ACS Publications. Most Trusted. Most Cited. Most Read
Identification of specific protein carbonylation sites in model oxidations of human serum albumin
My Activity

Figure 1Loading Img
    Research Article

    Identification of specific protein carbonylation sites in model oxidations of human serum albumin
    Click to copy article linkArticle link copied!

    • Ani Temple
      Ani Temple
      Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., 94132, San Francisco, CA, USA
      More by Ani Temple
    • Ten -Yang Yen
      Ten -Yang Yen
      Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., 94132, San Francisco, CA, USA
    • Scott Gronert
      Scott Gronert
      Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., 94132, San Francisco, CA, USA
    Other Access Options

    Journal of The American Society for Mass Spectrometry

    Cite this: The official journal of The American Society for Mass Spectrometry 2006, 17, 8, 1172–1180
    Click to copy citationCitation copied!
    https://doi.org/10.1016/j.jasms.2006.04.030
    Published August 1, 2006
    Copyright © 2006 © American Society for Mass Spectrometry 2006

    Abstract

    Click to copy section linkSection link copied!

    Human serum albumin (HSA) was subjected to oxidative stress and the locations of the resulting protein carbonyls were determined using mass spectrometry in conjunction with a hydrazide labeling scheme. To model oxidative stress, HSA samples were subjected to metal-catalyzed oxidation (MCO) conditions or treated with hypochlorous acid (HOCl). Oxidation led to the conversion of lysine residues to 2-aminoadipic semi-aldehyde residues, which were subsequently labeled with biotin hydrazide. Analysis of the tryptic peptides from the samples indicates that the oxidations are highly selective. Under MCO conditions, only two of the 59 lysine residues appeared to be modified (Lys-97 and Lys-186). With HOCl, five different lysine modification sites were identified (Lys-130, Lys-257, Lys-438, Lys-499, and Lys-598). These results strongly suggest that the preferred site of modification is dependent on the nature of the oxidant and that the process relies on specific structural motifs in the protein to direct the oxidation. The high selectivity seen here provides insights into the factors that in vivo drive the selective carbonylation of specific proteins in systems under oxidative stress.

    Copyright © 2006 © American Society for Mass Spectrometry 2006

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 84 publications.

    1. Yanping Huang, Mei An, Anning Fang, Opeyemi Joshua Olatunji, Fredrick Nwude Eze. Antiproliferative Activities of the Lipophilic Fraction of Eucalyptus camaldulensis against MCF-7 Breast Cancer Cells, UPLC-ESI-QTOF-MS Metabolite Profile, and Antioxidative Functions. ACS Omega 2022, 7 (31) , 27369-27381. https://doi.org/10.1021/acsomega.2c02389
    2. Teodor Adrian Enache, Elena Matei, Victor Constantin Diculescu. Electrochemical Sensor for Carbonyl Groups in Oxidized Proteins. Analytical Chemistry 2019, 91 (3) , 1920-1927. https://doi.org/10.1021/acs.analchem.8b03969
    3. Victor Yin, Gary S. Shaw, and Lars Konermann . Cytochrome c as a Peroxidase: Activation of the Precatalytic Native State by H2O2-Induced Covalent Modifications. Journal of the American Chemical Society 2017, 139 (44) , 15701-15709. https://doi.org/10.1021/jacs.7b07106
    4. Alessandra Del Giudice, Cedric Dicko, Luciano Galantini, and Nicolae V. Pavel . Structural Response of Human Serum Albumin to Oxidation: Biological Buffer to Local Formation of Hypochlorite. The Journal of Physical Chemistry B 2016, 120 (48) , 12261-12271. https://doi.org/10.1021/acs.jpcb.6b08601
    5. Andrea Carpentieri, Tania Gamberi, Alessandra Modesti, Angela Amoresano, Barbara Colombini, Marta Nocella, Maria Angela Bagni, Tania Fiaschi, Lorenzo Barolo, Massimo Gulisano, and Francesca Magherini . Profiling Carbonylated Proteins in Heart and Skeletal Muscle Mitochondria from Trained and Untrained Mice. Journal of Proteome Research 2016, 15 (10) , 3666-3678. https://doi.org/10.1021/acs.jproteome.6b00475
    6. Subhadip Ghosh, Uttam Anand, and Saptarshi Mukherjee . Kinetic Aspects of Enzyme-Mediated Evolution of Highly Luminescent Meta Silver Nanoclusters. The Journal of Physical Chemistry C 2015, 119 (19) , 10776-10784. https://doi.org/10.1021/acs.jpcc.5b03594
    7. Yi Yang, Cinzia Stella, Weiru Wang, Christian Schöneich, and Lynn Gennaro . Characterization of Oxidative Carbonylation on Recombinant Monoclonal Antibodies. Analytical Chemistry 2014, 86 (10) , 4799-4806. https://doi.org/10.1021/ac4039866
    8. Angela Bachi, Isabella Dalle-Donne, and Andrea Scaloni . Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chemical Reviews 2013, 113 (1) , 596-698. https://doi.org/10.1021/cr300073p
    9. Ashraf G. Madian and Fred E. Regnier. Proteomic Identification of Carbonylated Proteins and Their Oxidation Sites. Journal of Proteome Research 2010, 9 (8) , 3766-3780. https://doi.org/10.1021/pr1002609
    10. Daisuke Sano, Rosa M. Pintó, Tatsuo Omura and Albert Bosch . Detection of Oxidative Damages on Viral Capsid Protein for Evaluating Structural Integrity and Infectivity of Human Norovirus. Environmental Science & Technology 2010, 44 (2) , 808-812. https://doi.org/10.1021/es9018964
    11. Toshiyuki Nakamura, Yoshichika Kawai, Noritoshi Kitamoto, Toshihiko Osawa and Yoji Kato . Covalent Modification of Lysine Residues by Allyl Isothiocyanate in Physiological Conditions: Plausible Transformation of Isothiocyanate from Thiol to Amine. Chemical Research in Toxicology 2009, 22 (3) , 536-542. https://doi.org/10.1021/tx8003906
    12. Jasmin Meltretter,, Silke Seeber,, Andreas Humeny,, Cord-Michael Becker, and, Monika Pischetsrieder. Site-Specific Formation of Maillard, Oxidation, and Condensation Products from Whey Proteins during Reaction with Lactose. Journal of Agricultural and Food Chemistry 2007, 55 (15) , 6096-6103. https://doi.org/10.1021/jf0705567
    13. Mikel R. Roe,, Hongwei Xie,, Sricharan Bandhakavi, and, Timothy J. Griffin. Proteomic Mapping of 4-Hydroxynonenal Protein Modification Sites by Solid-Phase Hydrazide Chemistry and Mass Spectrometry. Analytical Chemistry 2007, 79 (10) , 3747-3756. https://doi.org/10.1021/ac0617971
    14. Mark A. Rosenfeld, Lyubov V. Yurina, Elizaveta S. Gavrilina, Alexandra D. Vasilyeva. Post-Translational Oxidative Modifications of Hemostasis Proteins: Structure, Function, and Regulation. Biochemistry (Moscow) 2024, 89 (S1) , S14-S33. https://doi.org/10.1134/S0006297924140025
    15. Yingsen Liu, Zhen Liu, Tong Xing, Jiaolong Li, Lin Zhang, Yun Jiang, Feng Gao. Insight on the meat quality and carbonylation profile of breast muscle of broilers in response to chronic heat stress: A proteomic research. Food Chemistry 2023, 423 , 136437. https://doi.org/10.1016/j.foodchem.2023.136437
    16. Tomasz Wybranowski, Blanka Ziomkowska, Michał Cyrankiewicz, Jerzy Pyskir, Maciej Bosek, Marta Napiórkowska, Marta Pilaczyńska-Cemel, Grzegorz Przybylski, Stefan Kruszewski. Time-Resolved Fluorescence Spectroscopy of Blood, Plasma and Albumin as a Potential Diagnostic Tool for Acute Inflammation in COVID-19 Pneumonia Patients. International Journal of Molecular Sciences 2023, 24 (19) , 14703. https://doi.org/10.3390/ijms241914703
    17. Zhuo‐Qing Li, Cai Zhang, Song Fan, Ling‐Li Wang, Yan Jiang, Hui‐Jun Li. Evidence for exposure biomarkers in dictamnine‐induced liver injury resulting from metabolic activation in vitro and in mice. Journal of Applied Toxicology 2023, 43 (5) , 662-679. https://doi.org/10.1002/jat.4414
    18. Gemma Serra‐Bardenys, Sandra Peiró. Enzymatic lysine oxidation as a posttranslational modification. The FEBS Journal 2022, 289 (24) , 8020-8031. https://doi.org/10.1111/febs.16205
    19. Elena Hipper, Michaela Blech, Dariush Hinderberger, Patrick Garidel, Wolfgang Kaiser. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2022, 14 (1) , 72. https://doi.org/10.3390/pharmaceutics14010072
    20. Pawel Staszek, Urszula Krasuska, Katarzyna Ciacka, Agnieszka Gniazdowska. ROS Metabolism Perturbation as an Element of Mode of Action of Allelochemicals. Antioxidants 2021, 10 (11) , 1648. https://doi.org/10.3390/antiox10111648
    21. Marilene Demasi, Ohara Augusto, Etelvino J.H. Bechara, Renata N. Bicev, Fernanda M. Cerqueira, Fernanda M. da Cunha, Ana Denicola, Fernando Gomes, Sayuri Miyamoto, Luis E.S. Netto, Lía M. Randall, Cassius V. Stevani, Leonor Thomson. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxidants & Redox Signaling 2021, 35 (12) , 1016-1080. https://doi.org/10.1089/ars.2020.8176
    22. Srishti Joshi, Sudha Kumari, Anurag S. Rathore. Identification and characterization of carbonylation sites in trastuzumab biosimilars. International Journal of Biological Macromolecules 2021, 169 , 95-102. https://doi.org/10.1016/j.ijbiomac.2020.12.095
    23. Shekhar Apoorva, Pranatee Behera, Basavaraj Sajjanar, Manish Mahawar. Identification of oxidant susceptible proteins in Salmonella Typhimurium. Molecular Biology Reports 2020, 47 (3) , 2231-2242. https://doi.org/10.1007/s11033-020-05328-3
    24. Agnes Ulfig, Anton V Schulz, Alexandra Müller, Natalie Lupilov, Lars I Leichert. N-chlorination mediates protective and immunomodulatory effects of oxidized human plasma proteins. eLife 2019, 8 https://doi.org/10.7554/eLife.47395
    25. Juliana Garcia, Vera Marisa Costa, Antonio Bovolini, José Alberto Duarte, Daniela Ferreira Rodrigues, Maria de Lourdes Bastos, Félix Carvalho. An effective antidotal combination of polymyxin B and methylprednisolone for α-amanitin intoxication. Archives of Toxicology 2019, 93 (5) , 1449-1463. https://doi.org/10.1007/s00204-019-02426-5
    26. Victor Yin, Safee H. Mian, Lars Konermann. Lysine carbonylation is a previously unrecognized contributor to peroxidase activation of cytochrome c by chloramine-T. Chemical Science 2019, 10 (8) , 2349-2359. https://doi.org/10.1039/C8SC03624A
    27. Irantzu Pérez-Ruiz, Susana Meijide, María-Luisa Hérnandez, Rosaura Navarro, Zaloa Larreategui, Marcos Ferrando, María-Begoña Ruiz-Larrea, José-Ignacio Ruiz-Sanz. Analysis of Protein Oxidative Modifications in Follicular Fluid from Fertile Women: Natural Versus Stimulated Cycles. Antioxidants 2018, 7 (12) , 176. https://doi.org/10.3390/antiox7120176
    28. Mark A. Rosenfeld, Alexandra D. Vasilyeva, Lyubov V. Yurina, Anna V. Bychkova. Oxidation of proteins: is it a programmed process?. Free Radical Research 2018, 52 (1) , 14-38. https://doi.org/10.1080/10715762.2017.1402305
    29. Małgorzata Maciążek-Jurczyk, Agnieszka Szkudlarek, Mariola Chudzik, Jadwiga Pożycka, Anna Sułkowska. Alteration of human serum albumin binding properties induced by modifications: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 188 , 675-683. https://doi.org/10.1016/j.saa.2017.05.023
    30. Marina Naldi, Maurizio Baldassarre, Marco Domenicali, Manuela Bartolini, Paolo Caraceni. Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. Journal of Pharmaceutical and Biomedical Analysis 2017, 144 , 138-153. https://doi.org/10.1016/j.jpba.2017.04.023
    31. Shweta Bhat, Mashanipalya G. Jagadeeshaprasad, Vinashya Venkatasubramani, Mahesh J. Kulkarni. Abundance matters: role of albumin in diabetes, a proteomics perspective. Expert Review of Proteomics 2017, 14 (8) , 677-689. https://doi.org/10.1080/14789450.2017.1352473
    32. Elisa Cabiscol, Jordi Tamarit, Joaquim Ros. Specificity of Protein Carbonylation and Its Relevance in Aging. 2017, 340-383. https://doi.org/10.1002/9781119374947.ch14
    33. Md. Al Mehedi Hasan, Jinyan Li, Shamim Ahmad, Md. Khademul Islam Molla. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue. Analytical Biochemistry 2017, 525 , 107-113. https://doi.org/10.1016/j.ab.2017.03.008
    34. Dmitry Kryndushkin, Wells W. Wu, Ramesh Venna, Michael A. Norcross, Rong-Fong Shen, V. Ashutosh Rao. Complex Nature of Protein Carbonylation Specificity After Metal-Catalyzed Oxidation. Pharmaceutical Research 2017, 34 (4) , 765-779. https://doi.org/10.1007/s11095-017-2103-9
    35. Jesper F. Havelund, Katarzyna Wojdyla, Michael J. Davies, Ole N. Jensen, Ian Max Møller, Adelina Rogowska-Wrzesinska. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma. Journal of Proteomics 2017, 156 , 40-51. https://doi.org/10.1016/j.jprot.2016.12.019
    36. Zafer Ugur, Scott Gronert. A Robust Analytical Approach for the Identification of Specific Protein Carbonylation Sites: Metal-Catalyzed Oxidations of Human Serum Albumin. Analytical Letters 2017, 50 (3) , 567-579. https://doi.org/10.1080/00032719.2016.1186171
    37. Jianhua Jia, Zi Liu, Xuan Xiao, Bingxiang Liu, Kuo-Chen Chou. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget 2016, 7 (23) , 34558-34570. https://doi.org/10.18632/oncotarget.9148
    38. Guilherme A. Eger, Vinícius V. Ferreira, Camila R. Batista, Henrique Bonde, Daniela D. de Lima, Angela T.S. Wyse, Júlia N. da Cruz, André F. Rodrigues, Débora D. Dal Magro, José G.P. da Cruz. Antioxidant effect of simvastatin throught oxidative imbalance caused by lisdexamfetamine dimesylate. Anais da Academia Brasileira de Ciências 2016, 88 (1) , 335-348. https://doi.org/10.1590/0001-3765201620140490
    39. Chelsea M. Coffey, Scott Gronert. A cleavable biotin tagging reagent that enables the enrichment and identification of carbonylation sites in proteins. Analytical and Bioanalytical Chemistry 2016, 408 (3) , 865-874. https://doi.org/10.1007/s00216-015-9176-2
    40. M. Maciążek-Jurczyk, A. Sułkowska, J. Równicka-Zubik. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2016, 152 , 537-550. https://doi.org/10.1016/j.saa.2014.12.113
    41. Teppei Takahashi, Tomoyoshi Terada, Hajime Arikawa, Kazuha Kizaki, Hiroyuki Terawaki, Hajime Imai, Yoshinori Itoh, Seiichi Era. Quantitation of Oxidative Modifications of Commercial Human Albumin for Clinical Use. Biological & Pharmaceutical Bulletin 2016, 39 (3) , 401-408. https://doi.org/10.1248/bpb.b15-00843
    42. Elie Simard, Thomas Söllradl, Jean-Sébastien Maltais, Julie Boucher, Pédro D’Orléans-Juste, Michel Grandbois, . Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLOS ONE 2015, 10 (8) , e0128881. https://doi.org/10.1371/journal.pone.0128881
    43. P. Stocker, E. Ricquebourg, N. Vidal, C. Villard, D. Lafitte, L. Sellami, S. Pietri. Fluorimetric screening assay for protein carbonyl evaluation in biological samples. Analytical Biochemistry 2015, 482 , 55-61. https://doi.org/10.1016/j.ab.2015.04.021
    44. Yi-Zhi Wang, Dong-Yan Li, Xi-Wen He, Wen-You Li, Yu-Kui Zhang. Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin. Microchimica Acta 2015, 182 (7-8) , 1465-1472. https://doi.org/10.1007/s00604-015-1464-1
    45. Louis‐Charles Rainville, Ana Varela Coelho, David Sheehan. Application of a redox‐proteomics toolbox to Daphnia magna challenged with model pro‐oxidants copper and paraquat. Environmental Toxicology and Chemistry 2015, 34 (1) , 84-91. https://doi.org/10.1002/etc.2761
    46. Suresh K. Narayanasamy, David C. Simpson, Ian Martin, Mike Grotewiel, Scott Gronert. Paraquat exposure and Sod2 knockdown have dissimilar impacts on the Drosophila melanogaster carbonylated protein proteome. PROTEOMICS 2014, 14 (21-22) , 2566-2577. https://doi.org/10.1002/pmic.201400192
    47. Elwira Smakowska, Malgorzata Czarna, Hanna Janska. Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Mitochondrion 2014, 19 , 245-251. https://doi.org/10.1016/j.mito.2014.03.005
    48. I. Sadowska-Bartosz, C. Ott, T. Grune, G. Bartosz. Posttranslational protein modifications by reactive nitrogen and chlorine species and strategies for their prevention and elimination. Free Radical Research 2014, 48 (11) , 1267-1284. https://doi.org/10.3109/10715762.2014.953494
    49. Oliver Bonham-Carter, Jay Pedersen, Dhundy Bastola. A content and structural assessment of oxidative motifs across a diverse set of life forms. Computers in Biology and Medicine 2014, 53 , 179-189. https://doi.org/10.1016/j.compbiomed.2014.07.008
    50. Urszula Krasuska, Katarzyna Ciacka, Karolina Dębska, Renata Bogatek, Agnieszka Gniazdowska. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos. Journal of Plant Physiology 2014, 171 (13) , 1132-1141. https://doi.org/10.1016/j.jplph.2014.04.015
    51. Julie A. Reisz, Nidhi Bansal, Jiang Qian, Weiling Zhao, Cristina M. Furdui. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection. Antioxidants & Redox Signaling 2014, 21 (2) , 260-292. https://doi.org/10.1089/ars.2013.5489
    52. Duarte D. Gouveia, André M.N. Silva, Rui Vitorino, M. Rosário M. Domingues, Pedro Domingues. Efficiency of Trypsin Digestion for Mass-Spectrometry-Based Identification and Quantification of Oxidized Proteins: Evaluation of the Digestion of Oxidized Bovine Serum Albumin. European Journal of Mass Spectrometry 2014, 20 (3) , 271-278. https://doi.org/10.1255/ejms.1279
    53. Cédric Delporte, Karim Zouaoui Boudjeltia, Caroline Noyon, Paul G. Furtmüller, Vincent Nuyens, Marie-Christine Slomianny, Philippe Madhoun, Jean-Marc Desmet, Pierre Raynal, Damien Dufour, Chintan N. Koyani, Florence Reyé, Alexandre Rousseau, Michel Vanhaeverbeek, Jean Ducobu, Jean-Claude Michalski, Jean Nève, Luc Vanhamme, Christian Obinger, Ernst Malle, Pierre Van Antwerpen. Impact of myeloperoxidase-LDL interactions on enzyme activity and subsequent posttranslational oxidative modifications of apoB-100. Journal of Lipid Research 2014, 55 (4) , 747-757. https://doi.org/10.1194/jlr.M047449
    54. Yuanzhen Liu, Mingquan Guo. Chemical proteomic strategies for the discovery and development of anticancer drugs. PROTEOMICS 2014, 14 (4-5) , 399-411. https://doi.org/10.1002/pmic.201300261
    55. Ravi Chand Bollineni, Ralf Hoffmann, Maria Fedorova. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions. Free Radical Biology and Medicine 2014, 68 , 186-195. https://doi.org/10.1016/j.freeradbiomed.2013.11.030
    56. Elisa Cabiscol, Jordi Tamarit, Joaquim Ros. Protein carbonylation: Proteomics, specificity and relevance to aging. Mass Spectrometry Reviews 2014, 33 (1) , 21-48. https://doi.org/10.1002/mas.21375
    57. Makoto Anraku, Victor Tuan Giam Chuang, Toru Maruyama, Masaki Otagiri. Redox properties of serum albumin. Biochimica et Biophysica Acta (BBA) - General Subjects 2013, 1830 (12) , 5465-5472. https://doi.org/10.1016/j.bbagen.2013.04.036
    58. Oliver Bonham-Carter, Jay Pedersen, Lotfollah Najjar, Dhundy Bastola. Modeling the Effects of Microgravity on Oxidation in Mitochondria: A Protein Damage Assessment across a Diverse Set of Life Forms. 2013, 250-257. https://doi.org/10.1109/ICDMW.2013.149
    59. Stephen R. Steiner, Evan Milton, Martin A. Philbert. A comparative study of protein carbonylation and mitochondrial dysfunction using the neurotoxicants 1,3-dinitrobenzene, 3-nitropropionic acid, and 3-chloropropanediol. NeuroToxicology 2013, 37 , 74-84. https://doi.org/10.1016/j.neuro.2013.04.004
    60. André M.N. Silva, Susana L. Marçal, Rui Vitorino, Maria R.M. Domingues, Pedro Domingues. Characterization of in vitro protein oxidation using mass spectrometry: A time course study of oxidized alpha-amylase. Archives of Biochemistry and Biophysics 2013, 530 (1) , 23-31. https://doi.org/10.1016/j.abb.2012.12.010
    61. D. Allan Butterfield, Marzia Perluigi, Tanea Reed, Tasneem Muharib, Christopher P. Hughes, Renã A.S. Robinson, Rukhsana Sultana. Redox Proteomics in Selected Neurodegenerative Disorders: From Its Infancy to Future Applications. Antioxidants & Redox Signaling 2012, 17 (11) , 1610-1655. https://doi.org/10.1089/ars.2011.4109
    62. . Halogenated Species. 2012, 78-121. https://doi.org/10.1002/9781118482469.ch3
    63. Zafer Ugur, Chelsea M. Coffey, Scott Gronert. Comparing the efficiencies of hydrazide labels in the study of protein carbonylation in human serum albumin. Analytical and Bioanalytical Chemistry 2012, 404 (5) , 1399-1411. https://doi.org/10.1007/s00216-012-6235-9
    64. Gabriella Fanali, Alessandra di Masi, Viviana Trezza, Maria Marino, Mauro Fasano, Paolo Ascenzi. Human serum albumin: From bench to bedside. Molecular Aspects of Medicine 2012, 33 (3) , 209-290. https://doi.org/10.1016/j.mam.2011.12.002
    65. Liliana Beatriz Pena, Claudia Elsa Azpilicueta, María Patricia Benavides, Susana Mabel Gallego. Protein Oxidative Modifications. 2012, 207-225. https://doi.org/10.1007/978-3-642-22081-4_10
    66. R. Shyama Prasad Rao, Ian Max Møller. Pattern of occurrence and occupancy of carbonylation sites in proteins. PROTEOMICS 2011, 11 (21) , 4166-4173. https://doi.org/10.1002/pmic.201100223
    67. Ian M. Møller, Adelina Rogowska-Wrzesinska, R.S.P. Rao. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. Journal of Proteomics 2011, 74 (11) , 2228-2242. https://doi.org/10.1016/j.jprot.2011.05.004
    68. Ravi Ch. Bollineni, Ralf Hoffmann, Maria Fedorova. Identification of protein carbonylation sites by two-dimensional liquid chromatography in combination with MALDI- and ESI-MS. Journal of Proteomics 2011, 74 (11) , 2338-2350. https://doi.org/10.1016/j.jprot.2011.07.002
    69. Yufeng Qian, Liang Shi, Ming Tien. SO2907, a Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1. Journal of Biological Chemistry 2011, 286 (39) , 33973-33980. https://doi.org/10.1074/jbc.M111.262113
    70. G. J. Moon, D. H. Shin, D. S. Im, O. Y. Bang, H. S. Nam, J. H. Lee, I. S. Joo, K. Huh, B. J. Gwag. Identification of oxidized serum albumin in the cerebrospinal fluid of ischaemic stroke patients. European Journal of Neurology 2011, 18 (9) , 1151-1158. https://doi.org/10.1111/j.1468-1331.2011.03357.x
    71. Angelo Palmese, Chiara De Rosa, Gennaro Marino, Angela Amoresano. Dansyl labeling and bidimensional mass spectrometry to investigate protein carbonylation. Rapid Communications in Mass Spectrometry 2011, 25 (1) , 223-231. https://doi.org/10.1002/rcm.4863
    72. Juan D. Chavez, William H. Bisson, Claudia S. Maier. A targeted mass spectrometry-based approach for the identification and characterization of proteins containing α-aminoadipic and γ-glutamic semialdehyde residues. Analytical and Bioanalytical Chemistry 2010, 398 (7-8) , 2905-2914. https://doi.org/10.1007/s00216-010-4289-0
    73. Etienne Maisonneuve, Adrien Ducret, Pierre Khoueiry, Sabrina Lignon, Sonia Longhi, Emmanuel Talla, Sam Dukan, . Rules Governing Selective Protein Carbonylation. PLoS ONE 2009, 4 (10) , e7269. https://doi.org/10.1371/journal.pone.0007269
    74. Sofia Guedes, Rui Vitorino, Rosário Domingues, Francisco Amado, Pedro Domingues. Oxidation of bovine serum albumin: identification of oxidation products and structural modifications. Rapid Communications in Mass Spectrometry 2009, 23 (15) , 2307-2315. https://doi.org/10.1002/rcm.4149
    75. Dongmao Zhang, Dongping Jiang, Michael Yanney, Sige Zou, Andrzej Sygula. Ratiometric Raman spectroscopy for quantification of protein oxidative damage. Analytical Biochemistry 2009, 391 (2) , 121-126. https://doi.org/10.1016/j.ab.2009.05.019
    76. Benjamin J. Stewart, James R. Roede, Jonathan A. Doorn, Dennis R. Petersen. Lipid aldehyde-mediated cross-linking of apolipoprotein B-100 inhibits secretion from HepG2 cells. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2009, 1791 (8) , 772-780. https://doi.org/10.1016/j.bbalip.2009.04.004
    77. Giovanni Chiappetta, Claudia Corbo, Angelo Palmese, Gennaro Marino, Angela Amoresano. Quantitative identification of protein nitration sites. PROTEOMICS 2009, 9 (6) , 1524-1537. https://doi.org/10.1002/pmic.200800493
    78. Eduardo Lissi, M. Alicia Biasutti, Elsa Abuin, Luis León. A fluorescence study of human serum albumin binding sites modification by hypochlorite. Journal of Photochemistry and Photobiology B: Biology 2009, 94 (2) , 77-81. https://doi.org/10.1016/j.jphotobiol.2008.10.007
    79. Masaki Otagiri, Victor Tuan Giam Chuang. Pharmaceutically Important Pre- and Posttranslational Modifications on Human Serum Albumin. Biological and Pharmaceutical Bulletin 2009, 32 (4) , 527-534. https://doi.org/10.1248/bpb.32.527
    80. Tomoya KINUMI, Issey OSAKA, Akio HAYASHI, Takaaki KAWAI, Hiroyuki MATSUMOTO, Kazuo TSUJIMOTO. Protein Carbonylation Detected with Light and Heavy Isotope-Labeled 2,4-Dinitrophenylhydrazine by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Journal of the Mass Spectrometry Society of Japan 2009, 57 (6) , 371-377. https://doi.org/10.5702/massspec.57.371
    81. Markus Vossmann, Martin Kirst, Diana Ludolfs, Michael Schreiber. West Nile virus is neutralized by HOCl-modified human serum albumin that binds to domain III of the viral envelope protein E. Virology 2008, 373 (2) , 322-328. https://doi.org/10.1016/j.virol.2007.12.008
    82. Stefano Barelli, Giorgia Canellini, Lynne Thadikkaran, David Crettaz, Manfredo Quadroni, Joël S. Rossier, Jean‐Daniel Tissot, Niels Lion. Oxidation of proteins: Basic principles and perspectives for blood proteomics. PROTEOMICS – Clinical Applications 2008, 2 (2) , 142-157. https://doi.org/10.1002/prca.200780009
    83. K Oettl, R E Stauber. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. British Journal of Pharmacology 2007, 151 (5) , 580-590. https://doi.org/10.1038/sj.bjp.0707251
    84. . Current literature in mass spectrometry. Journal of Mass Spectrometry 2007, 547-558. https://doi.org/10.1002/jms.1073

    Journal of The American Society for Mass Spectrometry

    Cite this: The official journal of The American Society for Mass Spectrometry 2006, 17, 8, 1172–1180
    Click to copy citationCitation copied!
    https://doi.org/10.1016/j.jasms.2006.04.030
    Published August 1, 2006
    Copyright © 2006 © American Society for Mass Spectrometry 2006

    Article Views

    47

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.