ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Microfluidic System for Studying the Interaction of Nanoparticles and Microparticles with Cells

View Author Information
Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and Division of Health Sciences and Technology, Division of Biological Engineering, Department of Chemical Engineering, and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Cite this: Anal. Chem. 2005, 77, 17, 5453–5459
Publication Date (Web):July 22, 2005
https://doi.org/10.1021/ac050312q
Copyright © 2005 American Chemical Society

    Article Views

    2922

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (381 KB)

    Abstract

    Nanoparticles and microparticles have many potential biomedical applications ranging from imaging to drug delivery. Therefore, in vitro systems that can analyze and optimize the interaction of such particles with cells may be beneficial. Here, we report a microfluidic system that can be used to study these interactions. As a model system, we evaluated the interaction of polymeric nanoparticles and microparticles and similar particles conjugated to aptamers that recognize the transmembrane prostate specific membrane antigen (PSMA), with cells seeded in microchannels. The binding of particles to cells that expressed or did not express the PSMA (LNCaP or PC3, respectively) were evaluated with respect to changes in fluid shear stress, PSMA expression on target cells, and particle size. Nanoparticle−aptamer bioconjugates selectively adhered to LNCaP but not PC3 cells at static and low shear (<1 dyn/cm2) but not higher shear (∼4.5 dyn/cm2) conditions. Control nanoparticles and microparticles lacking aptamers and microparticle−aptamer bioconjugates did not adhere to LNCaP cells, even under very low shear conditions (∼0.28 dyn/cm2). These results demonstrate that the interaction of particles with cells can be studied under controlled conditions, which may aid in the engineering of desired particle characteristics. The scalability, low cost, reproducibility, and high-throughput capability of this technology is potentially beneficial to examining and optimizing a wide array of cell−particle systems prior to in vivo experiments.

    *

     Corresponding authors. R.L.:  phone, 617-253-3107; e-mail, [email protected]. O.C.F.:  phone, 617-732-6093; e-mail:  [email protected].

     Authors contributed equally.

     Brigham and Women's Hospital and Harvard Medical School.

    §

     Division of Health Sciences and Technology, Massachusetts Institute of Technology.

     Division of Biological Engineering, Massachusetts Institute of Technology.

     Department of Chemical Engineering, Massachusetts Institute of Technology.

    #

     Current address:  Department of Life Science, Gwangju Institute of Science & Technology, Gwangju, South Korea.

     Current address:  Central Institute for Medical Technology, Technical University of Munich, Bolzmannstrasse 11, 85748 Garching, Germany.

     Center for Cancer Research, Massachusetts Institute of Technology.

    Cited By

    This article is cited by 140 publications.

    1. Feyisola P. Olatunji, Emily A. Savoy, Mylan Panteah, Nooshin Mesbahi, Armina Abbasi, Cresencia M. Talley, Christine L. Lovingier, Leslie A. Caromile, Clifford E. Berkman. Prostate-Specific Membrane Antigen-Targeted Turn-on Probe for Imaging Cargo Release in Prostate Cancer Cells. Bioconjugate Chemistry 2021, 32 (11) , 2386-2396. https://doi.org/10.1021/acs.bioconjchem.1c00435
    2. Jiwei Cui, Karen Alt, Yi Ju, Sylvia T. Gunawan, Julia A. Braunger, Ting-Yi Wang, Yunlu Dai, Qiong Dai, Joseph J. Richardson, Junling Guo, Mattias Björnmalm, Christoph E. Hagemeyer, Frank Caruso. Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake. Biomacromolecules 2019, 20 (9) , 3592-3600. https://doi.org/10.1021/acs.biomac.9b00925
    3. Marco E. Miali, Marianna Colasuonno, Salvatore Surdo, Roberto Palomba, Rui Pereira, Eliana Rondanina, Alberto Diaspro, Giuseppe Pascazio, Paolo Decuzzi. Leaf-Inspired Authentically Complex Microvascular Networks for Deciphering Biological Transport Process. ACS Applied Materials & Interfaces 2019, 11 (35) , 31627-31637. https://doi.org/10.1021/acsami.9b09453
    4. Jungwook Paek, Sunghee E. Park, Qiaozhi Lu, Kyu-Tae Park, Minseon Cho, Jeong Min Oh, Keon Woo Kwon, Yoon-suk Yi, Joseph W. Song, Hailey I. Edelstein, Jeff Ishibashi, Wenli Yang, Jacob W. Myerson, Raisa Y. Kiseleva, Pavel Aprelev, Elizabeth D. Hood, Dwight Stambolian, Patrick Seale, Vladimir R. Muzykantov, Dongeun Huh. Microphysiological Engineering of Self-Assembled and Perfusable Microvascular Beds for the Production of Vascularized Three-Dimensional Human Microtissues. ACS Nano 2019, 13 (7) , 7627-7643. https://doi.org/10.1021/acsnano.9b00686
    5. Nazila Kamaly, Basit Yameen, Jun Wu, and Omid C. Farokhzad . Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews 2016, 116 (4) , 2602-2663. https://doi.org/10.1021/acs.chemrev.5b00346
    6. Nicholas Clay, Kwanghyun Baek, Artem Shkumatov, Mei-Hsiu Lai, Cartney E. Smith, Max Rich, and Hyunjoon Kong . Flow-Mediated Stem Cell Labeling with Superparamagnetic Iron Oxide Nanoparticle Clusters. ACS Applied Materials & Interfaces 2013, 5 (20) , 10266-10273. https://doi.org/10.1021/am4030998
    7. Leticia Hosta-Rigau and Brigitte Städler . Shear Stress and Its Effect on the Interaction of Myoblast Cells with Nanosized Drug Delivery Vehicles. Molecular Pharmaceutics 2013, 10 (7) , 2707-2712. https://doi.org/10.1021/mp4001298
    8. Hung-Wei Yang, Mu-Yi Hua, Hao-Li Liu, Rung-Ywan Tsai, Cheng-Keng Chuang, Po-Chun Chu, Pei-Yi Wu, Ying-Hsu Chang, Heng-Chang Chuang, Kai-Jie Yu, and See-Tong Pang . Cooperative Dual-Activity Targeted Nanomedicine for Specific and Effective Prostate Cancer Therapy. ACS Nano 2012, 6 (2) , 1795-1805. https://doi.org/10.1021/nn2048526
    9. Donghyuk Kim, Yu-Shen Lin, and Christy L. Haynes . On-Chip Evaluation of Shear Stress Effect on Cytotoxicity of Mesoporous Silica Nanoparticles. Analytical Chemistry 2011, 83 (22) , 8377-8382. https://doi.org/10.1021/ac202115a
    10. Jinjun Shi, Zeyu Xiao, Nazila Kamaly, and Omid C. Farokhzad . Self-Assembled Targeted Nanoparticles: Evolution of Technologies and Bench to Bedside Translation. Accounts of Chemical Research 2011, 44 (10) , 1123-1134. https://doi.org/10.1021/ar200054n
    11. Jihua Liu, Pavla Kopečková, Patrick Bühler, Philipp Wolf, Huaizhong Pan, Hillevi Bauer, Ursula Elsässer-Beile and Jindřich Kopeček . Biorecognition and Subcellular Trafficking of HPMA Copolymer−Anti-PSMA Antibody Conjugates by Prostate Cancer Cells. Molecular Pharmaceutics 2009, 6 (3) , 959-970. https://doi.org/10.1021/mp8002682
    12. Seungpyo Hong,, Dooyoung Lee,, Huanan Zhang,, Jennifer Q. Zhang,, Jennifer N. Resvick,, Ali Khademhosseini,, Michael R. King,, Robert Langer, and, Jeffrey M. Karp. Covalent Immobilization of P-Selectin Enhances Cell Rolling. Langmuir 2007, 23 (24) , 12261-12268. https://doi.org/10.1021/la7014397
    13. Saeedreza Zeibi Shirejini, Josie Carberry, Karen Alt, Shaun D Gregory, Christoph E Hagemeyer. Shear‐Responsive Drug Delivery Systems in Medical Devices: Focus on Thrombosis and Bleeding. Advanced Functional Materials 2023, 33 (37) https://doi.org/10.1002/adfm.202303717
    14. Marios Stavrou, Ngan Phung, Jan Grimm, Chrysafis Andreou. Organ-on-chip systems as a model for nanomedicine. Nanoscale 2023, 15 (23) , 9927-9940. https://doi.org/10.1039/D3NR01661G
    15. Arpana Parihar, Nishant Kumar Choudhary, Dipesh Singh Parihar, Raju Khan. Tumor-on-a-Chip: Microfluidic Models of Hypoxic Tumor Microenvironment. 2023, 297-328. https://doi.org/10.1007/978-981-99-0313-9_14
    16. Ana M. Martins, Alexandra Brito, Maria Grazia Barbato, Alessia Felici, Rui L. Reis, Ricardo A. Pires, Iva Pashkuleva, Paolo Decuzzi. Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices. Biomaterials Advances 2023, 144 , 213227. https://doi.org/10.1016/j.bioadv.2022.213227
    17. Francisca Diniz, Maria Azevedo, Flávia Sousa, Hugo Osório, Diana Campos, Paula Sampaio, Joana Gomes, Bruno Sarmento, Celso A. Reis. Polymeric nanoparticles targeting Sialyl-Tn in gastric cancer: A live tracking under flow conditions. Materials Today Bio 2022, 16 , 100417. https://doi.org/10.1016/j.mtbio.2022.100417
    18. Mansour Mahmoudpour, Zahra Karimzadeh, Ghasem Ebrahimi, Mohammad Hasanzadeh, Jafar Ezzati Nazhad Dolatabadi. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Critical Reviews in Analytical Chemistry 2022, 52 (8) , 1818-1845. https://doi.org/10.1080/10408347.2021.1919987
    19. Oihane Mitxelena-Iribarren, Sara Lizarbe-Sancha, Jay Campisi, Sergio Arana, Maite Mujika. Different Microfluidic Environments for In Vitro Testing of Lipid Nanoparticles against Osteosarcoma. Bioengineering 2021, 8 (6) , 77. https://doi.org/10.3390/bioengineering8060077
    20. Hyun Jeong Oh, Jaehoon Kim, Hyunho Kim, Nakwon Choi, Seok Chung. Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications. Advanced Healthcare Materials 2021, 10 (9) https://doi.org/10.1002/adhm.202002122
    21. Xi Chen, Yu Shrike Zhang, Xinping Zhang, Changsheng Liu. Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioactive Materials 2021, 6 (4) , 1012-1027. https://doi.org/10.1016/j.bioactmat.2020.09.022
    22. Soraia Fernandes, Marco Cassani, Stefania Pagliari, Petr Filipensky, Francesca Cavalieri, Giancarlo Forte. Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Current Medicinal Chemistry 2020, 27 (42) , 7234-7255. https://doi.org/10.2174/0929867327666200625151134
    23. Raquel O. Rodrigues, Patrícia C. Sousa, João Gaspar, Manuel Bañobre‐López, Rui Lima, Graça Minas. Organ‐on‐a‐Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small 2020, 16 (51) https://doi.org/10.1002/smll.202003517
    24. Omid Rezvani, Mahin Hashemi Hedeshi, Habib Bagheri. Immobilization of synthesized phenyl-enriched magnetic nanoparticles in a fabricated Y–Y shaped micro-channel containing microscaled hedges as a microextraction platform. Analytica Chimica Acta 2020, 1136 , 51-61. https://doi.org/10.1016/j.aca.2020.08.034
    25. Mahin Hashemi Hedeshi, Omid Rezvani, Habib Bagheri. Silane–based modified papers and their extractive phase roles in a microfluidic platform. Analytica Chimica Acta 2020, 1128 , 31-41. https://doi.org/10.1016/j.aca.2020.05.069
    26. Horrick Sharma, Somrita Mondal. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. International Journal of Molecular Sciences 2020, 21 (17) , 6280. https://doi.org/10.3390/ijms21176280
    27. Nileshkumar M. Meghani, Hardik Amin, Chulhun Park, Jing-Hao Cui, Qing-Ri Cao, Kyung Hyun Choi, Beom-Jin Lee. Combinatory interpretation of protein corona and shear stress for active cancer targeting of bioorthogonally clickable gelatin-oleic nanoparticles. Materials Science and Engineering: C 2020, 111 , 110760. https://doi.org/10.1016/j.msec.2020.110760
    28. S. Connolly, D. Newport, K. McGourty. The mechanical responses of advecting cells in confined flow. Biomicrofluidics 2020, 14 (3) , 031501. https://doi.org/10.1063/5.0005154
    29. Jasmina Gačanin, Christopher V. Synatschke, Tanja Weil. Biomedical Applications of DNA‐Based Hydrogels. Advanced Functional Materials 2020, 30 (4) https://doi.org/10.1002/adfm.201906253
    30. O. Mitxelena-Iribarren, J. Campisi, I. Martínez de Apellániz, S. Lizarbe-Sancha, S. Arana, V. Zhukova, M. Mujika, A. Zhukov. Glass-coated ferromagnetic microwire-induced magnetic hyperthermia for in vitro cancer cell treatment. Materials Science and Engineering: C 2020, 106 , 110261. https://doi.org/10.1016/j.msec.2019.110261
    31. Yaroslav A. Grechkin, Svetlana L. Grechkina, Emil A. Zaripov, Svetlana V. Fedorenko, Asiya R. Mustafina, Maxim V. Berezovski. Aptamer-Conjugated Tb(III)-Doped Silica Nanoparticles for Luminescent Detection of Leukemia Cells. Biomedicines 2020, 8 (1) , 14. https://doi.org/10.3390/biomedicines8010014
    32. Deti Nurhidayah, Ali Maruf, Xiaojuan Zhang, Xiaoling Liao, Wei Wu, Guixue Wang. Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atherosclerosis management. Nanomedicine 2019, 14 (23) , 3105-3122. https://doi.org/10.2217/nnm-2019-0172
    33. Yamin Yang, Sijia Liu, Jinfa Geng. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring. Current Pharmaceutical Design 2019, 25 (27) , 2953-2968. https://doi.org/10.2174/1381612825666190730100051
    34. Angel Tan, Yuen Yi Lam, Olivier Pacot, Adrian Hawley, Ben J. Boyd. Probing cell–nanoparticle (cubosome) interactions at the endothelial interface: do tissue dimension and flow matter?. Biomaterials Science 2019, 7 (8) , 3460-3470. https://doi.org/10.1039/C9BM00243J
    35. Fabian H.L. Starsich, Inge K. Herrmann, Sotiris E. Pratsinis. Nanoparticles for Biomedicine: Coagulation During Synthesis and Applications. Annual Review of Chemical and Biomolecular Engineering 2019, 10 (1) , 155-174. https://doi.org/10.1146/annurev-chembioeng-060718-030203
    36. Lewis A. Fraser, Yee‐Wai Cheung, Andrew B. Kinghorn, Wei Guo, Simon Chi‐Chin Shiu, Chandra Jinata, Mengping Liu, Soubhagya Bhuyan, Lang Nan, Ho Cheung Shum, Julian A. Tanner. Microfluidic Technology for Nucleic Acid Aptamer Evolution and Application. Advanced Biosystems 2019, 3 (5) https://doi.org/10.1002/adbi.201900012
    37. Alican Ozkan, Neda Ghousifam, Paul Jack Hoopes, Thomas Edward Yankeelov, Marissa Nichole Rylander. In vitro vascularized liver and tumor tissue microenvironments on a chip for dynamic determination of nanoparticle transport and toxicity. Biotechnology and Bioengineering 2019, 116 (5) , 1201-1219. https://doi.org/10.1002/bit.26919
    38. Ayça Bal-Öztürk, Beatrice Miccoli, Meltem Avci-Adali, Ferzaneh Mogtader, Fatemeh Sharifi, Berivan Çeçen, Gökçen Yaşayan, Dries Braeken, Emine Alarcin. Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook. Current Pharmaceutical Design 2019, 24 (45) , 5437-5457. https://doi.org/10.2174/1381612825666190206195304
    39. Inmaculada Mora-Espí, Elena Ibáñez, Jorge Soriano, Carme Nogués, Thorarinn Gudjonsson, Leonardo Barrios. Cell Internalization in Fluidic Culture Conditions Is Improved When Microparticles Are Specifically Targeted to the Human Epidermal Growth Factor Receptor 2 (HER2). Pharmaceutics 2019, 11 (4) , 177. https://doi.org/10.3390/pharmaceutics11040177
    40. JingJing Zhang, Tian Lan, Yi Lu. Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications. Advanced Healthcare Materials 2019, 8 (6) https://doi.org/10.1002/adhm.201801158
    41. Surjendu Maity, Joydip Chaudhuri, Shirsendu Mitra, Saptak Rarotra, Dipankar Bandyopadhyay. Electric field assisted multicomponent reaction in a microfluidic reactor for superior conversion and yield. ELECTROPHORESIS 2019, 40 (3) , 401-409. https://doi.org/10.1002/elps.201800377
    42. Roxana C. Popescu, Ecaterina Andronescu, Alexandru Mihai Grumezescu. In vitro and in vivo technologies: an up to date overview in tissue engineering. 2019, 463-484. https://doi.org/10.1016/B978-0-12-816909-4.00015-4
    43. Oihane Mitxelena-Iribarren, Jon Zabalo, Sergio Arana, Maite Mujika. Improved microfluidic platform for simultaneous multiple drug screening towards personalized treatment. Biosensors and Bioelectronics 2019, 123 , 237-243. https://doi.org/10.1016/j.bios.2018.09.001
    44. Ziyi He, Nandhini Ranganathan, Peng Li. Evaluating nanomedicine with microfluidics. Nanotechnology 2018, 29 (49) , 492001. https://doi.org/10.1088/1361-6528/aae18a
    45. Iason Papademetriou, Else Vedula, Joseph Charest, Tyrone Porter, . Effect of flow on targeting and penetration of angiopep-decorated nanoparticles in a microfluidic model blood-brain barrier. PLOS ONE 2018, 13 (10) , e0205158. https://doi.org/10.1371/journal.pone.0205158
    46. Song Yang Khor, Mai N. Vu, Emily H. Pilkington, Angus P. R. Johnston, Michael R. Whittaker, John F. Quinn, Nghia P. Truong, Thomas P. Davis. Elucidating the Influences of Size, Surface Chemistry, and Dynamic Flow on Cellular Association of Nanoparticles Made by Polymerization‐Induced Self‐Assembly. Small 2018, 14 (34) https://doi.org/10.1002/smll.201801702
    47. Dongfei Liu, Hongbo Zhang, Flavia Fontana, Jouni T. Hirvonen, Hélder A. Santos. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Advanced Drug Delivery Reviews 2018, 128 , 54-83. https://doi.org/10.1016/j.addr.2017.08.003
    48. Sara M. Giannitelli, Marco Costantini, Francesco Basoli, Marcella Trombetta, Alberto Rainer. Electrospinning and microfluidics. 2018, 139-155. https://doi.org/10.1016/B978-0-08-101745-6.00008-6
    49. Antonio Cervadoro, Alessandro Coclite, Daniele Di Mascolo, Miguel Ferreira, AnnaLisa Palange, Roberto Palomba, Rui C. Pereira, Paolo Decuzzi. Smart nanoconstructs for theranostics in cancer and cardiovascular diseases. 2018, 297-321. https://doi.org/10.1016/B978-0-08-102198-9.00010-7
    50. Akshatha Prasanna, R Pooja, V Suchithra, Akhil Ravikumar, Praveen Kumar Gupta, Vidya Niranjan. Smart Drug Delivery Systems for Cancer Treatment Using Nanomaterials. Materials Today: Proceedings 2018, 5 (10) , 21047-21054. https://doi.org/10.1016/j.matpr.2018.06.498
    51. Qiong Dai, Nadja Bertleff‐Zieschang, Julia A. Braunger, Mattias Björnmalm, Christina Cortez‐Jugo, Frank Caruso. Particle Targeting in Complex Biological Media. Advanced Healthcare Materials 2018, 7 (1) https://doi.org/10.1002/adhm.201700575
    52. C. Fede, Giovanna Albertin, L. Petrelli, R. De Caro, I. Fortunati, V. Weber, Camilla Ferrante. Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles. Journal of Nanoparticle Research 2017, 19 (9) https://doi.org/10.1007/s11051-017-3993-5
    53. Yu Shrike Zhang, Yi-Nan Zhang, Weijia Zhang. Cancer-on-a-chip systems at the frontier of nanomedicine. Drug Discovery Today 2017, 22 (9) , 1392-1399. https://doi.org/10.1016/j.drudis.2017.03.011
    54. O. Mitxelena-Iribarren, C. L. Hisey, M. Errazquin-Irigoyen, Y. González-Fernández, E. Imbuluzqueta, M. Mujika, M. J. Blanco-Prieto, S. Arana. Effectiveness of nanoencapsulated methotrexate against osteosarcoma cells: in vitro cytotoxicity under dynamic conditions. Biomedical Microdevices 2017, 19 (2) https://doi.org/10.1007/s10544-017-0177-0
    55. Kwanwoo Shin. New Equipment and Devices for Therapeutic Purpose. International Neurourology Journal 2017, 21 (Suppl 1) , S2-3. https://doi.org/10.5213/inj.1720edi004
    56. Taehee Kang, Thuy Thi-Thanh Tran, Chulhun Park, Beom-Jin Lee. Biomimetic shear stress and nanoparticulate drug delivery. Journal of Pharmaceutical Investigation 2017, 47 (2) , 133-139. https://doi.org/10.1007/s40005-017-0313-0
    57. Yujing Li, Robert J. Lee, Xueqin Huang, Yuhuan Li, Bingcong Lv, Tianpeng Wang, Yuhang Qi, Fei Hao, Jiahui Lu, Qingfan Meng, Lirong Teng, Yulin Zhou, Jing Xie, Lesheng Teng. Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery. Nanomedicine: Nanotechnology, Biology and Medicine 2017, 13 (2) , 371-381. https://doi.org/10.1016/j.nano.2016.09.014
    58. Po-Hsin Chou, Shih-Tien Wang, Meng-Hua Yen, Chien-Lin Liu, Ming-Chau Chang, Oscar Kuang-Sheng Lee. Fluid-induced, shear stress-regulated extracellular matrix and matrix metalloproteinase genes expression on human annulus fibrosus cells. Stem Cell Research & Therapy 2016, 7 (1) https://doi.org/10.1186/s13287-016-0292-5
    59. Yujing Li, Xueqin Huang, Robert Lee, Yuhang Qi, Kaikai Wang, Fei Hao, Yu Zhang, Jiahui Lu, Qingfan Meng, Shuai Li, Jing Xie, Lesheng Teng. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery. Molecules 2016, 21 (10) , 1314. https://doi.org/10.3390/molecules21101314
    60. Jessie R. Nedrow, Joseph D. Latoche, Kathryn E. Day, Jalpa Modi, Tanushree Ganguly, Dexing Zeng, Brenda F. Kurland, Clifford E. Berkman, Carolyn J. Anderson. Targeting PSMA with a Cu-64 Labeled Phosphoramidate Inhibitor for PET/CT Imaging of Variant PSMA-Expressing Xenografts in Mouse Models of Prostate Cancer. Molecular Imaging and Biology 2016, 18 (3) , 402-410. https://doi.org/10.1007/s11307-015-0908-7
    61. Jung Hyun Yoon, Dae Kyung Kim, Miso Na, Sei Young Lee. Multi-ligand functionalized particle design for cell targeting and drug delivery. Biophysical Chemistry 2016, 213 , 25-31. https://doi.org/10.1016/j.bpc.2016.03.006
    62. Eri A. Takami, Folarin Erogbogbo. Microfluidic Synthesis of Lipid-Polymer Hybrid Nanoparticles for Targeted Drug Delivery. MRS Advances 2016, 1 (29) , 2155-2160. https://doi.org/10.1557/adv.2016.446
    63. Christin Grabinski, Monita Sharma, Elizabeth Maurer, Courtney Sulentic, R. Mohan Sankaran, Saber Hussain. The effect of shear flow on nanoparticle agglomeration and deposition in in vitro dynamic flow models. Nanotoxicology 2016, 7 , 1-10. https://doi.org/10.3109/17435390.2015.1018978
    64. Taehee Kang, Chulhun Park, Jin-Seok Choi, Jing-Hao Cui, Beom-Jin Lee. Effects of shear stress on the cellular distribution of polystyrene nanoparticles in a biomimetic microfluidic system. Journal of Drug Delivery Science and Technology 2016, 31 , 130-136. https://doi.org/10.1016/j.jddst.2015.12.001
    65. J. H. Yoon, D. K. Kim, J. Key, S. W. Lee, S. Y. Lee. Adhesion characteristics of nano/micro-sized particles with dual ligands with different interaction distances. RSC Advances 2016, 6 (92) , 89785-89793. https://doi.org/10.1039/C6RA14974J
    66. Ellen Broda, Frauke Martina Mickler, Ulrich Lächelt, Stephan Morys, Ernst Wagner, Christoph Bräuchle. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions. Journal of Controlled Release 2015, 213 , 79-85. https://doi.org/10.1016/j.jconrel.2015.06.030
    67. M. Godoy-Gallardo, P. K. Ek, M. M. T. Jansman, B. M. Wohl, L. Hosta-Rigau. Interaction between drug delivery vehicles and cells under the effect of shear stress. Biomicrofluidics 2015, 9 (5) https://doi.org/10.1063/1.4923324
    68. Karthiga Panneerselvam, Martin E. Lynge, Camilla Frich Riber, Sofia Mena-Hernando, Anton A. A. Smith, Kenneth N. Goldie, Alexander N. Zelikin, Brigitte Städler. Phospholipid—polymer amphiphile hybrid assemblies and their interaction with macrophages. Biomicrofluidics 2015, 9 (5) https://doi.org/10.1063/1.4929405
    69. Corinne R. Ley, Nathan R. Beattie, Shorouk Dannoon, Melanie Regan, Henry VanBrocklin, Clifford E. Berkman. Synthesis and evaluation of constrained phosphoramidate inhibitors of prostate-specific membrane antigen. Bioorganic & Medicinal Chemistry Letters 2015, 25 (12) , 2536-2539. https://doi.org/10.1016/j.bmcl.2015.04.047
    70. Balabhaskar Prabhakarpandian, Ming-Che Shen, Joseph B. Nichols, Charles J. Garson, Ivy R. Mills, Majed M. Matar, Jason G. Fewell, Kapil Pant. Synthetic tumor networks for screening drug delivery systems. Journal of Controlled Release 2015, 201 , 49-55. https://doi.org/10.1016/j.jconrel.2015.01.018
    71. Yu Shrike Zhang, Ali Khademhosseini. Seeking the right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip. Nanomedicine 2015, 10 (5) , 685-688. https://doi.org/10.2217/nnm.15.18
    72. Martin E. Lynge, Marina Fernandez-Medina, Almar Postma, Brigitte Städler. Liposomal Drug Deposits in Poly(Dopamine) Coatings: Effect of Their Composition, Cell Type, Uptake Pathway Considerations, and Shear Stress. Macromolecular Bioscience 2014, 14 (12) , 1677-1687. https://doi.org/10.1002/mabi.201400350
    73. Christian Freese, Daniel Schreiner, Laura Anspach, Christoph Bantz, Michael Maskos, Ronald E Unger, C James Kirkpatrick. In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch. Particle and Fibre Toxicology 2014, 11 (1) https://doi.org/10.1186/s12989-014-0068-y
    74. Mattias Björnmalm, Yan Yan, Frank Caruso. Engineering and evaluating drug delivery particles in microfluidic devices. Journal of Controlled Release 2014, 190 , 139-149. https://doi.org/10.1016/j.jconrel.2014.04.030
    75. Nupura S. Bhise, João Ribas, Vijayan Manoharan, Yu Shrike Zhang, Alessandro Polini, Solange Massa, Mehmet R. Dokmeci, Ali Khademhosseini. Organ-on-a-chip platforms for studying drug delivery systems. Journal of Controlled Release 2014, 190 , 82-93. https://doi.org/10.1016/j.jconrel.2014.05.004
    76. XIAOYU PEI, JUN ZHANG, JIE LIU. Clinical applications of nucleic acid aptamers in cancer. Molecular and Clinical Oncology 2014, 2 (3) , 341-348. https://doi.org/10.3892/mco.2014.255
    77. Betina Fejerskov, Najah B. S. Jensen, Boon M. Teo, Brigitte Städler, Alexander N. Zelikin. Biocatalytic Polymer Coatings: On‐Demand Drug Synthesis and Localized Therapeutic Effect under Dynamic Cell Culture Conditions. Small 2014, 10 (7) , 1314-1324. https://doi.org/10.1002/smll.201303101
    78. Maria Vamvakaki. Organic Nanoparticle Bioconjugate: Micelles, Cross‐Linked Micelles, and Nanogels. 2014, 203-238. https://doi.org/10.1002/9781118775882.ch7
    79. Jiehua Zhou, John J. Rossi. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy. Molecular Therapy - Nucleic Acids 2014, 3 , e169. https://doi.org/10.1038/mtna.2014.21
    80. Karthiga Panneerselvam, Sofia Mena-Hernando, Boon M. Teo, Kenneth N. Goldie, Brigitte Städler. Liposomes equipped with poly(N-isopropyl acryl amide)-containing coatings as potential drug carriers. RSC Adv. 2014, 4 (84) , 44769-44776. https://doi.org/10.1039/C4RA07720B
    81. Netanel Korin, Mathumai Kanapathipillai, Donald E. Ingber. Shear‐Responsive Platelet Mimetics for Targeted Drug Delivery. Israel Journal of Chemistry 2013, 53 (9-10) , 610-615. https://doi.org/10.1002/ijch.201300052
    82. Xue Gou, Ho Chun Han, Songyu Hu, Anskar Y. H. Leung, Dong Sun. Applying Combined Optical Tweezers and Fluorescence Microscopy Technologies to Manipulate Cell Adhesions for Cell-to-Cell Interaction Study. IEEE Transactions on Biomedical Engineering 2013, 60 (8) , 2308-2315. https://doi.org/10.1109/TBME.2013.2255287
    83. Touseef Amna, M. Shamshi Hassan, Hoa Van Ba, Myung-Seob Khil, Hak-Kyo Lee, I.H. Hwang. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: Prospective matrix for satellite cell adhesion and cultivation. Materials Science and Engineering: C 2013, 33 (2) , 707-713. https://doi.org/10.1016/j.msec.2012.10.022
    84. Jessie R. Nedrow‐Byers, Adam L. Moore, Tanushree Ganguly, Mark R. Hopkins, Melody D. Fulton, Paul D. Benny, Clifford E. Berkman. PSMA‐targeted SPECT agents: Mode of binding effect on in vitro performance. The Prostate 2013, 73 (4) , 355-362. https://doi.org/10.1002/pros.22575
    85. Jiehua Zhou, John J. Rossi. Aptamer-Mediated siRNA Targeting. 2013, 207-220. https://doi.org/10.1007/978-1-4614-4744-3_10
    86. Nazila Kamaly, Archana Swami, Ryan Wagner, Omid Cameron Farokhzad. Nanomedicines for Diagnosis and Treatment of Prostate Cancer. 2013, 203-217. https://doi.org/10.1007/978-1-62703-182-0_15
    87. Jiro Kusunose, Hua Zhang, M. Karen J. Gagnon, Tingrui Pan, Scott I. Simon, Katherine W. Ferrara. Microfluidic System for Facilitated Quantification of Nanoparticle Accumulation to Cells Under Laminar Flow. Annals of Biomedical Engineering 2013, 41 (1) , 89-99. https://doi.org/10.1007/s10439-012-0634-0
    88. Angela A. Alexander-Bryant, Wendy S. Vanden Berg-Foels, Xuejun Wen. Bioengineering Strategies for Designing Targeted Cancer Therapies. 2013, 1-59. https://doi.org/10.1016/B978-0-12-407173-5.00002-9
    89. Yi Zhang, Jian Yang. Design strategies for fluorescent biodegradable polymeric biomaterials. J. Mater. Chem. B 2013, 1 (2) , 132-148. https://doi.org/10.1039/C2TB00071G
    90. Freya Joris, Bella B. Manshian, Karen Peynshaert, Stefaan C. De Smedt, Kevin Braeckmans, Stefaan J. Soenen. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chemical Society Reviews 2013, 42 (21) , 8339. https://doi.org/10.1039/c3cs60145e
    91. Athulya Aravind, Yasuhiko Yoshida, Toru Maekawa, D. Sakthi Kumar. Aptamer-conjugated polymeric nanoparticles for targeted cancer therapy. Drug Delivery and Translational Research 2012, 2 (6) , 418-436. https://doi.org/10.1007/s13346-012-0104-0
    92. Ching-Te Kuo, Chi-Ling Chiang, Ruby Yun-Ju Huang, Hsinyu Lee, Andrew M Wo. Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial–mesenchymal transition characteristics. NPG Asia Materials 2012, 4 (9) , e27-e27. https://doi.org/10.1038/am.2012.50
    93. Pericles Pericleous, Maria Gazouli, Anna Lyberopoulou, Spyros Rizos, Nikolaos Nikiteas, Efstathios P Efstathopoulos. Quantum dots hold promise for early cancer imaging and detection. International Journal of Cancer 2012, 131 (3) , 519-528. https://doi.org/10.1002/ijc.27528
    94. Jessie R. Nedrow‐Byers, Mohamed Jabbes, Cayla Jewett, Tanushree Ganguly, Haiyang He, Tiancheng Liu, Paul Benny, Jeffrey N. Bryan, Clifford E. Berkman. A phosphoramidate‐based prostate‐specific membrane antigen‐targeted SPECT agent. The Prostate 2012, 72 (8) , 904-912. https://doi.org/10.1002/pros.21493
    95. Mariana Medina-Sánchez, Sandrine Miserere, Arben Merkoçi. Nanomaterials and lab-on-a-chip technologies. Lab on a Chip 2012, 12 (11) , 1932. https://doi.org/10.1039/c2lc40063d
    96. Jing Zhu, ThaiHuu Nguyen, Renjun Pei, Milan Stojanovic, Qiao Lin. Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device. Lab on a Chip 2012, 12 (18) , 3504. https://doi.org/10.1039/c2lc40411g
    97. Jagat R. Kanwar, Kislay Roy, Rupinder K. Kanwar. Chimeric aptamers in cancer cell-targeted drug delivery. Critical Reviews in Biochemistry and Molecular Biology 2011, 46 (6) , 459-477. https://doi.org/10.3109/10409238.2011.614592
    98. Balabhaskar Prabhakarpandian, Ming-Che Shen, Kapil Pant, Mohammad F. Kiani. Microfluidic devices for modeling cell–cell and particle–cell interactions in the microvasculature. Microvascular Research 2011, 82 (3) , 210-220. https://doi.org/10.1016/j.mvr.2011.06.013
    99. Ming G. Li, Xiao Y. Tian, Xiongbiao Chen. Temperature Effect on the Shear‐Induced Cell Damage in Biofabrication. Artificial Organs 2011, 35 (7) , 741-746. https://doi.org/10.1111/j.1525-1594.2010.01193.x
    100. Wei Cheng, Lorenzo Capretto, Martyn Hill, Xunli Zhang. Organic Nanoparticles Using Microfluidic Technology for Drug‐Delivery Applications. 2011https://doi.org/10.1002/9783527610419.ntls0252
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect