lian Wen and William W. Johnson. Cytochrome P450 Oxidation of the Thiophene-Containing Anticancer Drug 3-[(Quinolin-4-ylmethyl)-amino]-thiophene-2-carboxylic Acid (4-Trifluoromethoxy-phenyl)-amide to an Electrophilic Intermediate. Chemical Research in Toxicology 2008, 21 (8) , 1570-1577. https://doi.org/10.1021/tx700430n
    15. Fengping Li, Mahendra D. Chordia, Kellie A. Woodling and Timothy L. Macdonald. Irreversible Alkylation of Human Serum Albumin by Zileuton Metabolite 2-Acetylbenzothiophene-S-oxide: A Potential Model for Hepatotoxicity. Chemical Research in Toxicology 2007, 20 (12) , 1854-1861. https://doi.org/10.1021/tx7001417
    16. Vijay Bhasker G. Reddy,, Bindhu V. Karanam,, Wendy L. Gruber,, Michael A. Wallace,, Stella H. Vincent,, Ronald B. Franklin, and, Thomas A. Baillie. Mechanistic Studies on the Metabolic Scission of Thiazolidinedione Derivatives to Acyclic Thiols. Chemical Research in Toxicology 2005, 18 (5) , 880-888. https://doi.org/10.1021/tx0500373
    17. Elizabeth M. Joshi,, Brian H. Heasley,, Mahendra D. Chordia, and, Timothy L. Macdonald. In Vitro Metabolism of 2-Acetylbenzothiophene:  Relevance to Zileuton Hepatotoxicity. Chemical Research in Toxicology 2004, 17 (2) , 137-143. https://doi.org/10.1021/tx0341409
    18. Eric Bonierbale,, Philippe Valadon,, Catherine Pons,, Bernard Desfosses,, Patrick M. Dansette, and, Daniel Mansuy. Opposite Behaviors of Reactive Metabolites of Tienilic Acid and Its Isomer toward Liver Proteins: Use of Specific Anti-Tienilic Acid−Protein Adduct Antibodies and the Possible Relationship with Different Hepatotoxic Effects of the Two Compounds. Chemical Research in Toxicology 1999, 12 (3) , 286-296. https://doi.org/10.1021/tx980136z
    19. Elisabeth Rosner,, Michael Müller, and, Wolfgang Dekant. Stereo- and Regioselective Conjugation of S-Halovinyl Mercapturic Acid Sulfoxides by Glutathione S-Transferases. Chemical Research in Toxicology 1998, 11 (1) , 12-18. https://doi.org/10.1021/tx970127a
    20. Shengde Wu, George Daston, Jane Rose, Karen Blackburn, Joan Fisher, Allison Reis, Bastian Selman, Jorge Naciff. Identifying chemicals based on receptor binding/bioactivation/mechanistic explanation associated with potential to elicit hepatotoxicity and to support structure activity relationship-based read-across. Current Research in Toxicology 2023, 5 , 100108. https://doi.org/10.1016/j.crtox.2023.100108
    21. MARK P. GRILLO. Allergic Reactions to Drugs. 2022, 677-702. https://doi.org/10.1002/9781119851042.ch20
    22. George A. Naclerio, Nader S. Abutaleb, Marwa Alhashimi, Mohamed N. Seleem, Herman O. Sintim. N-(1,3,4-Oxadiazol-2-yl)Benzamides as Antibacterial Agents against Neisseria gonorrhoeae. International Journal of Molecular Sciences 2021, 22 (5) , 2427. https://doi.org/10.3390/ijms22052427
    23. . Structural Alerts for Toxicity. 2020, 305-379. https://doi.org/10.1002/9781119607311.ch5
    24. R.S. Obach, A.S. Kalgutkar. Reactive Electrophiles and Metabolic Activation. 2018, 295-331. https://doi.org/10.1016/B978-0-12-801238-3.64290-3
    25. A. V. Rudik, A. V. Dmitriev, V. M. Bezhentsev, A. A. Lagunin, D. A. Filimonov, V. V. Poroikov. Prediction of metabolites of epoxidation reaction in MetaTox. SAR and QSAR in Environmental Research 2017, 28 (10) , 833-842. https://doi.org/10.1080/1062936X.2017.1399165
    26. Jasleen Sodhi, Erlie Delarosa, Jason Halladay, James Driscoll, Teresa Mulder, Patrick Dansette, S. Khojasteh. Inhibitory Effects of Trapping Agents of Sulfur Drug Reactive Intermediates against Major Human Cytochrome P450 Isoforms. International Journal of Molecular Sciences 2017, 18 (7) , 1553. https://doi.org/10.3390/ijms18071553
    27. Danielle M. Hurzy, Darrell A. Henze, Tamara D. Cabalu, Kartik Narayan, Amanda Heller, Andrew J. Cooke. Design, synthesis and SAR of substituted indoles as selective TrkA inhibitors. Bioorganic & Medicinal Chemistry Letters 2017, 27 (12) , 2695-2701. https://doi.org/10.1016/j.bmcl.2017.04.045
    28. Michiel W. den Braver, Nico P.E. Vermeulen, Jan N.M. Commandeur. Generic method for the absolute quantification of glutathione S-conjugates: Application to the conjugates of acetaminophen, clozapine and diclofenac. Journal of Chromatography B 2017, 1046 , 185-194. https://doi.org/10.1016/j.jchromb.2017.02.004
    29. Samuel M. Cohen, Shoji Fukushima, Nigel J. Gooderham, F. Peter Guengerich, Stephen S. Hecht, Ivonne M.C.M. Rietjens, Robert L. Smith, Maria Bastaki, Christie L. Harman, Margaret M. McGowen, Luis G. Valerio, Sean V. Taylor. Safety evaluation of substituted thiophenes used as flavoring ingredients. Food and Chemical Toxicology 2017, 99 , 40-59. https://doi.org/10.1016/j.fct.2016.10.023
    30. . Scientific Opinion on Flavouring Group Evaluation 21, Revision 5 (FGE.21Rev5): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30. EFSA Journal 2015https://doi.org/10.2903/j.efsa.2015.4066
    31. Anne-Christine Macherey, Patrick M. Dansette. Biotransformations Leading to Toxic Metabolites. 2015, 585-614. https://doi.org/10.1016/B978-0-12-417205-0.00025-0
    32. Emanuele M. Gargano, Enrico Perspicace, Nina Hanke, Angelo Carotti, Sandrine Marchais-Oberwinkler, Rolf W. Hartmann. Metabolic stability optimization and metabolite identification of 2,5-thiophene amide 17β-hydroxysteroid dehydrogenase type 2 inhibitors. European Journal of Medicinal Chemistry 2014, 87 , 203-219. https://doi.org/10.1016/j.ejmech.2014.09.061
    33. Suzanne Tay, Hoa Le, Kevin A. Ford, Sid D. Nelson, S. Cyrus Khojasteh, Peter M. Rademacher. Mechanistic Studies of the Cationic Binding Pocket of CYP2C9 In Vitro and In Silico: Metabolism of Nonionizable Analogs of Tienilic Acid. Drug Metabolism and Disposition 2014, 42 (11) , 1955-1963. https://doi.org/10.1124/dmd.114.059022
    34. Merve Ergun, Cagatay Dengiz, Merve Sinem Özer, Ertan Şahin, Metin Balci. Synthesis of thio- and furan-fused heterocycles: furopyranone, furopyrrolone, and thienopyrrolone derivatives. Tetrahedron 2014, 70 (35) , 5993-5998. https://doi.org/10.1016/j.tet.2014.05.071
    35. Atul Kumar, Henry J. Mann, Rory P. Remmel, Greg J. Beilman, Nitin Kaila. Pharmacokinetic study in pigs and in vitro metabolic characterization in pig- and human-liver microsomes reveal marked differences in disposition and metabolism of tiletamine and zolazepam (Telazol). Xenobiotica 2014, 44 (4) , 379-390. https://doi.org/10.3109/00498254.2013.833362
    36. Paul R. Ortiz de Montellano. Role of Cytochrome P450 Enzymes in Biotransformation. 2014, 1-18. https://doi.org/10.1002/9781118541203.xen0011
    37. Yuzhi Lu, Ze Dong, Pengcheng Wang, Hai-Bing Zhou. Thiophene Oxidation and Reduction Chemistry. 2014, 227-293. https://doi.org/10.1007/7081_2014_132
    38. . Scientific Opinion on Flavouring Group Evaluation 21, Revision 4 (FGE.21Rev4): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30. EFSA Journal 2013https://doi.org/10.2903/j.efsa.2013.3451
    39. Fuying Du, Qian Ruan, Mingshe Zhu, Jie Xing. Detection and characterization of ticlopidine conjugates in rat bile using high‐resolution mass spectrometry: applications of various data acquisition and processing tools. Journal of Mass Spectrometry 2013, 48 (3) , 413-422. https://doi.org/10.1002/jms.3170
    40. . Scientific Opinion on Flavouring Group Evaluation 21, Revision 3 (FGE.21Rev3): Thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical groups 29 and 30. EFSA Journal 2012, 2457. https://doi.org/10.2903/j.efsa.2012.2457
    41. Louis Leung, Amit S. Kalgutkar, R. Scott Obach. Metabolic activation in drug-induced liver injury. Drug Metabolism Reviews 2012, 44 (1) , 18-33. https://doi.org/10.3109/03602532.2011.605791
    42. Deepak K. Dalvie. Bioactivation I: Bioactivation by Cytochrome P450s. 2012, 1-54. https://doi.org/10.1002/9780470921920.edm072
    43. . Scientific Opinion on Flavouring Group Evaluation 21, Revision 2 (FGE.21Rev2): Thiazoles, thiophene, thiazoline and thienyl derivatives from chemical group 29. Miscellaneous substances from chemical group 30. EFSA Journal 2011, 1989. https://doi.org/10.2903/j.efsa.2011.1989
    44. Amit S. Kalgutkar. Metabolic Activation of Organic Functional Groups Utilized in Medicinal Chemistry. 2011, 43-82. https://doi.org/10.1002/9780470929278.ch3
    45. Hsia-lien Lin, Haoming Zhang, Christine Medower, Paul F. Hollenberg, William W. Johnson. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer Drug. Drug Metabolism and Disposition 2011, 39 (2) , 345-350. https://doi.org/10.1124/dmd.110.034074
    46. Graham F. Smith. Designing Drugs to Avoid Toxicity. 2011, 1-47. https://doi.org/10.1016/B978-0-12-381290-2.00001-X
    47. Yiding Hu, Shengtian Yang, F. Barclay Shilliday, Bruce R. Heyde, Kathy M. Mandrell, Russell H. Robins, Jin Xie, Matthew T. Reding, Yurong Lai, David C. Thompson. Novel Metabolic Bioactivation Mechanism for a Series of Anti-Inflammatory Agents (2,5-Diaminothiophene Derivatives) Mediated by Cytochrome P450 Enzymes. Drug Metabolism and Disposition 2010, 38 (9) , 1522-1531. https://doi.org/10.1124/dmd.110.032581
    48. Mark P. Grillo. Allergic Reactions to Drugs. 2010, 1-26. https://doi.org/10.1002/9780470571224.pse121
    49. R. Scott Obach, A.S. Kalgutkar. Reactive Electrophiles and Metabolic Activation. 2010, 309-347. https://doi.org/10.1016/B978-0-08-046884-6.00115-9
    50. Mark P. Grillo, Jill C. M. Wait, Michelle Tadano Lohr, Smriti Khera, Leslie Z. Benet. Stereoselective Flunoxaprofen- S -acyl-glutathione Thioester Formation Mediated by Acyl-CoA Formation in Rat Hepatocytes. Drug Metabolism and Disposition 2010, 38 (1) , 133-142. https://doi.org/10.1124/dmd.109.029371
    51. Shinji Shimizu, Ryo Atsumi, Tsunenori Nakazawa, Yuko Fujimaki, Kenichi Sudo, Osamu Okazaki. Metabolism of Ticlopidine in Rats: Identification of the Main Biliary Metabolite as a Glutathione Conjugate of Ticlopidine S -Oxide. Drug Metabolism and Disposition 2009, 37 (9) , 1904-1915. https://doi.org/10.1124/dmd.109.027524
    52. . Flavouring Group Evaluation 21, Revision 1 (FGE.21Rev1): Thiazoles, thiophene, thiazoline and thienyl derivatives from chemical group 29 Miscellaneous substances from chemical group 30. EFSA Journal 2009https://doi.org/10.2903/j.efsa.2009.1023
    53. D. Lang, C. Freudenberger, C. Weinz. In Vitro Metabolism of Rivaroxaban, an Oral, Direct Factor Xa Inhibitor, in Liver Microsomes and Hepatocytes of Rats, Dogs, and Humans. Drug Metabolism and Disposition 2009, 37 (5) , 1046-1055. https://doi.org/10.1124/dmd.108.025551
    54. Mark P. Grillo. Allergic Reactions to Drugs. 2009, 629-653. https://doi.org/10.1002/9780470439265.ch22
    55. Emma E. Graham, Rachel J. Walsh, Charlotte M. Hirst, James L. Maggs, Scott Martin, Martin J. Wild, Ian D. Wilson, John R. Harding, J. Gerald Kenna, Raimund M. Peter, Dominic P. Williams, B. Kevin Park. Identification of the Thiophene Ring of Methapyrilene as a Novel Bioactivation-Dependent Hepatic Toxicophore. Journal of Pharmacology and Experimental Therapeutics 2008, 326 (2) , 657-671. https://doi.org/10.1124/jpet.107.135483
    56. . Flavouring Group Evaluation 21: Thiazoles, thiophene, thiazoline and thienyl derivatives from chemical group 29. Miscellaneous substances from chemical group 30. (Commission Regulation (EC) No 1565/2000 of 18 July 2000) ‐ Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in contact with Food (AFC). EFSA Journal 2008https://doi.org/10.2903/j.efsa.2008.455
    57. Sonia M. Poli. Irreversible Cytochrome P450 Inhibition: Common Substructures and Implications for Drug Development. 2008, 267-276. https://doi.org/10.1002/9783527621460.ch11
    58. Anne-Christine Macherey, Patrick M. Dansette. Biotransformations Leading to Toxic Metabolites. 2008, 674-696. https://doi.org/10.1016/B978-0-12-374194-3.00033-0
    59. Ruth Menque Methogo, Patrick M. Dansette, Klaus Klarskov. Identification of liver protein targets modified by tienilic acid metabolites using a two-dimensional Western blot-mass spectrometry approach. International Journal of Mass Spectrometry 2007, 268 (2-3) , 284-295. https://doi.org/10.1016/j.ijms.2007.06.002
    60. Patrick M. Dansette, Gildas Bertho, Daniel Mansuy. First evidence that cytochrome P450 may catalyze both S-oxidation and epoxidation of thiophene derivatives. Biochemical and Biophysical Research Communications 2005, 338 (1) , 450-455. https://doi.org/10.1016/j.bbrc.2005.08.091
    61. Jun Liang, Richard M. Brochu, Charles J. Cohen, Ivy E. Dick, John P. Felix, Michael H. Fisher, Maria L. Garcia, Gregory J. Kaczorowski, Kathryn A. Lyons, Peter T. Meinke, Birgit T. Priest, William A. Schmalhofer, McHardy M. Smith, Jason W. Tarpley, Brande S. Williams, William J. Martin, William H. Parsons. Discovery of potent and use-dependent sodium channel blockers for treatment of chronic pain. Bioorganic & Medicinal Chemistry Letters 2005, 15 (11) , 2943-2947. https://doi.org/10.1016/j.bmcl.2005.02.093
    62. Shahrzad Tafazoli, Peter J. O'Brien. Peroxidases: a role in the metabolism and side effects of drugs. Drug Discovery Today 2005, 10 (9) , 617-625. https://doi.org/10.1016/S1359-6446(05)03394-5
    63. Christopher A. Evans, Harvey E. Fries, Keith W. Ward. In vitro metabolic fate of a novel structural class: Evidence for the formation of a reactive intermediate on a benzothiophene moiety. Chemico-Biological Interactions 2005, 152 (1) , 25-36. https://doi.org/10.1016/j.cbi.2005.01.005
    64. Anne Dreiem, Frode Fonnum. Thiophene is Toxic to Cerebellar Granule Cells in Culture After Bioactivation by Rat Liver Enzymes. NeuroToxicology 2004, 25 (6) , 959-966. https://doi.org/10.1016/j.neuro.2004.04.001
    65. Kan He, Rasmy E. Talaat, William F. Pool, Michael D. Reily, Jessica E. Reed, Alexander J. Bridges, Thomas F. Woolf. METABOLIC ACTIVATION OF TROGLITAZONE: IDENTIFICATION OF A REACTIVE METABOLITE AND MECHANISMS INVOLVED. Drug Metabolism and Disposition 2004, 32 (6) , 639-646. https://doi.org/10.1124/dmd.32.6.639
    66. Jack Uetrecht. Bioactivation. 2003, 87-145. https://doi.org/10.1201/9781420028485.ch3
    67. Frédéric Leroux, Tilman U. Hutschenreuter, Céline Charrière, Rosario Scopelliti, Rolf W. Hartmann. N ‐(4‐Biphenylmethyl)imidazoles as Potential Therapeutics for the Treatment of Prostate Cancer: Metabolic Robustness Due to Fluorine Substitution?. Helvetica Chimica Acta 2003, 86 (7) , 2671-2686. https://doi.org/10.1002/hlca.200390217
    68. F Peter Guengerich. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Archives of Biochemistry and Biophysics 2003, 409 (1) , 59-71. https://doi.org/10.1016/S0003-9861(02)00415-0
    69. S. Binet, A. Pfohl-Leszkowicz, H. Brandt, M. Lafontaine, M. Castegnaro. Bitumen fumes: review of work on the potential risk to workers and the present knowledge on its origin. Science of The Total Environment 2002, 300 (1-3) , 37-49. https://doi.org/10.1016/S0048-9697(02)00279-6
    70. Maya Belghazi, Pascale Jean, Sonia Poli, Jean-Marie Schmitter, Daniel Mansuy, M. Patrick Dansette. Use of Isotopes and LC-MS-ESI-TOF for Mechanistic Studies of Tienilic Acid Metabolic Activation. 2001, 139-144. https://doi.org/10.1007/978-1-4615-0667-6_17
    71. Nguyêt-Thanh Ha-Duong, Sylvie Dijols, Anne-Christine Macherey, Patrick M. Dansette, Daniel Mansuy. Inhibition by Ticlopidine and Its Derivatives of Human Liver Cytochrome P450. Mechanism-Based Inactivation of CYP 2C19 by Ticlopidine. 2001, 145-148. https://doi.org/10.1007/978-1-4615-0667-6_18
    72. Gurpreet S Ratra, Christopher J Powell, B.Kevin Park, James L Maggs, Suzanne Cottrell. Methapyrilene hepatotoxicity is associated with increased hepatic glutathione, the formation of glucuronide conjugates, and enterohepatic recirculation. Chemico-Biological Interactions 2000, 129 (3) , 279-295. https://doi.org/10.1016/S0009-2797(00)00253-2
    73. Juzo Nakayama. The Latest Advances in Chemistry of Thiophene 1-Oxides and Selenophene 1-Oxides. Sulfur reports 2000, 22 (2) , 123-149. https://doi.org/10.1080/01961770008047957
    74. Maria I Rivera, Sherman F Stinson, David T Vistica, Jean L Jorden, Susan Kenney, Edward A Sausville. Selective toxicity of the tricyclic thiophene NSC 652287 in renal carcinoma cell lines. Biochemical Pharmacology 1999, 57 (11) , 1283-1295. https://doi.org/10.1016/S0006-2952(99)00046-5
    75. P. M. Dansette, E. Bonierbale, C. Minoletti, P. H. Beaune, D. Pessayre, D. Mansuy. Drug-induced immunotoxicity. European Journal of Drug Metabolism and Pharmacokinetics 1998, 23 (4) , 443-451. https://doi.org/10.1007/BF03189993
    76. Pascale Pouzet, Irene Erdelmeier, Patrick M. Dansette, Daniel Mansuy. Synthesis of (4-chlorophenyl)-(1-oxo-1λ4-benzo[b]thien-2-yl)methanone and study of its reactivity towards sulfur- and oxygen-containing nucleophiles. Tetrahedron 1998, 54 (49) , 14811-14824. https://doi.org/10.1016/S0040-4020(98)00929-6
    77. Man Tik Ho, Alexander Treiber, Patrick M. Dansette. Oxidation of 2-(4-chlorobenzoyl)-thiophene into 1-oxide Diels-Alder dimers, sesquioxide and a sulfone-water adduct. Tetrahedron Letters 1998, 39 (28) , 5049-5052. https://doi.org/10.1016/S0040-4039(98)01004-1
    78. Carole Genevois, Annie Pfohl-Leszkowicz, Karine Boillot, Henk Brandt, Marcel Castegnaro. Implication of cytochrome P-450 1A isoforms and the AH receptor in the genotoxicity of coal-tar fume condensate and bitumen fume condensates. Environmental Toxicology and Pharmacology 1998, 5 (4) , 283-294. https://doi.org/10.1016/S1382-6689(98)00013-1

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect