ACS Publications. Most Trusted. Most Cited. Most Read
Sample Preparation-Free, Real-Time Detection of microRNA in Human Serum Using Piezoelectric Cantilever Biosensors at Attomole Level
My Activity
    Article

    Sample Preparation-Free, Real-Time Detection of microRNA in Human Serum Using Piezoelectric Cantilever Biosensors at Attomole Level
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
    *E-mail: [email protected]. Tel: (215) 895-2236. Fax: (215) 895-5837.
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2012, 84, 23, 10426–10436
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac303055c
    Published October 28, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A sensitive, selective, sample preparation-free method for near real-time detection of microRNA in buffer and human serum is given using gold (Au)-coated dynamic piezoelectric cantilever sensors. Sensor response to thiolated DNA probe chemisorption, hsa-let-7a hybridization, labeled-DNA hybridization, and Au nanoparticle-functionalized DNA hybridization was monitored continuously in flowing liquid samples using custom flow-cells. The assay showed successful detection of target let-7a with a dynamic range spanning 6 orders of magnitude (10 fM–1 nM) with a limit of detection of less than 10 attomoles (∼4 fM). The serum background had negligible effect on sensitivity relative to the results obtained in the buffer due to reduction in nonspecific binding caused by continuous sensor vibration. Both hybridization and nonspecific binding reduction were confirmed using fluorescence-based assays to support sensor-based results. The sensor-based method demonstrated excellent selectivity for the microRNA target in comparison with similar microRNA differing by only a single nucleotide (hsa-let-7c) and random microRNA sequences. Au nanoparticle-based amplification of sensor response was investigated and led to an order of magnitude improvement in the detection limit and a 128% amplification of sensor response over the entire dynamic range. Au nanoparticle amplification was verified by scanning electron microscopy. The cantilever sensor-based microRNA assay provides competitive sensitivity with current microRNA detection methods and has the advantage of requiring no sample preparation, even when working with biological samples that contain a complex background.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    A schematic of the experimental apparatus (Figure S.1), sensor response to gold nanoparticle (Au NP) amplification of let-7a (Figure S.2), and scanning electron micrographs of Au NP-amplified samples versus Au control samples are given (Figure S.3). We also present the reproducibility of the laboratory-fabricated cantilever sensors design, whereby we include the fabrication-associated error instead of the assay-associated error which is presented in the main body of the manuscript (Figures S.4 and S.5). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 72 publications.

    1. Ziheng Wei, Xiaoli Yang, Lingrui Xu, Lamu Benma, Danhong Wu, Hulie Zeng. Microsphere-Enhanced Fluorescence-Lightened Solid-Phase Hybridization Assay: The Strategy to Highly Selective Detection of Micro Ribonucleic Acids. Analytical Chemistry 2024, 96 (17) , 6738-6745. https://doi.org/10.1021/acs.analchem.4c00365
    2. Junru Zhang, Purna Srivatsa, Fazel Haq Ahmadzai, Yang Liu, Xuerui Song, Anuj Karpatne, Zhenyu Kong, Blake N. Johnson. Reduction of Biosensor False Responses and Time Delay Using Dynamic Response and Theory-Guided Machine Learning. ACS Sensors 2023, 8 (11) , 4079-4090. https://doi.org/10.1021/acssensors.3c01258
