ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Miniaturized Electroosmotic Pump Capable of Generating Pressures of More than 1200 Bar

View Author Information
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
College of Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang 315016, P. R. China
§ College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430073, P. R. China
*Email: [email protected]. Fax: (405) 325-6111.
Cite this: Anal. Chem. 2012, 84, 21, 9609–9614
Publication Date (Web):October 12, 2012
https://doi.org/10.1021/ac3025703
Copyright © 2012 American Chemical Society

Article Views

1187

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)

Abstract

Abstract Image

The pressure output of a pump cannot be increased simply by connecting several of them in series. This barrier is eliminated with the micropump developed in this work. The pump is actually an assembly of a number of fundamental pump units connected in series. The maximum pressure output of this pump assembly is directly proportional to the number of serially connected pump units. Theoretically, one can always enhance the pressure output by adding more pump units in the assembly, but in reality the upper pressure is constrained by the microtees or microunions joining the pump components. With commercially available microtees and microunions, pressures of more than 1200 bar have been achieved. We have recently experimented using open capillaries to build this pump, but many capillaries have to be utilized in parallel to produce an adequate flow to drive HPLC separations. In this paper, we synthesize polymer monoliths inside 75 μm i.d. capillaries, use these monoliths to assemble miniaturized pumps, characterize the performance of these pumps, and employ these pumps for HPLC separations of intact proteins. By tuning the experimental parameters for monolith preparations, we obtain both negatively and positively charged submicrometer capillary channels conveniently. Each monolith in a 75 μm i.d. capillary is equivalent to several thousands of open capillaries.

Cited By

This article is cited by 39 publications.

  1. Eiko Westerbeek, Pierre Gelin, Wouter Olthuis, Jan Eijkel, Wim De Malsche. C-Term Reduction in 3 μm Open-Tubular High-Aspect-Ratio Channels in AC-EOF Vortex Chromatography Operation. Analytical Chemistry 2023, 95 (11) , 4889-4895. https://doi.org/10.1021/acs.analchem.2c04547
  2. Yuanyuan Wu, Yunlong Shao, Wenmei Zhang, Boye Li, Liang Zhao, Dongtang Zhang, Guangsheng Guo, Xiayan Wang. Silica-Based Nanopipettes for Rapid Living Single-Cell Transfection. ACS Applied Nano Materials 2021, 4 (7) , 6956-6963. https://doi.org/10.1021/acsanm.1c00974
  3. Apeng Chen, Kyle B. Lynch, Jiangtao Ren, Zhijian Jia, Yu Yang, Joann J. Lu, and Shaorong Liu . Tunable Electroosmosis-Based Femto-Liter Pipette: A Promising Tool toward Living-Cell Surgery. Analytical Chemistry 2017, 89 (20) , 10806-10812. https://doi.org/10.1021/acs.analchem.7b02132
  4. Sonika Sharma, Alex Plistil, Hal E. Barnett, H. Dennis Tolley, Paul B. Farnsworth, Stanley D. Stearns, and Milton L. Lee . Hand-Portable Gradient Capillary Liquid Chromatography Pumping System. Analytical Chemistry 2015, 87 (20) , 10457-10461. https://doi.org/10.1021/acs.analchem.5b02583
  5. Lei Zhou, Joann Juan Lu, Congying Gu, and Shaorong Liu . Binary Electroosmotic-Pump Nanoflow Gradient Generator for Miniaturized High-Performance Liquid Chromatography. Analytical Chemistry 2014, 86 (24) , 12214-12219. https://doi.org/10.1021/ac503223r
  6. Wei Wang, Congying Gu, Kyle B. Lynch, Joann J. Lu, Zhengyu Zhang, Qiaosheng Pu, and Shaorong Liu . High-Pressure Open-Channel On-Chip Electroosmotic Pump for Nanoflow High Performance Liquid Chromatography. Analytical Chemistry 2014, 86 (4) , 1958-1964. https://doi.org/10.1021/ac4040345
  7. Karolina Svensson, Chris Weise, Hannes Westphal, Simon Södergren, Detlev Belder, Klas Hjort. Coupling microchip pressure regulators with chipHPLC as a step toward fully portable analysis system. Sensors and Actuators B: Chemical 2023, 385 , 133732. https://doi.org/10.1016/j.snb.2023.133732
  8. Balapuwaduge Lihini Mendis, Ziyi He, Xiaojun Li, Jing Wang, Chong Li, Peng Li. Acoustic Atomization-Induced Pumping Based on a Vibrating Sharp-Tip Capillary. Micromachines 2023, 14 (6) , 1212. https://doi.org/10.3390/mi14061212
  9. Robert A. Stavins, William P. King. Three-dimensional elastomer bellows microfluidic pump. Microfluidics and Nanofluidics 2023, 27 (2) https://doi.org/10.1007/s10404-023-02624-9
  10. Victor Abrahamsson, Isik Kanik. In situ organic biosignature detection techniques for space applications. Frontiers in Astronomy and Space Sciences 2022, 9 https://doi.org/10.3389/fspas.2022.959670
  11. Apeng Chen, Shaorong Liu. Open tubular liquid chromatographic system for using columns with inner diameter of 2 µm. A tutorial. Journal of Chromatography A 2022, 1673 , 463202. https://doi.org/10.1016/j.chroma.2022.463202
  12. Yingyan Zhou, Guangsheng Guo, Xiayan Wang. Development of Ultranarrow‐Bore Open Tubular High Efficiency Liquid Chromatography. Chinese Journal of Chemistry 2022, 40 (1) , 137-152. https://doi.org/10.1002/cjoc.202100445
  13. Piliang Xiang, Yu Yang, Huang Chen, Apeng Chen, Shaorong Liu. Liquid chromatography using ≤5 μm open tubular columns. TrAC Trends in Analytical Chemistry 2021, 142 , 116321. https://doi.org/10.1016/j.trac.2021.116321
  14. Toyohiro Naito, Hiroki Inoue, Takuya Kubo, Koji Otsuka. Simple chemical detection based on a surface-modified electroosmotic pump via interval immobilization. Analytical Methods 2021, 13 (13) , 1559-1564. https://doi.org/10.1039/D0AY02195D
  15. Faraz Rahimi, Stelios Chatzimichail, Aliyah Saifuddin, Andrew J. Surman, Simon D. Taylor-Robinson, Ali Salehi-Reyhani. A Review of Portable High-Performance Liquid Chromatography: the Future of the Field?. Chromatographia 2020, 83 (10) , 1165-1195. https://doi.org/10.1007/s10337-020-03944-6
  16. Matthew J. Sorensen, Brady G. Anderson, Robert T. Kennedy. Liquid chromatography above 20,000 PSI. TrAC Trends in Analytical Chemistry 2020, 124 , 115810. https://doi.org/10.1016/j.trac.2020.115810
  17. Dalei Jing, Xuekuan Zhan. Cross-Sectional Dimension Dependence of Electroosmotic Flow in Fractal Treelike Rectangular Microchannel Network. Micromachines 2020, 11 (3) , 266. https://doi.org/10.3390/mi11030266
  18. Stelios Chatzimichail, Duncan Casey, Ali Salehi-Reyhani. Zero electrical power pump for portable high-performance liquid chromatography. The Analyst 2019, 144 (21) , 6207-6213. https://doi.org/10.1039/C9AN01302D
  19. Yongchang Zheng, Kai Kang, Fucun Xie, Hanyu Li, Meng Gao. A Multichannel Electroosmotic Flow Pump Using Liquid Metal Electrodes. BioChip Journal 2019, 13 (3) , 217-225. https://doi.org/10.1007/s13206-019-3303-7
  20. Lin Li, Xiayan Wang, Qiaosheng Pu, Shaorong Liu. Advancement of electroosmotic pump in microflow analysis: A review. Analytica Chimica Acta 2019, 1060 , 1-16. https://doi.org/10.1016/j.aca.2019.02.004
  21. Zi Ye, Renchang Zhang, Meng Gao, Zhongshan Deng, Lin Gui. Development of a High Flow Rate 3-D Electroosmotic Flow Pump. Micromachines 2019, 10 (2) , 112. https://doi.org/10.3390/mi10020112
  22. Farideh Haghighi, Zahra Talebpour, Amir Sanati Nezhad. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. TrAC Trends in Analytical Chemistry 2018, 105 , 302-337. https://doi.org/10.1016/j.trac.2018.05.002
  23. Mohammad R. Hossan, Diganta Dutta, Nazmul Islam, Prashanta Dutta. Review: Electric field driven pumping in microfluidic device. ELECTROPHORESIS 2018, 39 (5-6) , 702-731. https://doi.org/10.1002/elps.201700375
  24. Kyle B. Lynch, Apeng Chen, Shaorong Liu. Miniaturized high-performance liquid chromatography instrumentation. Talanta 2018, 177 , 94-103. https://doi.org/10.1016/j.talanta.2017.09.016
  25. Laura E. Blue, Edward G. Franklin, Justin M. Godinho, James P. Grinias, Kaitlin M. Grinias, Daniel B. Lunn, Stephanie M. Moore. Recent advances in capillary ultrahigh pressure liquid chromatography. Journal of Chromatography A 2017, 1523 , 17-39. https://doi.org/10.1016/j.chroma.2017.05.039
  26. Kyle B. Lynch, Apeng Chen, Yu Yang, Joann J. Lu, Shaorong Liu. High-performance liquid chromatographic cartridge with gradient elution capability coupled with UV absorbance detector and mass spectrometer for peptide and protein analysis. Journal of Separation Science 2017, 40 (13) , 2752-2758. https://doi.org/10.1002/jssc.201700185
  27. Nor Akma Mamat, Hong Heng See. Simultaneous electromembrane extraction of cationic and anionic herbicides across hollow polymer inclusion membranes with a bubbleless electrode. Journal of Chromatography A 2017, 1504 , 9-16. https://doi.org/10.1016/j.chroma.2017.05.005
  28. Deepa Sritharan, Elisabeth Smela. Fabrication of a Miniature Paper-Based Electroosmotic Actuator. Polymers 2016, 8 (11) , 400. https://doi.org/10.3390/polym8110400
  29. Meng Gao, Lin Gui. Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes. Micromachines 2016, 7 (9) , 165. https://doi.org/10.3390/mi7090165
  30. Amir Shamloo, Arshia Merdasi, Parham Vatankhah. Numerical Simulation of Heat Transfer in Mixed Electroosmotic Pressure-Driven Flow in Straight Microchannels. Journal of Thermal Science and Engineering Applications 2016, 8 (2) https://doi.org/10.1115/1.4031933
  31. Michal Greguš, František Foret, Petr Kubáň. Portable capillary electrophoresis instrument with contactless conductivity detection for on-site analysis of small volumes of biological fluids. Journal of Chromatography A 2016, 1427 , 177-185. https://doi.org/10.1016/j.chroma.2015.11.088
  32. Sonika Sharma, Luke T. Tolley, H. Dennis Tolley, Alex Plistil, Stanley D. Stearns, Milton L. Lee. Hand-portable liquid chromatographic instrumentation. Journal of Chromatography A 2015, 1421 , 38-47. https://doi.org/10.1016/j.chroma.2015.07.119
  33. Rakesh Saini, Matthew Kenny, Dominik P. J. Barz. Electroosmotic flow through packed beds of granular materials. Microfluidics and Nanofluidics 2015, 19 (3) , 693-708. https://doi.org/10.1007/s10404-015-1594-0
  34. Apeng Chen, Joann J. Lu, Congying Gu, Min Zhang, Kyle B. Lynch, Shaorong Liu. Combining selection valve and mixing chamber for nanoflow gradient generation: Toward developing a liquid chromatography cartridge coupled with mass spectrometer for protein and peptide analysis. Analytica Chimica Acta 2015, 887 , 230-236. https://doi.org/10.1016/j.aca.2015.06.035
  35. Apeng Chen, Kyle B. Lynch, Xiaochun Wang, Joann J. Lu, Congying Gu, Shaorong Liu. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis. Analytica Chimica Acta 2014, 844 , 90-98. https://doi.org/10.1016/j.aca.2014.06.042
  36. Meng Gao, Lin Gui. A handy liquid metal based electroosmotic flow pump. Lab Chip 2014, 14 (11) , 1866-1872. https://doi.org/10.1039/C4LC00111G
  37. Joel S. Paustian, Andrew J. Pascall, Neil M. Wilson, Todd M. Squires. Induced charge electroosmosis micropumps using arrays of Janus micropillars. Lab Chip 2014, 14 (17) , 3300-3312. https://doi.org/10.1039/C4LC00141A
  38. Zaifang Zhu, Huang Chen, Wei Wang, Aaron Morgan, Congying Gu, Chiyang He, Joann J. Lu, Shaorong Liu. Integrated Bare Narrow Capillary-Hydrodynamic Chromatographic System for Free-Solution DNA Separation at the Single-Molecule Level. Angewandte Chemie 2013, 125 (21) , 5722-5726. https://doi.org/10.1002/ange.201300208
  39. Zaifang Zhu, Huang Chen, Wei Wang, Aaron Morgan, Congying Gu, Chiyang He, Joann J. Lu, Shaorong Liu. Integrated Bare Narrow Capillary-Hydrodynamic Chromatographic System for Free-Solution DNA Separation at the Single-Molecule Level. Angewandte Chemie International Edition 2013, 52 (21) , 5612-5616. https://doi.org/10.1002/anie.201300208

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect