ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Bcl-XL-Templated Assembly of Its Own Protein−Protein Interaction Modulator from Fragments Decorated with Thio Acids and Sulfonyl Azides

View Author Information
Department of Chemistry, University of South Florida, CHE205, 4202 East Fowler Avenue, Tampa, Florida 33620 and, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612
†University of South Florida.
‡H. Lee Moffitt Cancer Center and Research Institute.
Cite this: J. Am. Chem. Soc. 2008, 130, 42, 13820–13821
Publication Date (Web):September 24, 2008
https://doi.org/10.1021/ja802683u
Copyright © 2008 American Chemical Society

    Article Views

    3561

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (90 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Protein−protein interactions have key importance in various biological processes and modulation of particular protein−protein interactions has been shown to have therapeutic effects. However, disrupting or modulating protein−protein interactions with low-molecular-weight compounds is extremely difficult due to the lack of deep binding pockets on protein surfaces. Herein we describe the development of an unprecedented lead synthesis and discovery method that generates only biologically active compounds from a library of reactive fragments. Using the protein Bcl-XL, a central regulator of programmed cell death, we demonstrated that an amidation reaction between thio acids and sulfonyl azides is applicable for Bcl-XL-templated assembly of inhibitory compounds. We have demonstrated for the first time that kinetic target-guided synthesis can be applied not only on enzymatic targets but also for the discovery of small molecules modulating protein−protein interactions.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthetic procedures, LC/MS-SIM traces, and determination of IC50 values. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 61 publications.

    1. Katya Nacheva, Sameer S. Kulkarni, Mintesinot Kassu, David Flanigan, Andrii Monastyrskyi, Iredia D. Iyamu, Kenichiro Doi, Megan Barber, Niranjan Namelikonda, Jeremiah D. Tipton, Prakash Parvatkar, Hong-Gang Wang, Roman Manetsch. Going beyond Binary: Rapid Identification of Protein–Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach. Journal of Medicinal Chemistry 2023, 66 (7) , 5196-5207. https://doi.org/10.1021/acs.jmedchem.3c00108
    2. Alexis Lossouarn, Pierre-Yves Renard, Cyrille Sabot. Tailored Bioorthogonal and Bioconjugate Chemistry: A Source of Inspiration for Developing Kinetic Target-Guided Synthesis Strategies. Bioconjugate Chemistry 2021, 32 (1) , 63-72. https://doi.org/10.1021/acs.bioconjchem.0c00568
    3. Alexandre Bancet, Claire Raingeval, Thierry Lomberget, Marc Le Borgne, Jean-François Guichou, Isabelle Krimm. Fragment Linking Strategies for Structure-Based Drug Design. Journal of Medicinal Chemistry 2020, 63 (20) , 11420-11435. https://doi.org/10.1021/acs.jmedchem.0c00242
    4. M. Yagiz Unver, Robin M. Gierse, Harry Ritchie, Anna K. H. Hirsch. Druggability Assessment of Targets Used in Kinetic Target-Guided Synthesis. Journal of Medicinal Chemistry 2018, 61 (21) , 9395-9409. https://doi.org/10.1021/acs.jmedchem.8b00266
    5. Yue Fang, Zheng-Yang Gu, Shun-Yi Wang, Jin-Ming Yang, Shun-Jun Ji. Co-Catalyzed Synthesis of N-Sulfonylcarboxamides from Carboxylic Acids and Sulfonyl Azides. The Journal of Organic Chemistry 2018, 83 (16) , 9364-9369. https://doi.org/10.1021/acs.joc.8b01300
    6. Ganesha Rai, Kyle R. Brimacombe, Bryan T. Mott, Daniel J. Urban, Xin Hu, Shyh-Ming Yang, Tobie D. Lee, Dorian M. Cheff, Jennifer Kouznetsova, Gloria A. Benavides, Katie Pohida, Eric J. Kuenstner, Diane K. Luci, Christine M. Lukacs, Douglas R. Davies, David M. Dranow, Hu Zhu, Gary Sulikowski, William J. Moore, Gordon M. Stott, Andrew J. Flint, Matthew D. Hall, Victor M. Darley-Usmar, Leonard M. Neckers, Chi V. Dang, Alex G. Waterson, Anton Simeonov, Ajit Jadhav, and David J. Maloney . Discovery and Optimization of Potent, Cell-Active Pyrazole-Based Inhibitors of Lactate Dehydrogenase (LDH). Journal of Medicinal Chemistry 2017, 60 (22) , 9184-9204. https://doi.org/10.1021/acs.jmedchem.7b00941
    7. Prakash Parvatkar, Nobuo Kato, Motonari Uesugi, Shin-ichi Sato, and Junko Ohkanda . Intracellular Generation of a Diterpene-Peptide Conjugate that Inhibits 14-3-3-Mediated Interactions. Journal of the American Chemical Society 2015, 137 (50) , 15624-15627. https://doi.org/10.1021/jacs.5b09817
    8. Sheng Xie, Ryo Fukumoto, Olof Ramström, and Mingdi Yan . Anilide Formation from Thioacids and Perfluoroaryl Azides. The Journal of Organic Chemistry 2015, 80 (9) , 4392-4397. https://doi.org/10.1021/acs.joc.5b00240
    9. Lech-Gustav Milroy, Tom N. Grossmann, Sven Hennig, Luc Brunsveld, and Christian Ottmann . Modulators of Protein–Protein Interactions. Chemical Reviews 2014, 114 (9) , 4695-4748. https://doi.org/10.1021/cr400698c
    10. Holly S. Haase, Kimberly J. Peterson-Kaufman, Sheeny K. Lan Levengood, James W. Checco, William L. Murphy, and Samuel H. Gellman . Extending Foldamer Design beyond α-Helix Mimicry: α/β-Peptide Inhibitors of Vascular Endothelial Growth Factor Signaling. Journal of the American Chemical Society 2012, 134 (18) , 7652-7655. https://doi.org/10.1021/ja302469a
    11. Melissa D. Boersma, Holly S. Haase, Kimberly J. Peterson-Kaufman, Erinna F. Lee, Oliver B. Clarke, Peter M. Colman, Brian J. Smith, W. Seth Horne, W. Douglas Fairlie, and Samuel H. Gellman . Evaluation of Diverse α/β-Backbone Patterns for Functional α-Helix Mimicry: Analogues of the Bim BH3 Domain. Journal of the American Chemical Society 2012, 134 (1) , 315-323. https://doi.org/10.1021/ja207148m
    12. Sameer S. Kulkarni, Xiangdong Hu, Kenichiro Doi, Hong-Gang Wang, and Roman Manetsch . Screening of Protein–Protein Interaction Modulators via Sulfo-Click Kinetic Target-Guided Synthesis. ACS Chemical Biology 2011, 6 (7) , 724-732. https://doi.org/10.1021/cb200085q
    13. Thomas Pinter, Subrata Jana, Rebecca J. M. Courtemanche, and Fraser Hof . Recognition Properties of Carboxylic Acid Bioisosteres: Anion Binding by Tetrazoles, Aryl Sulfonamides, and Acyl Sulfonamides on a Calix[4]arene Scaffold. The Journal of Organic Chemistry 2011, 76 (10) , 3733-3741. https://doi.org/10.1021/jo200031u
    14. Tomohisa Sawada and Samuel H. Gellman . Structural Mimicry of the α-Helix in Aqueous Solution with an Isoatomic α/β/γ-Peptide Backbone. Journal of the American Chemical Society 2011, 133 (19) , 7336-7339. https://doi.org/10.1021/ja202175a
    15. Nicolas Willand, Matthieu Desroses, Patrick Toto, Bertrand Dirié, Zoé Lens, Vincent Villeret, Prakash Rucktooa, Camille Locht, Alain Baulard, and Benoit Deprez . Exploring Drug Target Flexibility Using in Situ Click Chemistry: Application to a Mycobacterial Transcriptional Regulator. ACS Chemical Biology 2010, 5 (11) , 1007-1013. https://doi.org/10.1021/cb100177g
    16. Cheng-Bin Yim, Ingrid Dijkgraaf, Remco Merkx, Cees Versluis, Annemarie Eek, Gwenn E. Mulder, Dirk T. S. Rijkers, Otto C. Boerman and Rob M. J. Liskamp . Synthesis of DOTA-Conjugated Multimeric [Tyr3]Octreotide Peptides via a Combination of Cu(I)-Catalyzed “Click” Cycloaddition and Thio Acid/Sulfonyl Azide “Sulfo-Click” Amidation and Their in Vivo Evaluation. Journal of Medicinal Chemistry 2010, 53 (10) , 3944-3953. https://doi.org/10.1021/jm100246m
    17. Prakash T. Parvatkar, Alicia Wagner, Roman Manetsch. Biocompatible reactions: advances in kinetic target-guided synthesis. Trends in Chemistry 2023, 5 (9) , 657-671. https://doi.org/10.1016/j.trechm.2023.06.002
    18. Ru Dong, Xiaoxiao Yang, Binghe Wang, Xingyue Ji. Mutual leveraging of proximity effects and click chemistry in chemical biology. Medicinal Research Reviews 2023, 43 (2) , 319-342. https://doi.org/10.1002/med.21927
    19. Juliane Brauer, Marina Mötzing, Corinna Gröst, Ralf Hoffmann, Thorsten Berg. Templated Generation of a Bcl‐x L Inhibitor by Isomer‐Free SPAAC Based on Azacyclonon‐5‐yne. Chemistry – A European Journal 2022, 28 (66) https://doi.org/10.1002/chem.202202259
    20. Xin Xue, Ji-Bo Kang, Xiao Yang, Nan Li, Liang Chang, Juan Ji, Xiang-Kai Meng, Hai-Qing Zhang, Yue Zhong, Shao-Peng Yu, Wen-Yu Wu, Xiao-Long Wang, Nian-Guang Li, Shan-Liang Sun. An efficient strategy for digging protein-protein interactions for rational drug design - A case study with HIF-1α/VHL. European Journal of Medicinal Chemistry 2022, 227 , 113871. https://doi.org/10.1016/j.ejmech.2021.113871
    21. Sekar Selvarasu, Pazhamalai Srinivasan, Gopalakrishnan Mannathusamy, Boobalan Maria Susai. Synthesis, characterization, in silico molecular modeling, anti-diabetic and antimicrobial screening of novel 1-aryl-N-tosyl-1H-tetrazole-5-carboxamide derivatives. Chemical Data Collections 2021, 32 , 100648. https://doi.org/10.1016/j.cdc.2021.100648
    22. Luana Silva, Alisson R. Rosário, Bianca M. Machado, Diogo S. Lüdtke. Traceless selenocarboxylates for the one-pot synthesis of amides and derivatives. Tetrahedron 2021, 79 , 131834. https://doi.org/10.1016/j.tet.2020.131834
    23. Federica Mancini, M. Yagiz Unver, Walid A. M. Elgaher, Varsha R. Jumde, Alaa Alhayek, Peer Lukat, Jennifer Herrmann, Martin D. Witte, Matthias Köck, Wulf Blankenfeldt, Rolf Müller, Anna K. H. Hirsch. Protein‐Templated Hit Identification through an Ugi Four‐Component Reaction**. Chemistry – A European Journal 2020, 26 (64) , 14585-14593. https://doi.org/10.1002/chem.202002250
    24. Ryoma Masuda, Yuuya Kawasaki, Kazunobu Igawa, Yoshiyuki Manabe, Hiroshi Fujii, Nobuo Kato, Katsuhiko Tomooka, Junko Ohkanda. Copper‐Free Huisgen Cycloaddition for the 14‐3‐3‐Templated Synthesis of Fusicoccin‐Peptide Conjugates. Chemistry – An Asian Journal 2020, 15 (6) , 742-747. https://doi.org/10.1002/asia.202000042
    25. Ramon van der Vlag, M. Yagiz Unver, Tommaso Felicetti, Aleksandra Twarda‐Clapa, Fatima Kassim, Cagdas Ermis, Constantinos G. Neochoritis, Bogdan Musielak, Beata Labuzek, Alexander Dömling, Tad A. Holak, Anna K. H. Hirsch. Optimized Inhibitors of MDM2 via an Attempted Protein‐Templated Reductive Amination. ChemMedChem 2020, 15 (4) , 370-375. https://doi.org/10.1002/cmdc.201900574
    26. Ee Lin Wong, Eric Nawrotzky, Christoph Arkona, Boo Geun Kim, Samuel Beligny, Xinning Wang, Stefan Wagner, Michael Lisurek, Dirk Carstanjen, Jörg Rademann. The transcription factor STAT5 catalyzes Mannich ligation reactions yielding inhibitors of leukemic cell proliferation. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-018-07923-2
    27. Rafaela Gladysz, Johannes Vrijdag, Dries Van Rompaey, Anne‐Marie Lambeir, Koen Augustyns, Hans De Winter, Pieter Van der Veken. Efforts towards an On‐Target Version of the Groebke–Blackburn–Bienaymé (GBB) Reaction for Discovery of Druglike Urokinase (uPA) Inhibitors. Chemistry – A European Journal 2019, 25 (53) , 12380-12393. https://doi.org/10.1002/chem.201901917
    28. Christian Lis, Stefan Rubner, Corinna Gröst, Ralf Hoffmann, Daniel Knappe, Thorsten Berg. iSPAAC: Isomer‐Free Generation of a Bcl‐x L ‐Inhibitor in Living Cells. Chemistry – A European Journal 2018, 24 (52) , 13762-13766. https://doi.org/10.1002/chem.201803032
    29. Junko OHKANDA. タンパク質を鋳型にして薬剤を創る. KAGAKU TO SEIBUTSU 2017, 55 (11) , 724-726. https://doi.org/10.1271/kagakutoseibutsu.55.724
    30. Mike Jaegle, Ee Lin Wong, Carolin Tauber, Eric Nawrotzky, Christoph Arkona, Jörg Rademann. Proteintemplat‐gesteuerte Fragmentligationen – von der molekularen Erkennung zur Wirkstofffindung. Angewandte Chemie 2017, 129 (26) , 7464-7485. https://doi.org/10.1002/ange.201610372
    31. Mike Jaegle, Ee Lin Wong, Carolin Tauber, Eric Nawrotzky, Christoph Arkona, Jörg Rademann. Protein‐Templated Fragment Ligations—From Molecular Recognition to Drug Discovery. Angewandte Chemie International Edition 2017, 56 (26) , 7358-7378. https://doi.org/10.1002/anie.201610372
    32. Mike Jaegle, Torsten Steinmetzer, Jörg Rademann. Protein‐Templated Formation of an Inhibitor of the Blood Coagulation Factor Xa through a Background‐Free Amidation Reaction. Angewandte Chemie International Edition 2017, 56 (13) , 3718-3722. https://doi.org/10.1002/anie.201611547
    33. Mike Jaegle, Torsten Steinmetzer, Jörg Rademann. Proteintemplat‐gesteuerte Bildung eines Inhibitors des Koagulationsfaktors Xa durch eine Amidierung ohne Hintergrundreaktion. Angewandte Chemie 2017, 129 (13) , 3772-3776. https://doi.org/10.1002/ange.201611547
    34. J. Ohkanda. Self-Assembled Receptors for Protein Surface Recognition. 2017, 351-369. https://doi.org/10.1016/B978-0-12-409547-2.12534-X
    35. Ben J. Davis, Stephen D. Roughley. Fragment-Based Lead Discovery. 2017, 371-439. https://doi.org/10.1016/bs.armc.2017.07.002
    36. Junko Ohkanda. Protein-guided Self-Assembly for Controlling Protein–Protein Interactions. Journal of The Society of Japanese Women Scientists 2017, 17 (1) , 1-7. https://doi.org/10.5939/sjws.17001
    37. Daniel Becker, Zuzanna Kaczmarska, Christoph Arkona, Robert Schulz, Carolin Tauber, Gerhard Wolber, Rolf Hilgenfeld, Miquel Coll, Jörg Rademann. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12761
    38. Bradley C. Doak, Raymond S. Norton, Martin J. Scanlon. The ways and means of fragment-based drug design. Pharmacology & Therapeutics 2016, 167 , 28-37. https://doi.org/10.1016/j.pharmthera.2016.07.003
    39. Damien Bosc, Jouda Jakhlal, Benoit Deprez, Rebecca Deprez-Poulain. Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey. Future Medicinal Chemistry 2016, 8 (4) , 381-404. https://doi.org/10.4155/fmc-2015-0007
    40. Mike Jaegle, Eric Nawrotzky, Ee Lin Wong, Christoph Arkona, Jörg Rademann. Protein‐Templated Fragment Ligation Methods: Emerging Technologies in Fragment‐Based Drug Discovery. 2016, 293-326. https://doi.org/10.1002/9783527683604.ch13
    41. Emilia Oueis, Cyrille Sabot, Pierre-Yves Renard. New insights into the kinetic target-guided synthesis of protein ligands. Chemical Communications 2015, 51 (61) , 12158-12169. https://doi.org/10.1039/C5CC04183J
    42. Takanori Matsumaru. Drug Discovery Assisted by Kinetic Target Guided Synthesis. Journal of Synthetic Organic Chemistry, Japan 2015, 73 (12) , 1245-1246. https://doi.org/10.5059/yukigoseikyokaishi.73.1245
    43. Xiangqian Li, Xiaomeng Liang, Ting Song, Pengchen Su, Zhichao Zhang. Design, synthesis and structure–activity relationship studies of morpholino-1H-phenalene derivatives that antagonize Mcl-1/Bcl-2. Bioorganic & Medicinal Chemistry 2014, 22 (21) , 5738-5746. https://doi.org/10.1016/j.bmc.2014.09.047
    44. Emilia Oueis, Florian Nachon, Cyrille Sabot, Pierre-Yves Renard. First enzymatic hydrolysis/thio-Michael addition cascade route to synthesis of AChE inhibitors. Chemical Communications 2014, 50 (16) , 2043. https://doi.org/10.1039/c3cc48871c
    45. Toshio Maki, Akie Kawamura, Nobuo Kato, Junko Ohkanda. Chemical ligation of epoxide-containing fusicoccins and peptide fragments guided by 14-3-3 protein. Mol. BioSyst. 2013, 9 (5) , 940-943. https://doi.org/10.1039/C2MB25388G
    46. Rituparna Kundu, Patrick R. Cushing, Brian V. Popp, Yu Zhao, Dean R. Madden, Zachary T. Ball. Hybrid Organic-Inorganic Inhibitors of a PDZ Interaction that Regulates the Endocytic Fate of CFTR. Angewandte Chemie 2012, 124 (29) , 7329-7332. https://doi.org/10.1002/ange.201202291
    47. Rituparna Kundu, Patrick R. Cushing, Brian V. Popp, Yu Zhao, Dean R. Madden, Zachary T. Ball. Hybrid Organic-Inorganic Inhibitors of a PDZ Interaction that Regulates the Endocytic Fate of CFTR. Angewandte Chemie International Edition 2012, 51 (29) , 7217-7220. https://doi.org/10.1002/anie.201202291
    48. Kenichiro Doi, Rongshi Li, Shen-Shu Sung, Hongwei Wu, Yan Liu, Wanda Manieri, Gowdahalli Krishnegowda, Andy Awwad, Alden Dewey, Xin Liu, Shantu Amin, Chunwei Cheng, Yong Qin, Ernst Schonbrunn, Gary Daughdrill, Thomas P. Loughran, Said Sebti, Hong-Gang Wang. Discovery of Marinopyrrole A (Maritoclax) as a Selective Mcl-1 Antagonist that Overcomes ABT-737 Resistance by Binding to and Targeting Mcl-1 for Proteasomal Degradation. Journal of Biological Chemistry 2012, 287 (13) , 10224-10235. https://doi.org/10.1074/jbc.M111.334532
    49. Niranjan Kumar Namelikonda, Roman Manetsch. Sulfo-click reaction via in situ generated thioacids and its application in kinetic target-guided synthesis. Chem. Commun. 2012, 48 (10) , 1526-1528. https://doi.org/10.1039/C1CC14724B
    50. Marc-Olivier Simon, Chao-Jun Li. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev. 2012, 41 (4) , 1415-1427. https://doi.org/10.1039/C1CS15222J
    51. Fraser Hof, Thomas Pinter. Learning from Proteins and Drugs: Receptors That Mimic Biomedically Important Binding Motifs. 2012, 33-51. https://doi.org/10.1007/5346_2012_15
    52. Aibin Wu, Ping Mei, Yufang Xu, Xuhong Qian. Novel Naphthalimide-Benzoic Acid Conjugates as Potential Apoptosis-Inducing Agents: Design, Synthesis, and Biological Activity. Chemical Biology & Drug Design 2011, 78 (6) , 941-947. https://doi.org/10.1111/j.1747-0285.2011.01232.x
    53. Erinna F. Lee, Brian J. Smith, W. Seth Horne, Kelsey N. Mayer, Marco Evangelista, Peter M. Colman, Samuel H. Gellman, W. Douglas Fairlie. Structural Basis of Bcl-xL Recognition by a BH3-Mimetic α/β-Peptide Generated by Sequence-Based Design. ChemBioChem 2011, 12 (13) , 2025-2032. https://doi.org/10.1002/cbic.201100314
    54. Sergey Zhersh, Oleg Lukin, Vitaly Matvienko, Andrey Tolmachev. Synthesis of isomeric fluoronitrobenzene-sulfonyl chlorides. Tetrahedron 2010, 66 (32) , 5982-5986. https://doi.org/10.1016/j.tet.2010.06.036
    55. Mahantesha Basanagouda, K. Shivashankar, Manohar V. Kulkarni, Vijaykumar P. Rasal, Harishchandra Patel, Sumit S. Mutha, Ashwini A. Mohite. Synthesis and antimicrobial studies on novel sulfonamides containing 4-azidomethyl coumarin. European Journal of Medicinal Chemistry 2010, 45 (3) , 1151-1157. https://doi.org/10.1016/j.ejmech.2009.12.022
    56. Dirk T. S. Rijkers, Remco Merkx, Cheng-Bin Yim, Arwin J. Brouwer, Rob M. J. Liskamp. âSulfo-clickâ for ligation as well as for site-specific conjugation with peptides, fluorophores, and metal chelators. Journal of Peptide Science 2010, 16 (1) , 1-5. https://doi.org/10.1002/psc.1197
    57. Xiangdong Hu, Roman Manetsch. Kinetic target-guided synthesis. Chemical Society Reviews 2010, 39 (4) , 1316. https://doi.org/10.1039/b904092g
    58. Tomoyasu HIROSE, Toshiaki SUNAZUKA, Satoshi ŌMURA. Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. Proceedings of the Japan Academy, Series B 2010, 86 (2) , 85-102. https://doi.org/10.2183/pjab.86.85
    59. Marco F. Schmidt, Jörg Rademann. Dynamic template-assisted strategies in fragment-based drug discovery. Trends in Biotechnology 2009, 27 (9) , 512-521. https://doi.org/10.1016/j.tibtech.2009.06.001
    60. Tomoyasu Hirose, Toshiaki Sunazuka, Akihiro Sugawara, Ayako Endo, Kanami Iguchi, Tsuyoshi Yamamoto, Hideaki Ui, Kazuro Shiomi, Takeshi Watanabe, K Barry Sharpless, Satoshi Ōmura. Chitinase inhibitors: extraction of the active framework from natural argifin and use of in situ click chemistry. The Journal of Antibiotics 2009, 62 (5) , 277-282. https://doi.org/10.1038/ja.2009.28
    61. Yanju Wang, Wei-Yu Lin, Kan Liu, Rachel J. Lin, Matthias Selke, Hartmuth C. Kolb, Nangang Zhang, Xing-Zhong Zhao, Michael E. Phelps, Clifton K. F. Shen, Kym F. Faull, Hsian-Rong Tseng. An integrated microfluidic device for large-scale in situ click chemistry screening. Lab on a Chip 2009, 9 (16) , 2281. https://doi.org/10.1039/b907430a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect