Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Polypyrrole Nanotube Embedded Reduced Graphene Oxide Transducer for Field-Effect Transistor-Type H2O2 Biosensor

View Author Information
School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
*E-mail: [email protected]. Fax: (+82) 2-888-1604.
Cite this: Anal. Chem. 2014, 86, 3, 1822–1828
Publication Date (Web):January 4, 2014
https://doi.org/10.1021/ac403770x
Copyright © 2014 American Chemical Society

    Article Views

    2584

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We report a rapid-response and high-sensitivity sensor with specificity toward H2O2 based on a liquid-ion-gated field-effect transistor (FET) using graphene-polypyrrole (PPy) nanotube (NT) composites as the conductive channel. The rGO, PPy, NTs, and nanocomposite materials were characterized using Raman spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). On the basis of these results, a well-organized structure is successfully prepared owing to the specific interactions between the PPy NTs and the rGO sheet. Reliable electrical contacts were developed between the rGO/PPy NTs and the microelectrodes, which remained stable when exposed to the liquid-phase analyte. Liquid-ion-gated FETs composed of these graphene nanocomposites exhibited hole-transport behavior with conductivities higher than those of rGO sheets or PPy NTs. This implies an interaction between the PPy NTs and the rGO layers, which is explained in terms of the PPy NTs forming a bridge between the rGO layers. The FET sensor provided a rapid response in real time and high sensitivity toward H2O2 with a limit of detection of 100 pM. The FET-type biosensing geometry was also highly reproducible and stable in air. Furthermore, the liquid-gated FET-type sensor exhibited specificity toward H2O2 in a mixed solution containing compounds found in biological fluids.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 86 publications.

    1. Ambika Kumari, Avik Sett, Srijeet Tripathy, Lisa Sarkar, Tarun Kanti Bhattacharyya. Amine and Thiol Cofunctionalized Reduced Graphene Oxide Field-Effect Transistor for the Selective Detection of Formaldehyde. ACS Applied Electronic Materials 2024, 6 (5) , 3464-3473. https://doi.org/10.1021/acsaelm.4c00259
    2. Siva Kumar Krishnan, Nandini Nataraj, M. Meyyappan, Umapada Pal. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Analytical Chemistry 2023, 95 (5) , 2590-2622. https://doi.org/10.1021/acs.analchem.2c03399
    3. Mona Samir, Dina Salah, Shafei Donia, Amal Kasry. Specific Chemical Modification of Nanohole Edges in Membrane Graphene for Protein Binding. ACS Applied Nano Materials 2022, 5 (3) , 3733-3742. https://doi.org/10.1021/acsanm.1c04390
    4. Arumugam Sangili, Venkatachalam Vinothkumar, Shen-Ming Chen, Pitchaimani Veerakumar, King-Chuen Lin. Gold Nanoparticle Embedded on a Reduced Graphene Oxide/polypyrrole Nanocomposite: Voltammetric Sensing of Furazolidone and Flutamide. Langmuir 2020, 36 (46) , 13949-13962. https://doi.org/10.1021/acs.langmuir.0c02448
    5. Qiang Feng, Jonathan Wilhelm, Jinming Gao. Transistor-like Ultra-pH-Sensitive Polymeric Nanoparticles. Accounts of Chemical Research 2019, 52 (6) , 1485-1495. https://doi.org/10.1021/acs.accounts.9b00080
    6. Oh Seok Kwon, Hyun Seok Song, Tai Hyun Park, Jyongsik Jang. Conducting Nanomaterial Sensor Using Natural Receptors. Chemical Reviews 2019, 119 (1) , 36-93. https://doi.org/10.1021/acs.chemrev.8b00159
    7. Arnab Maity, Xiaoyu Sui, Bing Jin, Haihui Pu, Kai J. Bottum, Xingkang Huang, Jingbo Chang, Guihua Zhou, Ganhua Lu, Junhong Chen. Resonance-Frequency Modulation for Rapid, Point-of-Care Ebola-Glycoprotein Diagnosis with a Graphene-Based Field-Effect Biotransistor. Analytical Chemistry 2018, 90 (24) , 14230-14238. https://doi.org/10.1021/acs.analchem.8b03226
    8. Miroslava Trchová, Jaroslav Stejskal. Resonance Raman Spectroscopy of Conducting Polypyrrole Nanotubes: Disordered Surface versus Ordered Body. The Journal of Physical Chemistry A 2018, 122 (48) , 9298-9306. https://doi.org/10.1021/acs.jpca.8b09794
    9. Zhixue Bai, Wenhao Dong, Yipeng Ren, Cong Zhang, and Qiang Chen . Preparation of Nano Au and Pt Alloy Microspheres Decorated with Reduced Graphene Oxide for Nonenzymatic Hydrogen Peroxide Sensing. Langmuir 2018, 34 (6) , 2235-2244. https://doi.org/10.1021/acs.langmuir.7b02626
    10. Arnab Maity, Xiaoyu Sui, Chad R. Tarman, Haihui Pu, Jingbo Chang, Guihua Zhou, Ren Ren, Shun Mao, and Junhong Chen . Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring. ACS Sensors 2017, 2 (11) , 1653-1661. https://doi.org/10.1021/acssensors.7b00496
    11. Girija Thesma Chandran, Xiaowei Li, Alana Ogata, and Reginald M. Penner . Electrically Transduced Sensors Based on Nanomaterials (2012–2016). Analytical Chemistry 2017, 89 (1) , 249-275. https://doi.org/10.1021/acs.analchem.6b04687
    12. Jiang Zhong, Shu Gao, Guobin Xue, and Bo Wang . Study on Enhancement Mechanism of Conductivity Induced by Graphene Oxide for Polypyrrole Nanocomposites. Macromolecules 2015, 48 (5) , 1592-1597. https://doi.org/10.1021/ma502449k
    13. Sajad Pirsa, Fahime Purghorbani. An overview of hydrogen peroxide sensors and their applications in food quality control. Sensor Review 2024, 44 (2) , 159-170. https://doi.org/10.1108/SR-07-2023-0289
    14. Nishu Dhanda, Yogesh Kumar Panday, Sudesh Kumar. Recent advances in the electrochemical production of hydrogen peroxide. Electrochimica Acta 2024, 481 , 143872. https://doi.org/10.1016/j.electacta.2024.143872
    15. C. G. Jinitha, S. Sonia. Functionalization Techniques for the Development of Conducting Polymer-Based Supercapacitors. 2024, 329-352. https://doi.org/10.1007/978-981-99-3021-0_13
    16. S. Sreejith, J. Ajayan, N. V. Uma Reddy, J. M. Radhika, A. V. Arun, V. T. Vijumon. Utilization of Various Graphene-FET Sensors and Their Recent Developments. 2024, 301-316. https://doi.org/10.1007/978-981-99-6649-3_23
    17. Kai Bao, Ye Chen, Qiyuan He, Hua Zhang. Thin‐Film Transistors Based on Reduced Graphene Oxide for Biosensing. 2023, 125-147. https://doi.org/10.1002/9783527843374.ch6
    18. I. R. Comnea-Stancu, R. Georgescu-State, J. F. van Staden, R. I. Stefan-van Staden. Graphene-based Nanocomposites for H2O2 Sensing. 2023, 222-257. https://doi.org/10.1039/BK9781837671847-00222
    19. S. Lokesh Amith, K. Gurunathan. Active sites tailored rGO-PPy nanosheets with high crystalline tetragonal SnO2 nanocrystals for ammonia e-sensitization at room temperature. Journal of Alloys and Compounds 2023, 960 , 170819. https://doi.org/10.1016/j.jallcom.2023.170819
    20. Elaheh Mozayan, Hossain-Ali Rafiee-Pour, Foad Ghasemi. CNT-FET for sensitive hydrogen peroxide biosensing via immobilized Cytochrome c. Archives of Biochemistry and Biophysics 2023, 744 , 109695. https://doi.org/10.1016/j.abb.2023.109695
    21. Maryam Mohammadzadeh, Sajjad Dehghani, Behzad Haghighi. Electrolyte-gated field Effect Transistors Based on Cu Interdigitated Electrode for H 2 O 2 and Glucose Sensing. Journal of The Electrochemical Society 2023, 170 (3) , 037518. https://doi.org/10.1149/1945-7111/acc363
    22. Muhammad Aamir, Saba Ashraf, Ahmed Shuja, Javeed Akhtar*,. Graphene‐based Nanoelectronic Biosensors. 2023, 25-61. https://doi.org/10.1002/9783527824229.ch2
    23. S. Sreejith, J. Ajayan, J.M. Radhika, B. Sivasankari, Shubham Tayal, M. Saravanan. A comprehensive review on graphene FET bio-sensors and their emerging application in DNA/RNA sensing & rapid Covid-19 detection. Measurement 2023, 206 , 112202. https://doi.org/10.1016/j.measurement.2022.112202
    24. Peyman Mohammadzadeh Jahani, Hadi Beitollahi, Somayeh Tajik. Surface amplification of graphite screen printed electrode using reduced graphene oxide/polypyrrole nanotubes nanocomposite; a powerful electrochemical strategy for determination of sulfite in food samples. Food and Chemical Toxicology 2022, 167 , 113274. https://doi.org/10.1016/j.fct.2022.113274
    25. Muhammad Adil Riaz, Yuan Chen. Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: a review of design strategies. Nanoscale Horizons 2022, 7 (5) , 463-479. https://doi.org/10.1039/D2NH00006G
    26. Li Wang, Xiaoping Yue, Qizeng Sun, Linrong Zhang, Guozhang Ren, Gang Lu, Hai-Dong Yu, Wei Huang. Flexible organic electrochemical transistors for chemical and biological sensing. Nano Research 2022, 15 (3) , 2433-2464. https://doi.org/10.1007/s12274-021-3856-3
    27. Edson Giuliani Ramos Fernandes, Henrique Antonio Mendonça Faria, Nirton Cristi Silva Vieira. Field-Effect Transistors for Biomedical Applications. 2022, 1-30. https://doi.org/10.1007/978-3-030-97921-8_1
    28. Mijeong Kang, Seunghun Lee. Graphene for Nanobiosensors and Nanobiochips. 2022, 203-232. https://doi.org/10.1007/978-981-16-4923-3_10
    29. Krishnendu Nath, Suman Kumar Ghosh, Narayan Chandra Das. Electrical and electronic applications of polymer-graphene composites. 2022, 343-377. https://doi.org/10.1016/B978-0-12-821639-2.00002-1
    30. Monica Naorem, Rajan Singh, Roy Paily. Detection of Hydrogen Peroxide Using rGO/PPy Nanocomposites in Silicon Dioxide Trench Embedded Field Effect Transistor. IEEE Sensors Journal 2021, 21 (20) , 22426-22433. https://doi.org/10.1109/JSEN.2021.3106248
    31. Agnivo Gosai, Kamil Khondakar, Xiao Ma, Md. Ali. Application of Functionalized Graphene Oxide Based Biosensors for Health Monitoring: Simple Graphene Derivatives to 3D Printed Platforms. Biosensors 2021, 11 (10) , 384. https://doi.org/10.3390/bios11100384
    32. Veino Risto Shaumbwa, Dagang Liu, Bright Archer, Jinlei Li, Fan Su. Preparation and application of magnetic chitosan in environmental remediation and other fields: A review. Journal of Applied Polymer Science 2021, 138 (42) https://doi.org/10.1002/app.51241
    33. Oladipo Folorunso, Yskandar Hamam, Rotimi Sadiku, Suprakas Sinha Ray, Gbolahan Joseph Adekoya. Synthesis methods of borophene, graphene-loaded polypyrrole nanocomposites and their benefits for energy storage applications: A brief overview. FlatChem 2021, 26 , 100211. https://doi.org/10.1016/j.flatc.2020.100211
    34. Agnes Purwidyantri, Ya-Chung Tian, Gardin Muhammad Andika Saputra, Briliant Adhi Prabowo, Hui-Ling Liu, Chia-Ming Yang, Chao-Sung Lai. Gold Nanoframe Array Electrode for Straightforward Detection of Hydrogen Peroxide. Chemosensors 2021, 9 (2) , 37. https://doi.org/10.3390/chemosensors9020037
    35. Mitradip Bhattacharjee, Dipankar Bandyopadhyay. Conductive Polymer Nanobiosensors. 2021, 85-118. https://doi.org/10.1007/978-3-030-73010-9_3
    36. Swapnita Patra, Sarat K. Swain. Graphene-based nanocomposites for biomedical engineering application. 2021, 197-224. https://doi.org/10.1016/B978-0-12-821553-1.00016-8
    37. Vinay Patel, Peter Kruse, Ponnambalam Ravi Selvaganapathy. Solid State Sensors for Hydrogen Peroxide Detection. Biosensors 2021, 11 (1) , 9. https://doi.org/10.3390/bios11010009
    38. Hye Suk Hwang, Jae Won Jeong, Yoong Ahm Kim, Mincheol Chang. Carbon Nanomaterials as Versatile Platforms for Biosensing Applications. Micromachines 2020, 11 (9) , 814. https://doi.org/10.3390/mi11090814
    39. Qin Fan, Lude Wang, Duo Xu, Yanhong Duo, Jie Gao, Lei Zhang, Xianbao Wang, Xiang Chen, Jinhua Li, Han Zhang. Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale 2020, 12 (21) , 11364-11394. https://doi.org/10.1039/D0NR01125H
    40. Kyung Ho Kim, Sang Hun Lee, Sung Eun Seo, Joonwon Bae, Seon Joo Park, Oh Seok Kwon. Ultrasensitive Stress Biomarker Detection Using Polypyrrole Nanotube Coupled to a Field-Effect Transistor. Micromachines 2020, 11 (4) , 439. https://doi.org/10.3390/mi11040439
    41. Sang Hun Lee, Kyung Ho Kim, Sung Eun Seo, Mun il Kim, Seon Joo Park, Oh Seok Kwon. Cytochrome C-decorated graphene field-effect transistor for highly sensitive hydrogen peroxide detection. Journal of Industrial and Engineering Chemistry 2020, 83 , 29-34. https://doi.org/10.1016/j.jiec.2019.11.009
    42. Ana Zubiarrain-Laserna, Peter Kruse. Review—Graphene-Based Water Quality Sensors. Journal of The Electrochemical Society 2020, 167 (3) , 037539. https://doi.org/10.1149/1945-7111/ab67a5
    43. Jaroslav Stejskal. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. Chemical Papers 2020, 74 (1) , 1-54. https://doi.org/10.1007/s11696-019-00982-9
    44. Chao Zheng, Xin Jin, Yutao Li, Junchi Mei, Yujie Sun, Mengmeng Xiao, Hong Zhang, Zhiyong Zhang, Guo-Jun Zhang. Sensitive Molybdenum Disulfide Based Field Effect Transistor Sensor for Real-time Monitoring of Hydrogen Peroxide. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-36752-y
    45. Murugan Thiruppathi, Pei-Ying Lin, Yi-Te Chou, Hsin-Yu Ho, Li-chen Wu, Ja-an Annie Ho. Simple aminophenol-based electrochemical probes for non-enzymatic, dual amperometric detection of NADH and hydrogen peroxide. Talanta 2019, 200 , 450-457. https://doi.org/10.1016/j.talanta.2019.03.083
    46. Jianzhi Dou, Dejie Li, Huijuan Li, Qi Kang, Jianjun Lu, Dazhong Shen. A differential photoelectrochemical hydrogen peroxide sensor based on catalytic activity difference between two zeolitic imidazolate framework surface coatings. Talanta 2019, 197 , 138-144. https://doi.org/10.1016/j.talanta.2018.12.084
    47. S. Taniselass, M.K. Md Arshad, Subash C.B. Gopinath. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosensors and Bioelectronics 2019, 130 , 276-292. https://doi.org/10.1016/j.bios.2019.01.047
    48. Muhammad Adil Riaz, Shengli Zhai, Li Wei, Zheng Zhou, Ziwen Yuan, Yanqing Wang, Qianwei Huang, Xiaozhou Liao, Yuan Chen. Ultralow-platinum-loading nanocarbon hybrids for highly sensitive hydrogen peroxide detection. Sensors and Actuators B: Chemical 2019, 283 , 304-311. https://doi.org/10.1016/j.snb.2018.12.041
    49. J. Hazarika, A. Kumar. Swift Heavy Ion Irradiation Effects on the Properties of Conducting Polymer Nanostructures. 2019, 193-242. https://doi.org/10.1007/978-3-030-05770-1_6
    50. Mihaela Cristina Baican. Polymeric Nanobiosensors. 2019, 151-181. https://doi.org/10.1016/B978-0-12-813932-5.00004-2
    51. Zuan‐Tao Lin, Yaxi Li, Jianhua Gu, Huie Wang, Zhuan Zhu, Xia Hong, Zijing Zhang, Qinqin Lu, Jingyi Qiu, Xifan Wang, Jiming Bao, Tianfu Wu. A Conductive Nanowire‐Mesh Biosensor for Ultrasensitive Detection of Serum C‐Reactive Protein in Melanoma. Advanced Functional Materials 2018, 28 (31) https://doi.org/10.1002/adfm.201802482
    52. Georgina Alarcon‐Angeles, Manuel Palomar‐Pardavé, Arben Merkoçi. 2D Materials‐based Platforms for Electroanalysis Applications. Electroanalysis 2018, 30 (7) , 1271-1280. https://doi.org/10.1002/elan.201800245
    53. Jaroslav Stejskal, Miroslava Trchová. Conducting polypyrrole nanotubes: a review. Chemical Papers 2018, 72 (7) , 1563-1595. https://doi.org/10.1007/s11696-018-0394-x
    54. Aifeng Liu, Jing Liang, Rongguang Shi, Zongshan Zhao, Yong Tian. Ultrasensitive sensor based on nano-Cu/polyaniline/nickel foam for monitoring H 2 O 2 in exhaled breath. Journal of Breath Research 2018, 12 (3) , 036001. https://doi.org/10.1088/1752-7163/aaa672
    55. Yulan Liu, Huizhi Xiong, Huabo Huang, Liang Li, Yineng Huang, Xianghua Yu. Fabrication of poly(N-methylpyrrole) nanotubes for detection of dopamine. Polymer Bulletin 2018, 75 (6) , 2357-2368. https://doi.org/10.1007/s00289-017-2157-1
    56. Aftab Aslam Parwaz Khan, Anish Khan, Abdullah M. Asiri. Graphene and Graphene Oxide Polymer Composite for Biosensors Applications. 2018, 93-112. https://doi.org/10.1002/9783527807918.ch5
    57. Samira Mansouri Majd, Abdollah Salimi. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Analytica Chimica Acta 2018, 1000 , 273-282. https://doi.org/10.1016/j.aca.2017.11.008
    58. Aiqin Zhang, Jiajing Zhou, Paramita Das, Yuanhua Xiao, Feilong Gong, Feng Li, Lizhen Wang, Linsen Zhang, Lixia Wang, Yang Cao, Hongwei Duan. Revisiting Metal Electrodeposition in Porous Anodic Alumina: Toward Tailored Preparation of Metal Nanotube Arrays. Journal of The Electrochemical Society 2018, 165 (3) , D129-D134. https://doi.org/10.1149/2.0651803jes
    59. Yuedan Wang, Xing Qing, Quan Zhou, Yang Zhang, Qiongzhen Liu, Ke Liu, Wenwen Wang, Mufang Li, Zhentan Lu, Yuanli Chen, Dong Wang. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosensors and Bioelectronics 2017, 95 , 138-145. https://doi.org/10.1016/j.bios.2017.04.018
    60. Fengxia Zhang, Ping Zhang, Qiong Wu, Wenjing Xiong, Qi Kang, Dazhong Shen. Impedance response of photoelectrochemical sensor and size-exclusion filter and catalytic effects in Mn3(BTC)2/g-C3N4/TiO2 nanotubes. Electrochimica Acta 2017, 247 , 80-88. https://doi.org/10.1016/j.electacta.2017.06.084
    61. Mani Gajendiran, Jonghoon Choi, Se-Jeong Kim, Keongsoo Kim, Heungsoo Shin, Hyung-Jun Koo, Kyobum Kim. Conductive biomaterials for tissue engineering applications. Journal of Industrial and Engineering Chemistry 2017, 51 , 12-26. https://doi.org/10.1016/j.jiec.2017.02.031
    62. Zhuo Cai, Huizhi Xiong, Zhenni Zhu, Huabo Huang, Liang Li, Yineng Huang, Xianghua Yu. Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications. Synthetic Metals 2017, 227 , 100-105. https://doi.org/10.1016/j.synthmet.2017.03.012
    63. Ruizhong Zhang, Wei Chen. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosensors and Bioelectronics 2017, 89 , 249-268. https://doi.org/10.1016/j.bios.2016.01.080
    64. A. Wisitsoraat, J. Ph. Mensing, C. Karuwan, C. Sriprachuabwong, K. Jaruwongrungsee, D. Phokharatkul, T.M. Daniels, C. Liewhiran, A. Tuantranont. Printed organo-functionalized graphene for biosensing applications. Biosensors and Bioelectronics 2017, 87 , 7-17. https://doi.org/10.1016/j.bios.2016.07.116
    65. Ji Hyun An, Jyongsik Jang. A highly sensitive FET-type aptasensor using flower-like MoS 2 nanospheres for real-time detection of arsenic( iii ). Nanoscale 2017, 9 (22) , 7483-7492. https://doi.org/10.1039/C7NR01661A
    66. Volodymyr V. Tkach, Sílvio C. De Oliveira, Yana G. Ivanushko, Svitlana M. Lukaniova, Reza Ojani, Petró I. Yagodynets´, Aline M. Da Rocha. Estudo de estabilidade da eletrossíntese e do desempenho eletroanalítico do compósito poli(l-metionina)-nano-Au na presença de dopamina e de ácido úrico. Revista Colombiana de Ciencias Químico-Farmacéuticas 2016, 45 (3) , 385-421. https://doi.org/10.15446/rcciquifa.v45n3.62027
    67. Chul Park, Changsoo Lee, Oh Kwon. Conducting Polymer Based Nanobiosensors. Polymers 2016, 8 (7) , 249. https://doi.org/10.3390/polym8070249
    68. J. Hazarika, A. Kumar. Structural and optical properties of self-assembled polypyrrole nanotubes. Journal of Polymer Research 2016, 23 (5) https://doi.org/10.1007/s10965-016-0989-2
    69. Irina Sapurina, Jaroslav Stejskal, Ivana Šeděnková, Miroslava Trchová, Jana Kovářová, Jiřina Hromádková, Jitka Kopecká, Miroslav Cieslar, Ahmed Abu El-Nasr, Mohamad M. Ayad. Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. Synthetic Metals 2016, 214 , 14-22. https://doi.org/10.1016/j.synthmet.2016.01.009
    70. Jin Wook Park, Wonjoo Na, Jyongsik Jang. One-pot synthesis of multidimensional conducting polymer nanotubes for superior performance field-effect transistor-type carcinoembryonic antigen biosensors. RSC Advances 2016, 6 (17) , 14335-14343. https://doi.org/10.1039/C5RA25392F
    71. K. S. U. Schirmer, D. Esrafilzadeh, B. C. Thompson, A. F. Quigley, R. M. I. Kapsa, G. G. Wallace. Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles. Journal of Materials Chemistry B 2016, 4 (6) , 1142-1149. https://doi.org/10.1039/C5TB02130H
    72. Satyanarayan Pattnaik, Kalpana Swain, Zhiqun Lin. Graphene and graphene-based nanocomposites: biomedical applications and biosafety. Journal of Materials Chemistry B 2016, 4 (48) , 7813-7831. https://doi.org/10.1039/C6TB02086K
    73. Pooria Moozarm Nia, Woi Pei Meng, Y. Alias. One-Step Electrodeposition of Polypyrrole-Copper Nano Particles for H 2 O 2 Detection. Journal of The Electrochemical Society 2016, 163 (3) , B8-B14. https://doi.org/10.1149/2.0481603jes
    74. Jianxia Li, Leilei Zheng, Lin Zeng, Yan Zhang, Lin Jiang, Jinlin Song. RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors. Journal of Nanomaterials 2016, 2016 , 1-12. https://doi.org/10.1155/2016/2828512
    75. Liwen Xing, Qinfeng Rong, Zhanfang Ma. Non-enzymatic electrochemical sensing of hydrogen peroxide based on polypyrrole/platinum nanocomposites. Sensors and Actuators B: Chemical 2015, 221 , 242-247. https://doi.org/10.1016/j.snb.2015.06.078
    76. Patrycja Bober, Jaroslav Stejskal, Ivana Šeděnková, Miroslava Trchová, Lenka Martinková, Jan Marek. The deposition of globular polypyrrole and polypyrrole nanotubes on cotton textile. Applied Surface Science 2015, 356 , 737-741. https://doi.org/10.1016/j.apsusc.2015.08.105
    77. Muhammad Asif, Ayesha Aziz, Anh Quang Dao, Abdul Hakeem, Haitao Wang, Shuang Dong, Guoan Zhang, Fei Xiao, Hongfang Liu. Real-time tracking of hydrogen peroxide secreted by live cells using MnO2 nanoparticles intercalated layered doubled hydroxide nanohybrids. Analytica Chimica Acta 2015, 898 , 34-41. https://doi.org/10.1016/j.aca.2015.09.053
    78. Wenjing Zhang, Xiaojian Li, Ruitao Zou, Huizi Wu, Haiyan Shi, Shanshan Yu, Yong Liu. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep11129
    79. Jin Wook Park, Jyongsik Jang. Fabrication of graphene/free-standing nanofibrillar PEDOT/P(VDF-HFP) hybrid device for wearable and sensitive electronic skin application. Carbon 2015, 87 , 275-281. https://doi.org/10.1016/j.carbon.2015.02.039
    80. Jie Ding, Qin Zhong, Shule Zhang, Wei Cai. Size- and shape-controlled synthesis and catalytic performance of iron–aluminum mixed oxide nanoparticles for NOX and SO2 removal with hydrogen peroxide. Journal of Hazardous Materials 2015, 283 , 633-642. https://doi.org/10.1016/j.jhazmat.2014.10.010
    81. Ramendra Sundar Dey. Development of Biosensors from Polymer Graphene Composites. 2015, 277-305. https://doi.org/10.1007/978-3-319-13875-6_11
    82. Shenguang Ge, Feifei Lan, Feng Yu, Jinghua Yu. Applications of graphene and related nanomaterials in analytical chemistry. New Journal of Chemistry 2015, 39 (4) , 2380-2395. https://doi.org/10.1039/C4NJ01783H
    83. Lihui Wang, Mingyu Wang, Hongyuan Yan, Yanan Yuan, Jing Tian. A new graphene oxide/polypyrrole foam material with pipette-tip solid-phase extraction for determination of three auxins in papaya juice. Journal of Chromatography A 2014, 1368 , 37-43. https://doi.org/10.1016/j.chroma.2014.09.059
    84. Fatemeh Yaghoubidoust, Dedy H.B. Wicaksono, Sheela Chandren, Hadi Nur. Effect of graphene oxide on the structural and electrochemical behavior of polypyrrole deposited on cotton fabric. Journal of Molecular Structure 2014, 1075 , 486-493. https://doi.org/10.1016/j.molstruc.2014.07.025
    85. G.A. Álvarez‐Romero, G. Alarcon‐Angeles, A. Merkoçi. Graphene: Insights of its Application in Electrochemical Biosensors for Environmental Monitoring. 2014, 111-140. https://doi.org/10.1002/9781118773826.ch5
    86. Jin Wook Park, Seon Joo Park, Oh Seok Kwon, Choonghyen Lee, Jyongsik Jang. High-performance Hg 2+ FET-type sensors based on reduced graphene oxide–polyfuran nanohybrids. The Analyst 2014, 139 (16) , 3852-3855. https://doi.org/10.1039/C4AN00403E