    3. Thierry Leïchlé, Liviu Nicu, Thomas Alava. MEMS Biosensors and COVID-19: Missed Opportunity. ACS Sensors 2020, 5 (11) , 3297-3305. https://doi.org/10.1021/acssensors.0c01463
    4. Thakshila Liyanage, Adrianna N. Masterson, Hector H. Oyem, Hristos Kaimakliotis, Hang Nguyen, Rajesh Sardar. Plasmoelectronic-Based Ultrasensitive Assay of Tumor Suppressor microRNAs Directly in Patient Plasma: Design of Highly Specific Early Cancer Diagnostic Technology. Analytical Chemistry 2019, 91 (3) , 1894-1903. https://doi.org/10.1021/acs.analchem.8b03768
    5. Chih-Tsung Yang, Mohammad Pourhassan-Moghaddam, Lin Wu, Ping Bai, and Benjamin Thierry . Ultrasensitive Detection of Cancer Prognostic miRNA Biomarkers Based on Surface Plasmon Enhanced Light Scattering. ACS Sensors 2017, 2 (5) , 635-640. https://doi.org/10.1021/acssensors.6b00776
    6. Berta Esteban-Fernández de Ávila, Aída Martín, Fernando Soto, Miguel Angel Lopez-Ramirez, Susana Campuzano, Gersson Manuel Vásquez-Machado, Weiwei Gao, Liangfang Zhang, and Joseph Wang . Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS Nano 2015, 9 (7) , 6756-6764. https://doi.org/10.1021/acsnano.5b02807
    7. Gayatri K. Joshi, Samantha Deitz-McElyea, Merrell Johnson, Sonali Mali, Murray Korc, and Rajesh Sardar . Highly Specific Plasmonic Biosensors for Ultrasensitive MicroRNA Detection in Plasma from Pancreatic Cancer Patients. Nano Letters 2014, 14 (12) , 6955-6963. https://doi.org/10.1021/nl503220s
    8. Pengbo Zhang, Jiangyan Zhang, Chengli Wang, Chenghui Liu, Hui Wang, and Zhengping Li . Highly Sensitive and Specific Multiplexed MicroRNA Quantification Using Size-Coded Ligation Chain Reaction. Analytical Chemistry 2014, 86 (2) , 1076-1082. https://doi.org/10.1021/ac4026384
    9. Blake N. Johnson and Raj Mutharasan . A Cantilever Biosensor-Based Assay for Toxin-Producing Cyanobacteria Microcystis aeruginosa using 16S rRNA. Environmental Science & Technology 2013, 47 (21) , 12333-12341. https://doi.org/10.1021/es402925k
    10. Seyed Majid Hosseini Aghouzi, Esma Yildiz, Fulya Mordogan, Arzum Erdem. Biosensing of single-nucleotide polymorphism: Technological advances and their transformative applications on health. Biosensors and Bioelectronics 2025, 279 , 117385. https://doi.org/10.1016/j.bios.2025.117385
    11. Mohammad-Jalil Zare-Mehrjardi, Mahtab Hatami-Araghi, Majid Jafari-Khorchani, Zahra Oushyani Roudsari, Mortaza Taheri-Anganeh, Mona Abdolrahmat, Hassan Ghasemi, Saleh Aiiashi. RNA biosensors for detection of pancreatic cancer. Clinica Chimica Acta 2025, 571 , 120237. https://doi.org/10.1016/j.cca.2025.120237
    12. Xubo Yue, Yang Liu, Albert S. Berahas, Blake N. Johnson, Raed Al Kontar. Collaborative and Distributed Bayesian Optimization via Consensus. IEEE Transactions on Automation Science and Engineering 2025, 22 , 11343-11355. https://doi.org/10.1109/TASE.2025.3529349
    13. Junru Zhang, Purna Srivatsa, Fazel Haq Ahmadzai, Yang Liu, Xuerui Song, Anuj Karpatne, Zhenyu (James) Kong, Blake N. Johnson. Improving biosensor accuracy and speed using dynamic signal change and theory-guided deep learning. Biosensors and Bioelectronics 2024, 246 , 115829. https://doi.org/10.1016/j.bios.2023.115829
    14. HaoZhe SUN, XiaoRong HONG, Chang-Yin JI, JiaFang LI. Research progresses of micro-/nano-opto-mechanical sensors. SCIENTIA SINICA Physica, Mechanica & Astronomica 2023, 53 (11) , 114205. https://doi.org/10.1360/SSPMA-2023-0007
    15. Karthik Basthi Shivaram, Pankaj Bhatt, Mohit S. Verma, Kari Clase, Halis Simsek. Bacteriophage-based biosensors for detection of pathogenic microbes in wastewater. Science of The Total Environment 2023, 901 , 165859. https://doi.org/10.1016/j.scitotenv.2023.165859
    16. Payam Shahbazi-Derakhshi, Elham Mahmoudi, Mir Mostafa Majidi, Hessamaddin Sohrabi, Mohammad Amini, Mir Reza Majidi, Aligholi Niaei, Nima Shaykh-Baygloo, Ahad Mokhtarzadeh. An Ultrasensitive miRNA-Based Genosensor for Detection of MicroRNA 21 in Gastric Cancer Cells Based on Functional Signal Amplifier and Synthesized Perovskite-Graphene Oxide and AuNPs. Biosensors 2023, 13 (2) , 172. https://doi.org/10.3390/bios13020172
    17. Shujun Ma, Muxin Li, Shiliang Wang, Hui Liu, Hao Wang, Lei Ren, Minghao Huang, Xinwen Zhang. Multiple particle identification by sequential frequency-shift measurement of a micro-plate. International Journal of Mechanical Sciences 2022, 231 , 107587. https://doi.org/10.1016/j.ijmecsci.2022.107587
    18. Hemani Dara, Mukund Mali, Hrushikesh Aher, PrafullaKumar Patil, Bichismita Sahu, Neha Arya. Point of care diagnostics for cancer: Recent trends and challenges. 2022, 29-64. https://doi.org/10.1016/B978-0-323-85147-3.00006-2
    19. Sammy A. Perdomo, Juan M. Marmolejo-Tejada, Andres Jaramillo-Botero. Review—Bio-Nanosensors: Fundamentals and Recent Applications. Journal of The Electrochemical Society 2021, 168 (10) , 107506. https://doi.org/10.1149/1945-7111/ac2972
    20. Sedigheh Falahi, Hossain-Ali Rafiee-Pour, Mashaalah Zarejousheghani, Parvaneh Rahimi, Yvonne Joseph. Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer. Biomedicines 2021, 9 (8) , 964. https://doi.org/10.3390/biomedicines9080964
    21. Xinmiao Liu, Weixin Liu, Zhihao Ren, Yiming Ma, Bowei Dong, Guangya Zhou, Chengkuo Lee. Progress of optomechanical micro/nano sensors: a review. International Journal of Optomechatronics 2021, 15 (1) , 120-159. https://doi.org/10.1080/15599612.2021.1986612
    22. Lihao Wang, Dengyuan Fu, Xiaochen Liu, Junyuan Zhao, Jicong Zhao, Quan Yuan, Yinfang Zhu, Jinling Yang, Fuhua Yang. Highly sensitive biosensor based on a microcantilever and alternating current electrothermal technology. Journal of Micromechanics and Microengineering 2021, 31 (1) , 015009. https://doi.org/10.1088/1361-6439/abcae6
    23. Ellen Cesewski, Blake N. Johnson. Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics 2020, 159 , 112214. https://doi.org/10.1016/j.bios.2020.112214
    24. Adrianna N. Masterson, Thakshila Liyanage, Claire Berman, Hristos Kaimakliotis, Merrell Johnson, Rajesh Sardar. A novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses. The Analyst 2020, 145 (12) , 4173-4180. https://doi.org/10.1039/D0AN00538J
    25. Roghayeh Sheervalilou, Omolbanin Shahraki, Leili Hasanifard, Milad Shirvaliloo, Sahar Mehranfar, Hajie Lotfi, Younes Pilehvar-Soltanahmadi, Zahra Bahmanpour, Sadaf Sarraf Zadeh, Ziba Nazarlou, Haleh Kangarlou, Habib Ghaznavi, Nosratollah Zarghami. Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs. Current Molecular Medicine 2019, 20 (1) , 13-35. https://doi.org/10.2174/1566524019666191001114941
    26. Jean Cacheux, Aurélien Bancaud, Thierry Leichlé, Pierre Cordelier. Technological Challenges and Future Issues for the Detection of Circulating MicroRNAs in Patients With Cancer. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00815
    27. Roberta D’Agata, Giuseppe Spoto. Advanced methods for microRNA biosensing: a problem-solving perspective. Analytical and Bioanalytical Chemistry 2019, 411 (19) , 4425-4444. https://doi.org/10.1007/s00216-019-01621-8
    28. Fengjiao Zheng, Peixi Wang, Qingfeng Du, Yiping Chen, Nan Liu. Simultaneous and Ultrasensitive Detection of Foodborne Bacteria by Gold Nanoparticles-Amplified Microcantilever Array Biosensor. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00232
    29. Ruchita Shandilya, Arpit Bhargava, Neha Bunkar, Rajnarayan Tiwari, Irina Yu Goryacheva, Pradyumna Kumar Mishra. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosensors and Bioelectronics 2019, 130 , 147-165. https://doi.org/10.1016/j.bios.2019.01.034
    30. Ece Eksin, Santosh Kumar Bikkarolla, Arzum Erdem, Pagona Papakonstantinou. Chitosan/Nitrogen Doped Reduced Graphene Oxide Modified Biosensor for Impedimetric Detection of microRNA. Electroanalysis 2018, 30 (3) , 551-560. https://doi.org/10.1002/elan.201700663
    31. Theofilos Papadopoulos, Julie Klein, Jean‐Loup Bascands, Joost P. Schanstra. miRNA Analysis. 2018, 67-92. https://doi.org/10.1002/9781119183952.ch5
    32. Yunbo Luo. Functional Nucleic Acid Based Biosensors for MicroRNA Detection. 2018, 325-340. https://doi.org/10.1007/978-981-10-8219-1_12
    33. Armin Salek-Maghsoudi, Faezeh Vakhshiteh, Raheleh Torabi, Shokoufeh Hassani, Mohammad Reza Ganjali, Parviz Norouzi, Morteza Hosseini, Mohammad Abdollahi. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosensors and Bioelectronics 2018, 99 , 122-135. https://doi.org/10.1016/j.bios.2017.07.047
    34. Tugba Kilic, Arzum Erdem, Mehmet Ozsoz, Sandro Carrara. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosensors and Bioelectronics 2018, 99 , 525-546. https://doi.org/10.1016/j.bios.2017.08.007
    35. Stephane Leahy, Yongjun Lai. A gap method for increasing the sensitivity of cantilever biosensors. Journal of Applied Physics 2017, 122 (6) https://doi.org/10.1063/1.4989959
    36. Myung-Sic Chae, Jinsik Kim, Yong Yoo, Jeong Lee, Tae Kim, Kyo Hwang. Study of Alzheimer’s Disease-Related Biophysical Kinetics with a Microslit-Embedded Cantilever Sensor in a Liquid Environment. Sensors 2017, 17 (8) , 1819. https://doi.org/10.3390/s17081819
    37. Kewei Zhang, Qianke Zhu, Zhe Chen. Effect of Distributed Mass on the Node, Frequency, and Sensitivity of Resonant-Mode Based Cantilevers. Sensors 2017, 17 (7) , 1621. https://doi.org/10.3390/s17071621
    38. Tran Quang Hung, Wai Hoe Chin, Yi Sun, Anders Wolff, Dang Duong Bang. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection. Biosensors and Bioelectronics 2017, 90 , 217-223. https://doi.org/10.1016/j.bios.2016.11.028
    39. Changbei Ma, Haisheng Liu, Kefeng Wu, Mingjian Chen, Liyang Zheng, Jun Wang. An Exonuclease I-Based Quencher-Free Fluorescent Method Using DNA Hairpin Probes for Rapid Detection of MicroRNA. Sensors 2017, 17 (4) , 760. https://doi.org/10.3390/s17040760
    40. Joseph W. Ndieyira, Joe Bailey, Samadhan B. Patil, Manuel Vögtli, Matthew A. Cooper, Chris Abell, Rachel A. McKendry, Gabriel Aeppli. Surface mediated cooperative interactions of drugs enhance mechanical forces for antibiotic action. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep41206
    41. Tun Wang, Hong-chen Guo, Xin-yi Chen, Miao Lu. Low-temperature thermal reduction of suspended graphene oxide film for electrical sensing of DNA-hybridization. Materials Science and Engineering: C 2017, 72 , 62-68. https://doi.org/10.1016/j.msec.2016.11.026
    42. Alexander P. Haring, Ellen Cesewski, Blake N. Johnson. Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA. 2017, 247-262. https://doi.org/10.1007/978-1-4939-6911-1_17
    43. Rajeev Ranjan, Elena N. Esimbekova, Valentina A. Kratasyuk. Rapid biosensing tools for cancer biomarkers. Biosensors and Bioelectronics 2017, 87 , 918-930. https://doi.org/10.1016/j.bios.2016.09.061
    44. Blake N. Johnson, Raj Mutharasan. Acoustofluidic particle trapping, manipulation, and release using dynamic-mode cantilever sensors. The Analyst 2017, 142 (1) , 123-131. https://doi.org/10.1039/C6AN01743F
    45. Andreas Kappel, Andreas Keller. miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects. Clinical Chemistry and Laboratory Medicine (CCLM) 2017, 55 (5) https://doi.org/10.1515/cclm-2016-0467
    46. Wei Wu, Wei-Heng Shih, Wan Y. Shih. Direct observation of binding stress-induced crystalline orientation change in piezoelectric plate sensors. Journal of Applied Physics 2016, 119 (12) https://doi.org/10.1063/1.4944890
    47. Anna Aviñó, César S. Huertas, Laura M. Lechuga, Ramon Eritja. Sensitive and label-free detection of miRNA-145 by triplex formation. Analytical and Bioanalytical Chemistry 2016, 408 (3) , 885-893. https://doi.org/10.1007/s00216-015-9180-6
    48. Abdul Talukdar, M. Faheem Khan, Dongkyu Lee, Seonghwan Kim, Thomas Thundat, Goutam Koley. Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms8885
    49. Jihye Lee, Jiyun Park, Jun‐Young Lee, Jong‐Souk Yeo. Contact Transfer Printing of Side Edge Prefunctionalized Nanoplasmonic Arrays for Flexible microRNA Biosensor. Advanced Science 2015, 2 (9) https://doi.org/10.1002/advs.201500121
    50. Roya Tavallaie, Swahnnya R. M. De Almeida, J. Justin Gooding. Toward biosensors for the detection of circulating microRNA as a cancer biomarker: an overview of the challenges and successes. WIREs Nanomedicine and Nanobiotechnology 2015, 7 (4) , 580-592. https://doi.org/10.1002/wnan.1324
    51. Alex Bienaimé, Vincent Chalvet, Cédric Clévy, Ludovic Gauthier-Manuel, Thomas Baron, Micky Rakotondrabe. Static/dynamic trade-off performance of PZT thick film micro-actuators. Journal of Micromechanics and Microengineering 2015, 25 (7) , 075017. https://doi.org/10.1088/0960-1317/25/7/075017
    52. David C. Ferrier, Michael P. Shaver, Philip J.W. Hands. Micro- and nano-structure based oligonucleotide sensors. Biosensors and Bioelectronics 2015, 68 , 798-810. https://doi.org/10.1016/j.bios.2015.01.031
    53. Blake N. Johnson, Raj Mutharasan. Biosensors. 2015, 391-426. https://doi.org/10.1002/9783527676330.ch16
    54. Sania Arif, Syeda Qudsia, Samina Urooj, Nazia Chaudry, Aneeqa Arshad, Saadia Andleeb. Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1. Biosensors and Bioelectronics 2015, 65 , 62-70. https://doi.org/10.1016/j.bios.2014.09.088
    55. Shengbo Sang, Qiliang Feng, Xiaoliang Tang, Tao Wang, Xiaobo Huang, Aoqun Jian, Zhibo Ma, Wendong Zhang. PDMS micro-membrane capacitance-type surface stress biosensors for biomedical analyses. Microelectronic Engineering 2015, 134 , 33-37. https://doi.org/10.1016/j.mee.2015.01.030
    56. Yafeng Wu, Jianyu Han, Peng Xue, Rong Xu, Yuejun Kang. Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 2015, 7 (5) , 1753-1759. https://doi.org/10.1039/C4NR05447D
    57. F. Frascella, S. Ricciardi, L. Pasquardini, C. Potrich, A. Angelini, A. Chiadò, C. Pederzolli, N. De Leo, P. Rivolo, C. F. Pirri, E. Descrovi. Enhanced fluorescence detection of miRNA-16 on a photonic crystal. The Analyst 2015, 140 (16) , 5459-5463. https://doi.org/10.1039/C5AN00889A
    58. Mostafa Azimzadeh, Mahdi Rahaie, Navid Nasirizadeh, Hossein Naderi-Manesh. Application of Oracet Blue in a novel and sensitive electrochemical biosensor for the detection of microRNA. Analytical Methods 2015, 7 (22) , 9495-9503. https://doi.org/10.1039/C5AY01848J
    59. Sushant Murudkar, Aruna K. Mora, Sujana Jakka, Prabhat K. Singh, Sukhendu Nath. Ultrafast molecular rotor based DNA sensor: An insight into the mode of interaction. Journal of Photochemistry and Photobiology A: Chemistry 2014, 295 , 17-25. https://doi.org/10.1016/j.jphotochem.2014.08.012
    60. Emeline Goretti, Daniel R. Wagner, Yvan Devaux. miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine?. Trends in Molecular Medicine 2014, 20 (12) , 716-725. https://doi.org/10.1016/j.molmed.2014.10.006
    61. Huimin Deng, Wei Shen, Yuqian Ren, Zhiqiang Gao. A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline. Biosensors and Bioelectronics 2014, 60 , 195-200. https://doi.org/10.1016/j.bios.2014.04.023
    62. Nuno Pires, Tao Dong, Ulrik Hanke, Nils Hoivik. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications. Sensors 2014, 14 (8) , 15458-15479. https://doi.org/10.3390/s140815458
    63. Huanshun Yin, Mo Wang, Yunlei Zhou, Xiaoyan Zhang, Bing Sun, Guihua Wang, Shiyun Ai. Photoelectrochemical biosensing platform for microRNA detection based on in situ producing electron donor from apoferritin-encapsulated ascorbic acid. Biosensors and Bioelectronics 2014, 53 , 175-181. https://doi.org/10.1016/j.bios.2013.09.053
    64. Lin Liu, Ning Xia, Huiping Liu, Xiaojing Kang, Xiaoshuan Liu, Chan Xue, Xiaoling He. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosensors and Bioelectronics 2014, 53 , 399-405. https://doi.org/10.1016/j.bios.2013.10.026
    65. Shengbo Sang, Yuan Zhao, Wendong Zhang, Pengwei Li, Jie Hu, Gang Li. Surface stress-based biosensors. Biosensors and Bioelectronics 2014, 51 , 124-135. https://doi.org/10.1016/j.bios.2013.07.033
    66. Blake N. Johnson, Raj Mutharasan. Reduction of nonspecific protein adsorption on cantilever biosensors caused by transverse resonant mode vibration. The Analyst 2014, 139 (5) , 1112. https://doi.org/10.1039/c3an01675g
    67. Blake N. Johnson, Raj Mutharasan. Biosensor-based microRNA detection: techniques, design, performance, and challenges. The Analyst 2014, 139 (7) , 1576. https://doi.org/10.1039/c3an01677c
    68. Anthony A Petrie, Anton M van der Ven, John F Honek. Nanomaterial-based biosensors. 2013, 68-82. https://doi.org/10.4155/ebo.13.300
    69. Jungkyu K. Lee, Mi Rae Kim, Insung S. Choi, Yang‐Gyun Kim, Young Hwan Jung. Surface‐Initiated, Reversible Polymerization from Surface‐Tethered Oligonucleotides by Enzymatic Processes. Chemistry – An Asian Journal 2013, 8 (5) , 908-911. https://doi.org/10.1002/asia.201201092
    70. Samira Faegh, Nader Jalili, Srinivas Sridhar. A Self-Sensing Piezoelectric MicroCantilever Biosensor for Detection of Ultrasmall Adsorbed Masses: Theory and Experiments. Sensors 2013, 13 (5) , 6089-6108. https://doi.org/10.3390/s130506089
    71. Blake N. Johnson, Raj Mutharasan. Electrochemical piezoelectric-excited millimeter-sized cantilever (ePEMC) for simultaneous dual transduction biosensing. The Analyst 2013, 138 (21) , 6365. https://doi.org/10.1039/c3an01353g
    72. Wei Shen, Huimin Deng, Yuqian Ren, Zhiqiang Gao. A real-time colorimetric assay for label-free detection of microRNAs down to sub-femtomolar levels. Chemical Communications 2013, 49 (43) , 4959. https://doi.org/10.1039/c3cc41565a

    Analytical Chemistry

    Cite this: Anal. Chem. 2012, 84, 23, 10426–10436
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac303055c
    Published October 28, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2133

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.