ACS Publications. Most Trusted. Most Cited. Most Read
High-performance flow flame atomic absorption spectrometry for automated on-line separation and determination of chromium(III)/chromium(VI) and preconcentration of chromium(VI)
My Activity
    Article

    High-performance flow flame atomic absorption spectrometry for automated on-line separation and determination of chromium(III)/chromium(VI) and preconcentration of chromium(VI)
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Analytical Chemistry

    Cite this: Anal. Chem. 1993, 65, 19, 2590–2595
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac00067a008
    Published October 1, 1993

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 89 publications.

    1. Tian-Yi Gu, Ming Dai, David James Young, Zhi-Gang Ren, and Jian-Ping Lang . Luminescent Zn(II) Coordination Polymers for Highly Selective Sensing of Cr(III) and Cr(VI) in Water. Inorganic Chemistry 2017, 56 (8) , 4668-4678. https://doi.org/10.1021/acs.inorgchem.7b00311
    2. Hai-Feng Ji,, Thomas Thundat,, Reza Dabestani,, Gilbert M. Brown,, Philip F. Britt, and, Peter V. Bonnesen. Ultrasensitive Detection of CrO42- Using a Microcantilever Sensor. Analytical Chemistry 2001, 73 (7) , 1572-1576. https://doi.org/10.1021/ac0013103
    3. Xiaohua Zhang and, John A. Koropchak. Thermospray Methods for Rapid, Sensitive, and Nonchromatographic Speciation of Chromium Oxidation States. Analytical Chemistry 1999, 71 (15) , 3046-3053. https://doi.org/10.1021/ac9813585
    4. A. Zybin,, G. Schaldach,, H. Berndt, and, K. Niemax. Metal Speciation in the ppt Range by HPLC and Diode Laser Atomic Absorption Spectrometry in a Flame. Analytical Chemistry 1998, 70 (23) , 5093-5096. https://doi.org/10.1021/ac980729e
    5. Muniyandi Maruthupandi, Nae Yoon Lee. Point-of-Care Testing Kit for the Detection of Hexavalent Chromium by Carbohydrazide-Derived Graphitic Carbon Nitride. Chemosensors 2024, 12 (9) , 180. https://doi.org/10.3390/chemosensors12090180
    6. Priyanka Manna, Avantika Hasija, Deepak Chopra, Partha Mahata. Selective dye sorption and metal ion sensing behaviours of a new Cd-based MOF. New Journal of Chemistry 2023, 47 (43) , 19846-19855. https://doi.org/10.1039/D3NJ03179A
    7. Sezin Erarpat, Cansu Demir, Miray Öner, Sezgin Bakırdere. Chromium speciation by the combination of high-performance liquid chromatography and inductively coupled plasma-optical emission spectrometry. Environmental Monitoring and Assessment 2022, 194 (10) https://doi.org/10.1007/s10661-022-10395-z
    8. Chen Wang, Feng Ying Bai, Zi Xin You, Yong Heng Xing, Zhan Shi. Framework Materials Based on Naphthalenediimide Derivatives Supported by Aromatic Carboxylic Acids for Application as Multifunctional Fluorescence Sensors. ChemPhotoChem 2022, 6 (2) https://doi.org/10.1002/cptc.202100211
    9. Xiaolu Xiong, Junlin Zhang, Zhou Wang, Chenchen Liu, Wende Xiao, Junfeng Han, Qingfan Shi. Simultaneous Multiplexed Detection of Protein and Metal Ions by a Colorimetric Microfluidic Paper-based Analytical Device. BioChip Journal 2020, 14 (4) , 429-437. https://doi.org/10.1007/s13206-020-4407-9
    10. Reda M. El-Shishtawy, Mohammed M. Rahman, Tahir Ali Sheikh, Muhammad Nadeem Arshad, Fatimah A. M. Al-Zahrani, Abdullah M. Asiri. A New Cr3+ Electrochemical Sensor Based on ATNA/Nafion/Glassy Carbon Electrode. Materials 2020, 13 (12) , 2695. https://doi.org/10.3390/ma13122695
    11. Posta József, Nagy Dávid, Kapitány Sándor, Béni Áron. A comparison study of analytical performance of chromium speciation methods. Microchemical Journal 2019, 149 , 103958. https://doi.org/10.1016/j.microc.2019.05.058
    12. Anikó Metzinger, Andrea Nagy, Attila Gáspár, Zsuzsanna Márton, Éva Kovács-Széles, Gábor Galbács. The feasibility of liquid sample microanalysis using polydimethylsiloxane microfluidic chips with in-channel and in-port laser-induced breakdown spectroscopy detection. Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 126 , 23-30. https://doi.org/10.1016/j.sab.2016.10.014
    13. Waleed Alahmad, Kanchana Uraisin, Duangjai Nacapricha, Takashi Kaneta. A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium( iii ). Analytical Methods 2016, 8 (27) , 5414-5420. https://doi.org/10.1039/C6AY00954A
    14. R. K. Mondal, S. Dhibar, P. Mukherjee, A. P. Chattopadhyay, R. Saha, B. Dey. Selective picomolar level fluorometric sensing of the Cr( vi )-oxoanion in a water medium by a novel metal–organic complex. RSC Advances 2016, 6 (66) , 61966-61973. https://doi.org/10.1039/C6RA12819J
    15. T.R. Crompton. Metals in River Water. 2015, 19-160. https://doi.org/10.1016/B978-0-12-802654-0.00003-9
    16. Andrea Nagy, Edina Baranyai, Attila Gaspar. Interfacing microfluidic chip-based chromatography with flame atomic absorption spectrometry for the determination of chromium(VI). Microchemical Journal 2014, 114 , 216-222. https://doi.org/10.1016/j.microc.2014.01.008
    17. . Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA Journal 2014https://doi.org/10.2903/j.efsa.2014.3595
    18. Satyendra K. Mishra, Banshi D. Gupta. Surface plasmon resonance based fiber optic sensor for the detection of CrO42− using Ag/ITO/hydrogel layers. Analytical Methods 2014, 6 (14) , 5191. https://doi.org/10.1039/c4ay00830h
    19. J. Xiao, Y. Y. Meng, P. L. Zhang, W. Wen, Z. M. Liu, T. Zhang. Quantitative analysis of chromate (CrVI) by normal Raman spectroscopy and surface-enhanced Raman spectroscopy using poly(diallyldimethylammonium) chloride-capped gold nanoparticles. Laser Physics 2012, 22 (10) , 1481-1488. https://doi.org/10.1134/S1054660X12100258
    20. José A. C. Broekaert, E. Hywel Evans. Atomic Spectroscopy, 1. General. 2011https://doi.org/10.1002/14356007.b05_559.pub2
    21. José A. C. Broekaert, E. Hywel Evans. Atomic Spectroscopy, 2. Absorption Spectrometry. 2011https://doi.org/10.1002/14356007.o03_o01
    22. Athanasios S. Stasinakis, Nikolaos S. Thomaidis. Fate and Biotransformation of Metal and Metalloid Species in Biological Wastewater Treatment Processes. Critical Reviews in Environmental Science and Technology 2010, 40 (4) , 307-364. https://doi.org/10.1080/10643380802339026
    23. Imre Salma, Mihály Pósfai, Kristóf Kovács, Ernő Kuzmann, Zoltán Homonnay, József Posta. Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station. Atmospheric Environment 2009, 43 (22-23) , 3460-3466. https://doi.org/10.1016/j.atmosenv.2009.04.042
    24. Jing Li, Jichao Zhang, Hui Wei, Erkang Wang. Combining chemical reduction with an electrochemical technique for the simultaneous detection of Cr( vi ), Pb( ii ) and Cd( ii ). The Analyst 2009, 134 (2) , 273-277. https://doi.org/10.1039/B804670K
    25. Nathan A. Carrington, George H. Thomas, D. Lynn Rodman, David B. Beach, Zi-Ling Xue. Optical determination of Cr(VI) using regenerable, functionalized sol–gel monoliths. Analytica Chimica Acta 2007, 581 (2) , 232-240. https://doi.org/10.1016/j.aca.2006.08.032
    26. Áron Béni, Ildikó Kiss, Sándor Berényi, József Posta. Atomic distributions in acetylene-air flame using hydraulic high-pressure nebulization with direct (100%) introduction of solutions Applications to speciation analysis. Microchemical Journal 2007, 85 (1) , 109-114. https://doi.org/10.1016/j.microc.2006.04.016
    27. G. Heltai, B. Fehér, M. Horváth. Coupling of microwave induced plasma optical emission spectrometry with HPLC separation for speciation analysis of Cr(III)/Cr(VI). Chemical Papers 2007, 61 (6) https://doi.org/10.2478/s11696-007-0059-7
    28. V. Gómez, M.P. Callao. Chromium determination and speciation since 2000. TrAC Trends in Analytical Chemistry 2006, 25 (10) , 1006-1015. https://doi.org/10.1016/j.trac.2006.06.010
    29. Deniz Yurtsever Sarica, A. Rehber Türker, Esra Erol. On-line speciation and determination of Cr(III) and Cr(VI) in drinking and waste water samples by reversed-phase high performance liquid chromatography coupled with atomic absorption spectrometry. Journal of Separation Science 2006, 29 (11) , 1600-1606. https://doi.org/10.1002/jssc.200600057
    30. Nathan A. Carrington, Li Yong, Zi-Ling Xue. Electrochemical deposition of sol–gel films for enhanced chromium(VI) determination in aqueous solutions. Analytica Chimica Acta 2006, 572 (1) , 17-24. https://doi.org/10.1016/j.aca.2006.05.020
    31. Eun Kyung Kang, Somi Lee, Jin‐Hee Park, Kyung‐Mi Joo, Hye‐Jin Jeong, Ih Seop Chang. Determination of hexavalent chromium in cosmetic products by ion chromatography and postcolumn derivatization. Contact Dermatitis 2006, 54 (5) , 244-248. https://doi.org/10.1111/j.0105-1873.2006.00812.x
    32. Boris Ya. Spivakov, Galina I. Malofeeva, Oleg M. Petrukhin. Solid-Phase Extraction on Alkyl-bonded Silica Gels in Inorganic Analysis. Analytical Sciences 2006, 22 (4) , 503-519. https://doi.org/10.2116/analsci.22.503
    33. Roland Karosi, Vasil Andruch, József Posta, József Balogh. Separation of chromium (VI) using complexation and its determination with GFAAS. Microchemical Journal 2006, 82 (1) , 61-65. https://doi.org/10.1016/j.microc.2005.07.005
    34. Qiu-Fen Hu, Xian-Hua Wu, Guang-Yu Yang, Zhang-Jie Huang, Jia-Yuan Yin. Study on the Determination of Cobalt, Nickel, Copper, Zinc and Vanadium in Environmental Samples by a Rapid High-Performance Liquid Chromatography. Journal of the Chinese Chemical Society 2005, 52 (2) , 277-282. https://doi.org/10.1002/jccs.200500042
    35. Mohammed Zougagh, J. M. Cano Pav�n, A. Garcia de Torres. Chelating sorbents based on silica gel and their application in atomic spectrometry. Analytical and Bioanalytical Chemistry 2005, 381 (6) , 1103-1113. https://doi.org/10.1007/s00216-004-3022-2
    36. . A Study of the Potential Interference of ArC + on the Direct Determination of Trivalent Chromium and Hexavalent Chromium Using Ion Chromatography Coupled with ICP-MS. Bulletin of the Korean Chemical Society 2004, 447-451. https://doi.org/10.5012/bkcs.2004.25.4.447
    37. Sibel Yalçin, Reşat Apak. Chromium(III, VI) speciation analysis with preconcentration on a maleic acid-functionalized XAD sorbent. Analytica Chimica Acta 2004, 505 (1) , 25-35. https://doi.org/10.1016/S0003-2670(03)00498-7
    38. Ya‐Ling Yang, Ming‐Ming Miao, Qiang Lin, Guang‐Yu Yang. Study on Determination of Six Transition Metal Ions in Biological Samples by SPE and RP‐HPLC. Journal of the Chinese Chemical Society 2004, 51 (1) , 19-24. https://doi.org/10.1002/jccs.200400004
    39. Domingo A. Román-Silva, Lidia Rivera, Tatiana Morales, Juan ávila, Pedro Cortés. Determination of Trace Elements in Environmental and Biological Samples Using Improved Sample Introduction in Flame Atomic Absorption Spectrometry (HHPN-AAS; HHPN-FF-AAS). International Journal of Environmental Analytical Chemistry 2003, 83 (4) , 327-341. https://doi.org/10.1080/0306731000076869
    40. José A. C. Broekaert, E. Hywel Evans. Atomic Spectroscopy. 2003https://doi.org/10.1002/14356007.b05_559
    41. Miguel de la Guardia, Angel Morales-Rubio. Sample preparation for chromium speciation. 2003, 1115-1171. https://doi.org/10.1016/S0166-526X(03)41035-0
    42. Lorraine Soko, Ewa Cukrowska, Luke Chimuka. Extraction and preconcentration of Cr(VI) from urine using supported liquid membrane. Analytica Chimica Acta 2002, 474 (1-2) , 59-68. https://doi.org/10.1016/S0003-2670(02)01003-6
    43. Gerhard Schaldach, Ludwig Berger, Ilya Razilov, Harald Berndt. Characterization of a double-pass spray chamber for ICP spectrometry by computer simulation (CFD). Spectrochimica Acta Part B: Atomic Spectroscopy 2002, 57 (10) , 1505-1520. https://doi.org/10.1016/S0584-8547(02)00099-X
    44. J Koch, A Zybin, K Niemax. Narrow and broad band diode laser absorption spectrometry—concepts, limitations and applications. Spectrochimica Acta Part B: Atomic Spectroscopy 2002, 57 (10) , 1547-1561. https://doi.org/10.1016/S0584-8547(02)00104-0
    45. Zhong Li, Guangyu Yang, Baoxing Wang, Ciqing Jiang, Jiayuan Yin. Determination of transition metal ions in tobacco as their 2-(2-quinolinylazo)-5-dimethylaminophenol derivatives using reversed-phase liquid chromatography with UV–VIS detection. Journal of Chromatography A 2002, 971 (1-2) , 243-248. https://doi.org/10.1016/S0021-9673(02)01040-3
    46. . Determination of Cr(Ⅲ) Iron by Chemiluminescence Method. Journal of the Korean Chemical Society 2002, 145-150. https://doi.org/10.5012/jkcs.2002.46.2.145
    47. Frans Sahureka, Robert C. Burns, Ellak I. von Nagy-Felsobuki. Electrospray identification of new polyoxochromate species. Inorganica Chimica Acta 2002, 332 (1) , 7-17. https://doi.org/10.1016/S0020-1693(01)00715-0
    48. Lei Wang, Bin Hu, Zucheng Jiang, Zhiqing Li. Speciation of Cr III and Cr VI in Aqueous Samples by Coprecipitation/Slurry Sampling Fluorination Assisted Graphite Furnace Atomic Absorption Spectrometry. International Journal of Environmental Analytical Chemistry 2002, 82 (6) , 387-393. https://doi.org/10.1080/03067310290007813
    49. José A. C. Broekaert, E. Hywel Evans. Atomic Spectroscopy. 2001, 627-726. https://doi.org/10.1002/9783527618323.ch21
    50. Michael Sperling. Flame and Graphite Furnace Atomic Absorption Spectrometry in Environmental Analysis. 2000https://doi.org/10.1002/9780470027318.a0805
    51. Shizuko Hirata, Kazuto Honda, Osamu Shikino, Norihiro Maekawa, Masato Aihara. Determination of chromium(III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2000, 55 (7) , 1089-1099. https://doi.org/10.1016/S0584-8547(00)00169-5
    52. Frédéric Aubriet, Benoı̂t Maunit, Jean-François Muller. Studies on alkali and alkaline earth chromate by time-of-flight laser microprobe mass spectrometry and Fourier transform ion cyclotron resonance mass spectrometry.. International Journal of Mass Spectrometry 2000, 198 (3) , 189-211. https://doi.org/10.1016/S1387-3806(00)00201-3
    53. J. Kotaś, Z. Stasicka. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution 2000, 107 (3) , 263-283. https://doi.org/10.1016/S0269-7491(99)00168-2
    54. Vítězslav Otruba, Jan Pivnička, Viktor Kanický. Separation and Preconcentration of Cr(VI) as Ion Associate Using Solid Phase Extraction. Collection of Czechoslovak Chemical Communications 2000, 65 (12) , 1865-1874. https://doi.org/10.1135/cccc20001865
    55. Corrado Sarzanini. Liquid chromatography: a tool for the analysis of metal species. Journal of Chromatography A 1999, 850 (1-2) , 213-228. https://doi.org/10.1016/S0021-9673(99)00437-9
    56. Xiaohua Zhang, John A. Koropchak. Direct Chromium Speciation Using Thermospray: Preliminary Studies with Inductively Coupled Plasma Mass Spectrometry. Microchemical Journal 1999, 62 (1) , 192-202. https://doi.org/10.1006/mchj.1999.1714
    57. B.S. Garg, R.K. Sharma, N. Bhojak, S. Mittal. Chelating Resins and Their Applications in the Analysis of Trace Metal Ions. Microchemical Journal 1999, 61 (2) , 94-114. https://doi.org/10.1006/mchj.1998.1681
    58. Klaus Günther, Günther Weber. Elementspeziesanalytik: Ein Überblick. 1999, 71-103. https://doi.org/10.1007/978-3-642-59914-9_3
    59. Angel Morales-Rubio, Miguel de la Guardia. Applications in environmental analysis. 1999, 309-341. https://doi.org/10.1016/S0926-4345(99)80014-5
    60. M. de la Guardia, M.L. Cervera, A. Morales-Rubio. Speciation studies by atomic spectroscopy. 1999, 1-98. https://doi.org/10.1016/S1068-5561(99)80003-4
    61. . Bibliography. 1998, 771-905. https://doi.org/10.1002/9783527611690.biblio
    62. Audrius Padarauskas, Asta Judžentien≐, Evaldas Naujalis, Vaida Paliulionyt≐. On-line preconcentration and determination of chromium(VI) in waters by high-performance liquid chromatography using pre-column complexation with 1,5-diphenylcarbazide. Journal of Chromatography A 1998, 808 (1-2) , 193-199. https://doi.org/10.1016/S0021-9673(98)00118-6
    63. Attila Gáspár, Jószef Posta. On-line sorption preconcentration of chromium(VI) and its determination by flame atomic absorption spectrometry. Analytica Chimica Acta 1997, 354 (1-3) , 151-158. https://doi.org/10.1016/S0003-2670(97)00457-1
    64. Carol H Collins, Sérgio H Pezzin, José Francisco Lugo Rivera, Pierina S Bonato, Cláudia C Windmöller, Cielita Archundia, Kenneth E Collins. Liquid chromatographic separation of aqueous species of Cr(VI) and Cr(III). Journal of Chromatography A 1997, 789 (1-2) , 469-478. https://doi.org/10.1016/S0021-9673(97)00676-6
    65. Corrado Sarzanini, Edoardo Mentasti. Determination and speciation of metals by liquid chromatography. Journal of Chromatography A 1997, 789 (1-2) , 301-321. https://doi.org/10.1016/S0021-9673(97)00988-6
    66. József Prokisch, Sidney A Katz, Béla Kovács, Zoltán Győri. Speciation of chromium from industrial wastes and incinerated sludges. Journal of Chromatography A 1997, 774 (1-2) , 363-371. https://doi.org/10.1016/S0021-9673(97)00334-8
    67. Mari Pantsar-Kallio, Pentti K.G. Manninen. Speciation of chromium in waste waters by coupled column ion chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography A 1996, 750 (1-2) , 89-95. https://doi.org/10.1016/0021-9673(96)00531-6
    68. Martin H. Mach, Babu Nott, Judith W. Scott, Raymond F. Maddalone, Nina T. Whiddon. Metal speciation: Survey of environmental methods of analysis. Water, Air, & Soil Pollution 1996, 90 (1-2) , 269-279. https://doi.org/10.1007/BF00619287
    69. R.M. Cespón-Romero, M.C. Yebra-Biurrun, M.P. Bermejo-Barrera. Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system. Analytica Chimica Acta 1996, 327 (1) , 37-45. https://doi.org/10.1016/0003-2670(96)00062-1
    70. Ewa Pobo .zy, Ewa Wojasińska, Marek Trojanowicz. Ion chromatographic speciation of chromium with diphenylcarbazide-based spectrophotometric detection. Journal of Chromatography A 1996, 736 (1-2) , 141-150. https://doi.org/10.1016/0021-9673(95)01373-3
    71. J. Posta, A. Alimonti, F. Petrucci, S. Caroli. On-line separation and preconcentration of chromium species in seawater. Analytica Chimica Acta 1996, 325 (3) , 185-193. https://doi.org/10.1016/0003-2670(96)00030-X
    72. Thomas Roy Crompton. Metal-Containing Anions. 1996, 419-452. https://doi.org/10.1007/978-3-642-61419-4_9
    73. Martin H. Mach, Babu Nott, Judith W. Scott, Raymond F. Maddalone, Nina T. Whiddon. Metal Speciation: Survey of Environmental Methods of Analysis. 1996, 269-279. https://doi.org/10.1007/978-94-009-0299-2_26
    74. Mari Pantsar-Kallio, Pentti K.G. Manninen. Speciation of chromium in aquatic samples by coupled column ion chromatography-inductively coupled plasma-mass spectrometry. Analytica Chimica Acta 1996, 318 (3) , 335-343. https://doi.org/10.1016/0003-2670(95)00448-3
    75. . Chapter 23 Chromium. 1996, 387-403. https://doi.org/10.1016/S0166-526X(96)80026-2
    76. Attila Gáspár, József Posta, Róbert Tóth. On-line chromatographic separation and determination of chromium(III) and chromium(VI) with preconcentration of the chromium(III) using potassium hydrogen phthalate, in various samples by flame atomic absorption spectrometry. J. Anal. At. Spectrom. 1996, 11 (11) , 1067-1074. https://doi.org/10.1039/JA9961101067
    77. . Anwendungsgebiete der Kopplungstechniken in der ESA. 1995, 73-203. https://doi.org/10.1002/9783527624324.ch4
    78. H. Groll, G. Schaldach, H. Berndt, K. Niemax. Measurement of Cr(III)/Cr(VI) species by wavelength modulation diode laser flame atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 1995, 50 (10) , 1293-1298. https://doi.org/10.1016/0584-8547(95)01332-9
    79. József Prokisch, Béla Kovács, Zoltán Gyori, Jakab Loch. A simple and inexpensive method for chromium speciation in soil extracts. Communications in Soil Science and Plant Analysis 1995, 26 (13-14) , 2051-2065. https://doi.org/10.1080/00103629509369428
    80. J. Lintschinger, K. Kalcher, W. G�ssler, G. K�lbl, M. Novic. Simultaneous determination of chromium (III) and chromium (VI) by reversed-phase ion-pair HPLC with chromium-specific detection. Fresenius' Journal of Analytical Chemistry 1995, 351 (7) , 604-609. https://doi.org/10.1007/BF00323333
    81. K. Vercoutere, R. Cornelis. 8. Chromium speciation in environmental and biological samples. 1995, 195-213. https://doi.org/10.1016/S0167-9244(06)80009-0
    82. Claudia M. Andrle, José A. C. Broekaert. Speziation von Cr(III) und Cr(VI). Nachrichten aus Chemie, Technik und Laboratorium 1994, 42 (11) , 1140-1146. https://doi.org/10.1002/nadc.19940421113
    83. George R. Agnes, Ian I. Stewart, Gary Horlick. Elemental Speciation Measurements with Electrospray Mass Spectrometry: An Assessment. Applied Spectroscopy 1994, 48 (11) , 1347-1359. https://doi.org/10.1366/0003702944027930
    84. H.G. Beere, P. Jones. Investigation of chromium(III) and chromium(VI) speciation in water by ion chromatography with chemiluminescence detection. Analytica Chimica Acta 1994, 293 (3) , 237-243. https://doi.org/10.1016/0003-2670(94)85028-3
    85. James N. Jensen, Andrea M. Dietrich. Chemical species. Water Environment Research 1994, 66 (4) , 279-291. https://doi.org/10.1002/j.1554-7531.1994.tb00092.x
    86. Reginald Goo. Monitoring, sampling, and automated analysis. Water Environment Research 1994, 66 (4) , 298-302. https://doi.org/10.1002/j.1554-7531.1994.tb00094.x
    87. S.K. Luo, H. Berndt. Sample introduction in ICP spectrometry by hydraulic high-pressure nebulization. Spectrochimica Acta Part B: Atomic Spectroscopy 1994, 49 (5) , 485-492. https://doi.org/10.1016/0584-8547(94)80041-3
    88. José A. C. Broekaert. Analytische Atomspektrometrie. Nachrichten aus Chemie, Technik und Laboratorium 1994, 42 (3) https://doi.org/10.1002/nadc.19940420315
    89. G. Schaldach, H. Berndt. High performance flow flame atomic absorption spectrometry for interference-free trace determination. Fresenius' Journal of Analytical Chemistry 1994, 350 (7-9) , 481-486. https://doi.org/10.1007/BF00321793

    Analytical Chemistry

    Cite this: Anal. Chem. 1993, 65, 19, 2590–2595
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac00067a008
    Published October 1, 1993

    Article Views

    373

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.