ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Selectivity of ion-sensitive bulk optodes

Cite this: Anal. Chem. 1992, 64, 17, 1805–1812
Publication Date (Print):September 1, 1992
https://doi.org/10.1021/ac00041a012
    ACS Legacy Archive

    Article Views

    853

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 197 publications.

    1. Yoshiki Soda, Kye J. Robinson, Eric Bakker. Response Mechanism of Hyperpolarization-Based Polyion Nanosensors. ACS Sensors 2022, 7 (10) , 3108-3115. https://doi.org/10.1021/acssensors.2c01599
    2. Kye Robinson, Canwei Mao, Eric Bakker. Surfactants for Optode Emulsion Stabilization without Sacrificing Selectivity or Binding Constants. Analytical Chemistry 2021, 93 (48) , 15941-15948. https://doi.org/10.1021/acs.analchem.1c03232
    3. Shigeru Amemiya . Voltammetric Ion Selectivity of Thin Ionophore-Based Polymeric Membranes: Kinetic Effect of Ion Hydrophilicity. Analytical Chemistry 2016, 88 (17) , 8893-8901. https://doi.org/10.1021/acs.analchem.6b02551
    4. Miguel M. Erenas, Ignacio de Orbe-Payá, and Luis Fermin Capitan-Vallvey . Surface Modified Thread-Based Microfluidic Analytical Device for Selective Potassium Analysis. Analytical Chemistry 2016, 88 (10) , 5331-5337. https://doi.org/10.1021/acs.analchem.6b00633
    5. Timothy T. Ruckh, Christopher G. Skipwith, Wendi Chang, Alexander W. Senko, Vladimir Bulovic, Polina O. Anikeeva, and Heather A. Clark . Ion-Switchable Quantum Dot Förster Resonance Energy Transfer Rates in Ratiometric Potassium Sensors. ACS Nano 2016, 10 (4) , 4020-4030. https://doi.org/10.1021/acsnano.5b05396
    6. Ali Sahari, Timothy T. Ruckh, Richard Hutchings, and Heather A. Clark . Development of an Optical Nanosensor Incorporating a pH-Sensitive Quencher Dye for Potassium Imaging. Analytical Chemistry 2015, 87 (21) , 10684-10687. https://doi.org/10.1021/acs.analchem.5b03080
    7. Qian Liu, Kai Xiao, Liping Wen, Heng Lu, Yahui Liu, Xiang-Yu Kong, Ganhua Xie, Zhen Zhang, Zhishan Bo, and Lei Jiang . Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels. Journal of the American Chemical Society 2015, 137 (37) , 11976-11983. https://doi.org/10.1021/jacs.5b04911
    8. Masaaki Akamatsu, Hirokazu Komatsu, Taizo Mori, Eri Adams, Ryoung Shin, Hideki Sakai, Masahiko Abe, Jonathan P. Hill, and Katsuhiko Ariga . Intracellular Imaging of Cesium Distribution in Arabidopsis Using Cesium Green. ACS Applied Materials & Interfaces 2014, 6 (11) , 8208-8211. https://doi.org/10.1021/am5009453
    9. Timothy T. Ruckh and Heather A. Clark . Implantable Nanosensors: Toward Continuous Physiologic Monitoring. Analytical Chemistry 2014, 86 (3) , 1314-1323. https://doi.org/10.1021/ac402688k
    10. Liangxia Xie, Yu Qin, and Hong-Yuan Chen . Direct Fluorescent Measurement of Blood Potassium with Polymeric Optical Sensors Based on Upconverting Nanomaterials. Analytical Chemistry 2013, 85 (5) , 2617-2622. https://doi.org/10.1021/ac303709w
    11. Xiaojiang Xie, Marcin Pawlak, Mary-Lou Tercier-Waeber, and Eric Bakker . Direct Optical Carbon Dioxide Sensing Based on a Polymeric Film Doped with a Selective Molecular Tweezer-Type Ionophore. Analytical Chemistry 2012, 84 (7) , 3163-3169. https://doi.org/10.1021/ac2030046
    12. Chao Xu,, Katarzyna Wygladacz,, Robert Retter,, Michael Bell, and, Eric Bakker. Multiplexed Flow Cytometric Sensing of Blood Electrolytes in Physiological Samples Using Fluorescent Bulk Optode Microspheres. Analytical Chemistry 2007, 79 (24) , 9505-9512. https://doi.org/10.1021/ac7016212
    13. Amanda S. Watts,, Aaron A. Urbas,, Elissavet Moschou,, Vasilis G. Gavalas,, Jim V. Zoval,, Marc Madou, and, Leonidas G. Bachas. Centrifugal Microfluidics with Integrated Sensing Microdome Optodes for Multiion Detection. Analytical Chemistry 2007, 79 (21) , 8046-8054. https://doi.org/10.1021/ac0709100
    14. Chao Xu and, Eric Bakker. Multicolor Quantum Dot Encoding for Polymeric Particle-Based Optical Ion Sensors. Analytical Chemistry 2007, 79 (10) , 3716-3723. https://doi.org/10.1021/ac0701233
    15. Daniel Citterio,, Junichiro Takeda,, Masaki Kosugi,, Hideaki Hisamoto,, Shin-ichi Sasaki,, Hirokazu Komatsu, and, Koji Suzuki. pH-Independent Fluorescent Chemosensor for Highly Selective Lithium Ion Sensing. Analytical Chemistry 2007, 79 (3) , 1237-1242. https://doi.org/10.1021/ac061674g
    16. Amanda S. Watts,, Aaron A. Urbas,, Timothy Finley,, Vasilis G. Gavalas, and, Leonidas G. Bachas. Decyl Methacrylate-Based Microspot Optodes. Analytical Chemistry 2006, 78 (2) , 524-529. https://doi.org/10.1021/ac051652e
    17. Katarzyna Wygladacz,, Aleksandar Radu,, Chao Xu,, Yu Qin, and, Eric Bakker. Fiber-Optic Microsensor Array Based on Fluorescent Bulk Optode Microspheres for the Trace Analysis of Silver Ions. Analytical Chemistry 2005, 77 (15) , 4706-4712. https://doi.org/10.1021/ac050856s
    18. Luis Fermín Capitán-Vallvey,, Eduardo Arroyo-Guerrero,, María Dolores Fernández-Ramos, and, F. Santoyo-Gonzalez. Disposable Receptor-Based Optical Sensor for Nitrate. Analytical Chemistry 2005, 77 (14) , 4459-4466. https://doi.org/10.1021/ac050117b
    19. Yu Qin and, Eric Bakker. A Copolymerized Dodecacarborane Anion as Covalently Attached Cation Exchanger in Ion-Selective Sensors. Analytical Chemistry 2003, 75 (21) , 6002-6010. https://doi.org/10.1021/ac034447c
    20. Yu Qin,, Shane Peper,, Aleksandar Radu,, Alan Ceresa, and, Eric Bakker. Plasticizer-Free Polymer Containing a Covalently Immobilized Ca2+-Selective Ionophore for Potentiometric and Optical Sensors. Analytical Chemistry 2003, 75 (13) , 3038-3045. https://doi.org/10.1021/ac0263059
    21. Alan Ceresa,, Yu Qin,, Shane Peper, and, Eric Bakker. Mechanistic Insights into the Development of Optical Chloride Sensors Based on the [9]Mercuracarborand-3 Ionophore. Analytical Chemistry 2003, 75 (1) , 133-140. https://doi.org/10.1021/ac026055w
    22. Kazuyoshi Kurihara,, Kaori Nakamura,, Etsuko Hirayama, and, Koji Suzuki. An Absorption-Based Surface Plasmon Resonance Sensor Applied to Sodium Ion Sensing Based on an Ion-Selective Optode Membrane. Analytical Chemistry 2002, 74 (24) , 6323-6333. https://doi.org/10.1021/ac0203241
    23. Martin Telting-Diaz and, Eric Bakker. Mass-Produced Ionophore-Based Fluorescent Microspheres for Trace Level Determination of Lead Ions. Analytical Chemistry 2002, 74 (20) , 5251-5256. https://doi.org/10.1021/ac025596i
    24. Ioannis Tsagkatakis,, Shane Peper,, Robert Retter,, Michael Bell, and, Eric Bakker. Monodisperse Plasticized Poly(vinyl chloride) Fluorescent Microspheres for Selective Ionophore-Based Sensing and Extraction. Analytical Chemistry 2001, 73 (24) , 6083-6087. https://doi.org/10.1021/ac010694+
    25. Murphy Brasuel,, Raoul Kopelman,*, Terry J. Miller,, Ron Tjalkens, and, Martin A. Philbert. Fluorescent Nanosensors for Intracellular Chemical Analysis:  Decyl Methacrylate Liquid Polymer Matrix and Ion-Exchange-Based Potassium PEBBLE Sensors with Real-Time Application to Viable Rat C6 Glioma Cells. Analytical Chemistry 2001, 73 (10) , 2221-2228. https://doi.org/10.1021/ac0012041
    26. Ioannis Tsagkatakis,, Shane Peper, and, Eric Bakker. Spatial and Spectral Imaging of Single Micrometer-Sized Solvent Cast Fluorescent Plasticized Poly(vinyl chloride) Sensing Particles. Analytical Chemistry 2001, 73 (2) , 315-320. https://doi.org/10.1021/ac000832f
    27. Kazuyoshi Kurihara and, Motoichi Ohtsu, , Takeo Yoshida,, Toshihito Abe,, Hideaki Hisamoto, and, Koji Suzuki. Micrometer-Sized Sodium Ion-Selective Optodes Based on a “Tailed” Neutral Ionophore. Analytical Chemistry 1999, 71 (16) , 3558-3566. https://doi.org/10.1021/ac981206+
    28. Hideaki Hisamoto,, Mihoko Tani,, Sachiko Mori,, Toshiki Yamada,, Tomonori Ishigaki,, Hajime Tohma, and, Koji Suzuki. Molecular Design, Characterization, and Application of Multiinformation Dyes (MIDs) for Optical Chemical Sensings. 3. Application of MIDs for λmax-Tunable Ion-Selective Optodes. Analytical Chemistry 1999, 71 (1) , 259-264. https://doi.org/10.1021/ac980757x
    29. Daniel Citterio,, Luzi Jenny, and, Ursula E. Spichiger. Reduced Dicyanovinyl Dyes:  A Chromophore To Be Used for Optical Sensing in the Red and Near-Infrared Spectral Range. Analytical Chemistry 1998, 70 (16) , 3452-3457. https://doi.org/10.1021/ac980238u
    30. Philippe Bühlmann,, Ernö Pretsch, and, Eric Bakker. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chemical Reviews 1998, 98 (4) , 1593-1688. https://doi.org/10.1021/cr970113+
    31. Ernö Lindner,, Titus Zwickl,, Eric Bakker,, Bui Thi Thu Lan,, Klara Tóth, and, Ernö Pretsch. Spectroscopic in Situ Imaging of Acid Coextraction Processes in Solvent Polymeric Ion-Selective Electrode and Optode Membranes. Analytical Chemistry 1998, 70 (6) , 1176-1181. https://doi.org/10.1021/ac970952w
    32. Susan L. R. Barker,, Bjorn A. Thorsrud, and, Raoul Kopelman. Nitrite- and Chloride-Selective Fluorescent Nano-Optodes and in Vitro Application to Rat Conceptuses. Analytical Chemistry 1998, 70 (1) , 100-104. https://doi.org/10.1021/ac970912s
    33. Eric Bakker,, Philippe Bühlmann, and, Ernö Pretsch. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chemical Reviews 1997, 97 (8) , 3083-3132. https://doi.org/10.1021/cr940394a
    34. Susan L. R. Barker,, Michael R. Shortreed, and, Raoul Kopelman. Utilization of Lipophilic Ionic Additives in Liquid Polymer Film Optodes for Selective Anion Activity Measurements. Analytical Chemistry 1997, 69 (6) , 990-995. https://doi.org/10.1021/ac960700f
    35. Michael Shortreed,, Eric Bakker, and, Raoul Kopelman. Miniature Sodium-Selective Ion-Exchange Optode with Fluorescent pH Chromoionophores and Tunable Dynamic Range. Analytical Chemistry 1996, 68 (15) , 2656-2662. https://doi.org/10.1021/ac960035a
    36. Markus Lerchi,, François Orsini,, Zvjezdana Cimerman, and, Ernö Pretsch, , Didarul A. Chowdhury and, Satsuo Kamata. Selective Optical Sensing of Silver Ions in Drinking Water. Analytical Chemistry 1996, 68 (18) , 3210-3214. https://doi.org/10.1021/ac9601472
    37. Michael Shortreed,, Eric Monson, and, Raoul Kopelman. Lifetime Enhancement of Ultrasmall Fluorescent Liquid Polymeric Film Based Optodes by Diffusion-Induced Self-Recovery after Photobleaching. Analytical Chemistry 1996, 68 (22) , 4015-4019. https://doi.org/10.1021/ac9605253
    38. Andrey V. Kalinichev, Klaus Koren. Advancing 2D imaging of ammonium for biological application: Planar and nanoparticle-based ion-selective optodes. Sensors and Actuators B: Chemical 2024, 414 , 135889. https://doi.org/10.1016/j.snb.2024.135889
    39. Reem F. Alshehri, Alaa S. Amin, Eman R. Darwish. Introducing an innovative immobilized optode based on PVC-ETH-5294 matrix for environmentally friendly sensing of lead ions. Talanta Open 2024, 9 , 100285. https://doi.org/10.1016/j.talo.2023.100285
    40. Zulhan Arif, Sri Sugiarti, Eti Rohaeti, Irmanida Batubara. A Sensor (Optode) Based on Cellulose Triacetate Membrane for Fe(III) Detection in Water Samples. Chemistry 2024, 6 (1) , 81-94. https://doi.org/10.3390/chemistry6010005
    41. Syed Fariq Fathullah Syed Yaacob, Ayo Olasupo, Faiz Bukhari Mohd Suah. Polymer inclusion membranes based Optode: Recent advances and perspectives. TrAC Trends in Analytical Chemistry 2023, 62 , 117498. https://doi.org/10.1016/j.trac.2023.117498
    42. Islam M.I. Moustafa, Alaa S. Amin, Eman Darwish. A novel bulk optode for ultra-trace detection of antimony coupled with spectrophotometry in food and environmental samples. Talanta Open 2023, 7 , 100197. https://doi.org/10.1016/j.talo.2023.100197
    43. Eslam M.I. Moustafa, Alaa S. Amin, Mona A. El-Attar. A highly selective bulk optode based on 6-{4-(2,4-dihydroxy-phenyl)diazenyl)phenyl}-2-oxo-4-phenyl-1,2-dihydro-pyridine-3-carbonitrile incorporating chromoionophore V for determination of nano levels of cadmium. Analytical Biochemistry 2022, 654 , 114835. https://doi.org/10.1016/j.ab.2022.114835
    44. Deepika Sharma, Ghanshyam Teli, Komal Gupta, Garima Bansal, Ghanshyam Das Gupta, Pooja A. Chawla. Nano-biosensors from Agriculture to Nextgen Diagnostic Tools. Current Nanomaterials 2022, 7 (2) , 110-138. https://doi.org/10.2174/2405461507666220131104843
    45. Alaa S. Amin, Salah El-Bahy, Hesham H. El-Feky. Utility of 5-(2′,4′-dimethylphenylazo)-6-hydroxy-pyrimidine-2,4-dione in PVC membrane for a novel green optical chemical sensor to detect zinc ion in environmental samples. Analytical Biochemistry 2022, 643 , 114579. https://doi.org/10.1016/j.ab.2022.114579
    46. Kye J. Robinson, Yoshiki Soda, Eric Bakker. Recent improvements to the selectivity of extraction-based optical ion sensors. Chemical Communications 2022, 58 (27) , 4279-4287. https://doi.org/10.1039/D1CC06636F
    47. Gurleen Kaur Gulati, Loveleen Kaur Gulati, Satish Kumar. Recent progress in multi-stimulable photochromic oxazines with their wide-ranging applications. Dyes and Pigments 2021, 192 , 109445. https://doi.org/10.1016/j.dyepig.2021.109445
    48. Rui Yan, Xiao Luo, Jinfeng Zhou, Ping Wang, Youjun Yang, Xuhong Qian, Yueling Liu. Biodegradable ion-selective nanosensors with p-diethylaminophenol functionalized rhodamine as chromoionophore for metal ions measurements. Sensors and Actuators B: Chemical 2021, 336 , 129672. https://doi.org/10.1016/j.snb.2021.129672
    49. Mark S. Ferris, Ashley P. Chesney, Bradley J. Ryan, Utkarsh Ramesh, Matthew G. Panthani, Kevin J. Cash. Silicon nanocrystals as signal transducers in ionophore-based fluorescent nanosensors. Sensors and Actuators B: Chemical 2021, 331 , 129350. https://doi.org/10.1016/j.snb.2020.129350
    50. Julia Ashina, Vasily Babain, Dmitry Kirsanov, Andrey Legin. A Novel Multi-Ionophore Approach for Potentiometric Analysis of Lanthanide Mixtures. Chemosensors 2021, 9 (2) , 23. https://doi.org/10.3390/chemosensors9020023
    51. Manoon Phichi, Apichat Imyim, Thawatchai Tuntulani, Wanlapa Aeungmaitrepirom. Paper-based cation-selective optode sensor containing benzothiazole calix[4]arene for dual colorimetric Ag+ and Hg2+ detection. Analytica Chimica Acta 2020, 1104 , 147-155. https://doi.org/10.1016/j.aca.2020.01.005
    52. Ema Horak, Darko Babić, Robert Vianello, Nataša Perin, Marijana Hranjec, Ivana Murković Steinberg. Photophysical properties and immobilisation of fluorescent pH responsive aminated benzimidazo[1,2-a]quinoline-6-carbonitriles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 227 , 117588. https://doi.org/10.1016/j.saa.2019.117588
    53. Uswatun Hasanah, Mita Setyowati, Rustam Efendi, Muslem Muslem, Nor Diyana Md Sani, Eka Safitri, Lee Yook Heng, Rinaldi Idroes. Preparation and Characterization of a Pectin Membrane-Based Optical pH Sensor for Fish Freshness Monitoring. Biosensors 2019, 9 (2) , 60. https://doi.org/10.3390/bios9020060
    54. Daria I. Dekina, Andrey V. Kalinichev, Nadezhda V. Pokhvishcheva, Maria A. Peshkova, Konstantin N. Mikhelson. Effects of quantitative composition of the sensing phase in the response of ionophore-based optical sensors. Sensors and Actuators B: Chemical 2018, 277 , 535-543. https://doi.org/10.1016/j.snb.2018.09.018
    55. Anna Kisiel, Krzysztof Maksymiuk, Agata Michalska. Capsules as ion-selective optodes – Maximizing sensitivity of ion-selective optodes. Sensors and Actuators B: Chemical 2018, 273 , 1730-1734. https://doi.org/10.1016/j.snb.2018.07.054
    56. Fatehy M. Abdel-Haleem, Rasha M. El Nashar. Calixarene-doped PVC polymeric films as size-selective optical sensors: Monitoring of salicylate in real samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 201 , 98-104. https://doi.org/10.1016/j.saa.2018.04.057
    57. Ema Horak, Petar Kassal, Marijana Hranjec, Ivana Murković Steinberg. Benzimidazole functionalised Schiff bases: Novel pH sensitive fluorescence turn-on chromoionophores for ion-selective optodes. Sensors and Actuators B: Chemical 2018, 258 , 415-423. https://doi.org/10.1016/j.snb.2017.11.121
    58. A. A. Galyean, M. R. Behr, K. J. Cash. Ionophore-based optical nanosensors incorporating hydrophobic carbon dots and a pH-sensitive quencher dye for sodium detection. The Analyst 2018, 143 (2) , 458-465. https://doi.org/10.1039/C7AN01382E
    59. Guoxin Rong, Eric H. Kim, Kira E. Poskanzer, Heather A. Clark. A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-11162-8
    60. Andrey V. Kalinichev, Ana Frosinyuk, Maria A. Peshkova, Konstantin N. Mikhelson. The impact of ion association in the optode phase to the dynamic range and the sensitivity of the response of ion-selective bulk optodes. Sensors and Actuators B: Chemical 2017, 249 , 123-130. https://doi.org/10.1016/j.snb.2017.03.088
    61. Masaaki Akamatsu, Hirokazu Komatsu, Atsuki Matsuda, Taizo Mori, Waka Nakanishi, Hideki Sakai, Jonathan P Hill, Katsuhiko Ariga. Visual Detection of Cesium Ions in Domestic Water Supply or Seawater using a Nano-optode. Bulletin of the Chemical Society of Japan 2017, 90 (6) , 678-683. https://doi.org/10.1246/bcsj.20170046
    62. Ayman A. Abdel Aziz, Rania G. Mohamed, Fatma M. Elantabli, Samir M. El-Medani. A Novel Fluorimetric Bulk Optode Membrane Based on NOS Tridentate Schiff Base for Selective Optical Sensing of Al3+ Ions. Journal of Fluorescence 2016, 26 (6) , 1927-1938. https://doi.org/10.1007/s10895-016-1881-5
    63. F.M. Abdel-Haleem. Highly selective thiourea-based bulk optode for determination of salicylate in spiked urine samples, Aspirin® and Aspocid®. Sensors and Actuators B: Chemical 2016, 233 , 257-262. https://doi.org/10.1016/j.snb.2016.04.088
    64. Yu Li, Yanmei Xu, Jing Wu, Yu Qin, Dechen Jiang. Rational design of piperidine functionalized boron–dipyrromethene as fluorescent chromoionophore for ion-selective optodes. Sensors and Actuators B: Chemical 2016, 232 , 37-42. https://doi.org/10.1016/j.snb.2016.03.112
    65. Wan M. Khairul, Hafiza Mohamed Zuki, Mohd Faizuddin Abu Hasan, Adibah Izzati Daud. Pyridine Acyl Thiourea as Ionophore for the Detection of Copper(II) in Aqueous Phase. Procedia Chemistry 2016, 20 , 105-114. https://doi.org/10.1016/j.proche.2016.07.019
    66. Parth K. Patel, Karin Y. Chumbimuni-Torres. Visible light-induced ion-selective optodes based on a metastable photoacid for cation detection. The Analyst 2016, 141 (1) , 85-89. https://doi.org/10.1039/C5AN02206A
    67. Mizuki Tenjimbayashi, Hirokazu Komatsu, Masaaki Akamatsu, Waka Nakanishi, Koji Suzuki, Jonathan P. Hill, Seimei Shiratori, Katsuhiko Ariga. Determination of blood potassium using a fouling-resistant PVDF–HFP-based optode. RSC Advances 2016, 6 (17) , 14261-14265. https://doi.org/10.1039/C5RA26514B
    68. Messaoud Benounis. Novel phosphate-selective poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) membrane optode with carrier based on tin compound. Sensors and Actuators B: Chemical 2015, 216 , 57-63. https://doi.org/10.1016/j.snb.2015.04.021
    69. Adibah Izzati Daud, Wan M. Khairul, Hafiza Mohamed Zuki, K. Kubulat. Aerobic synthetic approach and characterisation of some acetylide–thiourea derivatives for the detection of carbon monoxide (CO) gas. Journal of Molecular Structure 2015, 1093 , 172-178. https://doi.org/10.1016/j.molstruc.2015.03.065
    70. K N Mikhelson, M A Peshkova. Advances and trends in ionophore-based chemical sensors. Russian Chemical Reviews 2015, 84 (6) , 555-578. https://doi.org/10.1070/RCR4506
    71. Parth K. Patel, Valentine K. Johns, Dawn M. Mills, James E. Boone, Percy Calvo‐Marzal, Karin Y. Chumbimuni‐Torres. Tuning the Equilibrium Response Time of Meta‐Stable Photoacids in Ion‐Sensors by Appropriate Functionalization. Electroanalysis 2015, 27 (3) , 677-683. https://doi.org/10.1002/elan.201400601
    72. A. Rouis, M. Echabaane, N. Sakly, I. Bonnamour, H. Ben Ouada. Characterization of a sensitive and selective copper optode based on β-ketoimine modified calix[4]arene derivative. Materials Science and Engineering: C 2015, 46 , 125-131. https://doi.org/10.1016/j.msec.2014.10.026
    73. Mary K. Balaconis, Yi Luo, Heather A. Clark. Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions. The Analyst 2015, 140 (3) , 716-723. https://doi.org/10.1039/C4AN01775G
    74. Si Yang, Yaqi Wo, Mark E. Meyerhoff. Polymeric optical sensors for selective and sensitive nitrite detection using cobalt(III) corrole and rhodium(III) porphyrin as ionophores. Analytica Chimica Acta 2014, 843 , 89-96. https://doi.org/10.1016/j.aca.2014.06.041
    75. Vedia Nuket Tirtom, Secil Çelik-Erbaş, Ozgul Birel, Chenming Xue. Iron(III) selective fluorescence probe based on perylene tetracarboxylic diimide. Journal of Analytical Chemistry 2014, 69 (9) , 856-863. https://doi.org/10.1134/S1061934814090123
    76. Raoul Kopelman. PEBBLE Nanosensors for In Vitro Bioanalysis. 2014, 555-574. https://doi.org/10.1201/b17288-25
    77. Günter Mistlberger, Gastón A. Crespo, Eric Bakker. Ionophore-Based Optical Sensors. Annual Review of Analytical Chemistry 2014, 7 (1) , 483-512. https://doi.org/10.1146/annurev-anchem-071213-020307
    78. Chenye Yang, Tingting Liu, Yanmei Xu, Yu Qin. Fluorescent ion optodes based on calixarene functionized boron dipyrromethene chromoionophore for simultaneous measurement of multi-electrolytes in biological samples. Sensors and Actuators B: Chemical 2014, 192 , 423-428. https://doi.org/10.1016/j.snb.2013.11.015
    79. Timothy T. Ruckh, Ankeeta A. Mehta, J. Matthew Dubach, Heather A. Clark. Polymer-Free Optode Nanosensors for Dynamic, Reversible and Ratiometric Sodium Imaging in the Physiological Range. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep03366
    80. Ayman A. Abdel Aziz. A novel highly sensitive and selective optical sensor based on a symmetric tetradentate Schiff-base embedded in PVC polymeric film for determination of Zn2+ ion in real samples. Journal of Luminescence 2013, 143 , 663-669. https://doi.org/10.1016/j.jlumin.2013.06.020
    81. M. Echabaane, A. Rouis, I. Bonnamour, H. Ben Ouada. Studies of aluminum (III) ion-selective optical sensor based on a chromogenic calix[4]arene derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013, 115 , 269-274. https://doi.org/10.1016/j.saa.2013.06.053
    82. M. Echabaane, A. Rouis, I. Bonnamour, H. Ben Ouada. Optical, electrical and sensing properties of β-ketoimine calix[4]arene thin films. Materials Chemistry and Physics 2013, 141 (2-3) , 781-789. https://doi.org/10.1016/j.matchemphys.2013.06.004
    83. Ali R. Firooz, Ali A. Ensafi, K. Karimi, Reza Khalifeh. Specific sensing of mercury(II) ions by an optical sensor based on a recently synthesized ionophore. Sensors and Actuators B: Chemical 2013, 185 , 84-90. https://doi.org/10.1016/j.snb.2013.04.108
    84. Ali R. Firooz, Ali A. Ensafi, Z. Hajyani. A highly sensitive and selective bulk optode based on dithiacyclooctadecane derivative incorporating chromoionophore V for determination of ultra trace amount of Hg(II). Sensors and Actuators B: Chemical 2013, 177 , 710-716. https://doi.org/10.1016/j.snb.2012.11.089
    85. Ali R. Firooz, Ali A. Ensafi, Nafiseh Kazemifard, Reza Khalifeh. Development of a highly sensitive and selective optical sensor for determination of ultra-trace amount of silver ions. Sensors and Actuators B: Chemical 2013, 176 , 598-604. https://doi.org/10.1016/j.snb.2012.10.045
    86. H. C. Harrington, F. R. A. J. Rose, Y. Reinwald, L. D. K. Buttery, A. M. Ghaemmaghami, J. W. Aylott. Electrospun PLGA fibre sheets incorporating fluorescent nanosensors: self-reporting scaffolds for application in tissue engineering. Anal. Methods 2013, 5 (1) , 68-71. https://doi.org/10.1039/C2AY25771H
    87. Ali R. Firooz, Ali A. Ensafi, Nafiseh Kazemifard, Hashem Sharghi. A highly sensitive and selective bulk optode based on benzimidazol derivative as an ionophore and ETH5294 for the determination of ultra trace amount of silver ions. Talanta 2012, 101 , 171-176. https://doi.org/10.1016/j.talanta.2012.09.018
    88. Matthew Bamsey, Alain Berinstain, Michael Dixon. Development of a potassium-selective optode for hydroponic nutrient solution monitoring. Analytica Chimica Acta 2012, 737 , 72-82. https://doi.org/10.1016/j.aca.2012.05.024
    89. M. Echabaane, A. Rouis, I. Bonnamour, H. Ben Ouada. Characterization of an azo-calix[4]arene-based optical sensor for Europium (III) ions. Materials Science and Engineering: C 2012, 32 (5) , 1218-1221. https://doi.org/10.1016/j.msec.2012.03.011
    90. Yifan Ge, Jingwei Zhu, Weili Zhao, Yu Qin. Ion-selective optodes based on near infrared fluorescent chromoionophores for pH and metal ion measurements. Sensors and Actuators B: Chemical 2012, 166-167 , 480-484. https://doi.org/10.1016/j.snb.2012.02.090
    91. Nur Aksuner, Emur Henden, Ibrahim Yilmaz, Alaaddin Cukurovali. A novel optical chemical sensor for the determination of nickel(II) based on fluorescence quenching of newly synthesized thiazolo-triazol derivative and application to real samples. Sensors and Actuators B: Chemical 2012, 166-167 , 269-274. https://doi.org/10.1016/j.snb.2012.02.059
    92. Gastón A. Crespo, Eric Bakker. Ionophore-based ion optodes without a reference ion: electrogenerated chemiluminescence for potentiometric sensors. The Analyst 2012, 137 (21) , 4988. https://doi.org/10.1039/c2an35516g
    93. Günter Mistlberger, Gastón A. Crespo, Xiaojiang Xie, Eric Bakker. Photodynamic ion sensor systems with spiropyran: photoactivated acidity changes in plasticized poly(vinyl chloride). Chemical Communications 2012, 48 (45) , 5662. https://doi.org/10.1039/c2cc30657c
    94. Abdollah Yari, Fatemeh Papi. Ultra trace mercury(II) detection by a highly selective new optical sensor. Sensors and Actuators B: Chemical 2011, 160 (1) , 698-704. https://doi.org/10.1016/j.snb.2011.08.051
    95. M. D. Fernández-Ramos, L. Cuadros-Rodríguez, E. Arroyo-Guerrero, L. F. Capitán-Vallvey. An IUPAC-based approach to estimate the detection limit in co-extraction-based optical sensors for anions with sigmoidal response calibration curves. Analytical and Bioanalytical Chemistry 2011, 401 (9) , 2881-2889. https://doi.org/10.1007/s00216-011-5366-8
    96. Jingwei Zhu, Jingying Zhai, Xue Li, Yu Qin. Applications of hydrophobic room temperature ionic liquids in ion-selective optodes. Sensors and Actuators B: Chemical 2011, 159 (1) , 256-260. https://doi.org/10.1016/j.snb.2011.06.084
    97. Nur Aksuner. Development of a new fluorescent sensor based on a triazolo-thiadiazin derivative immobilized in polyvinyl chloride membrane for sensitive detection of lead(II) ions. Sensors and Actuators B: Chemical 2011, 157 (1) , 162-168. https://doi.org/10.1016/j.snb.2011.03.044
    98. M.M. Erenas, M.C. Pegalajar, M.P. Cuellar, I. de Orbe-Payá, L.F. Capitán-Vallvey. Disposable optical tongue for alkaline ion analysis. Sensors and Actuators B: Chemical 2011, 156 (2) , 976-982. https://doi.org/10.1016/j.snb.2011.03.016
    99. M.M. Erenas, O. Piñeiro, M.C. Pegalajar, M.P. Cuellar, I. de Orbe-Payá, L.F. Capitán-Vallvey. A surface fit approach with a disposable optical tongue for alkaline ion analysis. Analytica Chimica Acta 2011, 694 (1-2) , 128-135. https://doi.org/10.1016/j.aca.2011.03.043
    100. Nur Aksuner, Emur Henden, Berrin Yenigul, Ibrahim Yilmaz, Alaaddin Cukurovali. Highly sensitive sensing of zinc(II) by development and characterization of a PVC-based fluorescent chemical sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011, 78 (3) , 1133-1138. https://doi.org/10.1016/j.saa.2010.12.065
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect