ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Polypyrrole Nanotube Embedded Reduced Graphene Oxide Transducer for Field-Effect Transistor-Type H2O2 Biosensor

View Author Information
School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
*E-mail: [email protected]. Fax: (+82) 2-888-1604.
Cite this: Anal. Chem. 2014, 86, 3, 1822–1828
Publication Date (Web):January 4, 2014
Copyright © 2014 American Chemical Society

    Article Views





    Read OnlinePDF (3 MB)
    Supporting Info (1)»


    Abstract Image

    We report a rapid-response and high-sensitivity sensor with specificity toward H2O2 based on a liquid-ion-gated field-effect transistor (FET) using graphene-polypyrrole (PPy) nanotube (NT) composites as the conductive channel. The rGO, PPy, NTs, and nanocomposite materials were characterized using Raman spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). On the basis of these results, a well-organized structure is successfully prepared owing to the specific interactions between the PPy NTs and the rGO sheet. Reliable electrical contacts were developed between the rGO/PPy NTs and the microelectrodes, which remained stable when exposed to the liquid-phase analyte. Liquid-ion-gated FETs composed of these graphene nanocomposites exhibited hole-transport behavior with conductivities higher than those of rGO sheets or PPy NTs. This implies an interaction between the PPy NTs and the rGO layers, which is explained in terms of the PPy NTs forming a bridge between the rGO layers. The FET sensor provided a rapid response in real time and high sensitivity toward H2O2 with a limit of detection of 100 pM. The FET-type biosensing geometry was also highly reproducible and stable in air. Furthermore, the liquid-gated FET-type sensor exhibited specificity toward H2O2 in a mixed solution containing compounds found in biological fluids.

    Supporting Information

    Jump To

    Additional information as noted in text. This material is available free of charge via the Internet at

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 81 publications.

    1. Siva Kumar Krishnan, Nandini Nataraj, M. Meyyappan, Umapada Pal. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Analytical Chemistry 2023, 95 (5) , 2590-2622.
    2. Mona Samir, Dina Salah, Shafei Donia, Amal Kasry. Specific Chemical Modification of Nanohole Edges in Membrane Graphene for Protein Binding. ACS Applied Nano Materials 2022, 5 (3) , 3733-3742.
    3. Arumugam Sangili, Venkatachalam Vinothkumar, Shen-Ming Chen, Pitchaimani Veerakumar, King-Chuen Lin. Gold Nanoparticle Embedded on a Reduced Graphene Oxide/polypyrrole Nanocomposite: Voltammetric Sensing of Furazolidone and Flutamide. Langmuir 2020, 36 (46) , 13949-13962.
    4. Qiang Feng, Jonathan Wilhelm, Jinming Gao. Transistor-like Ultra-pH-Sensitive Polymeric Nanoparticles. Accounts of Chemical Research 2019, 52 (6) , 1485-1495.
    5. Oh Seok Kwon, Hyun Seok Song, Tai Hyun Park, Jyongsik Jang. Conducting Nanomaterial Sensor Using Natural Receptors. Chemical Reviews 2019, 119 (1) , 36-93.
    6. Arnab Maity, Xiaoyu Sui, Bing Jin, Haihui Pu, Kai J. Bottum, Xingkang Huang, Jingbo Chang, Guihua Zhou, Ganhua Lu, Junhong Chen. Resonance-Frequency Modulation for Rapid, Point-of-Care Ebola-Glycoprotein Diagnosis with a Graphene-Based Field-Effect Biotransistor. Analytical Chemistry 2018, 90 (24) , 14230-14238.
    7. Miroslava Trchová, Jaroslav Stejskal. Resonance Raman Spectroscopy of Conducting Polypyrrole Nanotubes: Disordered Surface versus Ordered Body. The Journal of Physical Chemistry A 2018, 122 (48) , 9298-9306.
    8. Zhixue Bai, Wenhao Dong, Yipeng Ren, Cong Zhang, and Qiang Chen . Preparation of Nano Au and Pt Alloy Microspheres Decorated with Reduced Graphene Oxide for Nonenzymatic Hydrogen Peroxide Sensing. Langmuir 2018, 34 (6) , 2235-2244.
    9. Arnab Maity, Xiaoyu Sui, Chad R. Tarman, Haihui Pu, Jingbo Chang, Guihua Zhou, Ren Ren, Shun Mao, and Junhong Chen . Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring. ACS Sensors 2017, 2 (11) , 1653-1661.
    10. Girija Thesma Chandran, Xiaowei Li, Alana Ogata, and Reginald M. Penner . Electrically Transduced Sensors Based on Nanomaterials (2012–2016). Analytical Chemistry 2017, 89 (1) , 249-275.
    11. Jiang Zhong, Shu Gao, Guobin Xue, and Bo Wang . Study on Enhancement Mechanism of Conductivity Induced by Graphene Oxide for Polypyrrole Nanocomposites. Macromolecules 2015, 48 (5) , 1592-1597.
    12. C. G. Jinitha, S. Sonia. Functionalization Techniques for the Development of Conducting Polymer-Based Supercapacitors. 2024, 329-352.
    13. Kai Bao, Ye Chen, Qiyuan He, Hua Zhang. Thin‐Film Transistors Based on Reduced Graphene Oxide for Biosensing. 2023, 125-147.
    14. S. Lokesh Amith, K. Gurunathan. Active sites tailored rGO-PPy nanosheets with high crystalline tetragonal SnO2 nanocrystals for ammonia e-sensitization at room temperature. Journal of Alloys and Compounds 2023, 960 , 170819.
    15. Elaheh Mozayan, Hossain-Ali Rafiee-Pour, Foad Ghasemi. CNT-FET for sensitive hydrogen peroxide biosensing via immobilized Cytochrome c. Archives of Biochemistry and Biophysics 2023, 744 , 109695.
    16. Maryam Mohammadzadeh, Sajjad Dehghani, Behzad Haghighi. Electrolyte-gated field Effect Transistors Based on Cu Interdigitated Electrode for H 2 O 2 and Glucose Sensing. Journal of The Electrochemical Society 2023, 170 (3) , 037518.
    17. Muhammad Aamir, Saba Ashraf, Ahmed Shuja, Javeed Akhtar*,. Graphene‐based Nanoelectronic Biosensors. 2023, 25-61.
    18. S. Sreejith, J. Ajayan, J.M. Radhika, B. Sivasankari, Shubham Tayal, M. Saravanan. A comprehensive review on graphene FET bio-sensors and their emerging application in DNA/RNA sensing & rapid Covid-19 detection. Measurement 2023, 206 , 112202.
    19. Peyman Mohammadzadeh Jahani, Hadi Beitollahi, Somayeh Tajik. Surface amplification of graphite screen printed electrode using reduced graphene oxide/polypyrrole nanotubes nanocomposite; a powerful electrochemical strategy for determination of sulfite in food samples. Food and Chemical Toxicology 2022, 167 , 113274.
    20. Muhammad Adil Riaz, Yuan Chen. Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: a review of design strategies. Nanoscale Horizons 2022, 7 (5) , 463-479.
    21. Li Wang, Xiaoping Yue, Qizeng Sun, Linrong Zhang, Guozhang Ren, Gang Lu, Hai-Dong Yu, Wei Huang. Flexible organic electrochemical transistors for chemical and biological sensing. Nano Research 2022, 15 (3) , 2433-2464.
    22. Edson Giuliani Ramos Fernandes, Henrique Antonio Mendonça Faria, Nirton Cristi Silva Vieira. Field-Effect Transistors for Biomedical Applications. 2022, 1-30.
    23. Mijeong Kang, Seunghun Lee. Graphene for Nanobiosensors and Nanobiochips. 2022, 203-232.
    24. Krishnendu Nath, Suman Kumar Ghosh, Narayan Chandra Das. Electrical and electronic applications of polymer-graphene composites. 2022, 343-377.
    25. Monica Naorem, Rajan Singh, Roy Paily. Detection of Hydrogen Peroxide Using rGO/PPy Nanocomposites in Silicon Dioxide Trench Embedded Field Effect Transistor. IEEE Sensors Journal 2021, 21 (20) , 22426-22433.
    26. Agnivo Gosai, Kamil Khondakar, Xiao Ma, Md. Ali. Application of Functionalized Graphene Oxide Based Biosensors for Health Monitoring: Simple Graphene Derivatives to 3D Printed Platforms. Biosensors 2021, 11 (10) , 384.
    27. Veino Risto Shaumbwa, Dagang Liu, Bright Archer, Jinlei Li, Fan Su. Preparation and application of magnetic chitosan in environmental remediation and other fields: A review. Journal of Applied Polymer Science 2021, 138 (42)
    28. Oladipo Folorunso, Yskandar Hamam, Rotimi Sadiku, Suprakas Sinha Ray, Gbolahan Joseph Adekoya. Synthesis methods of borophene, graphene-loaded polypyrrole nanocomposites and their benefits for energy storage applications: A brief overview. FlatChem 2021, 26 , 100211.
    29. Agnes Purwidyantri, Ya-Chung Tian, Gardin Muhammad Andika Saputra, Briliant Adhi Prabowo, Hui-Ling Liu, Chia-Ming Yang, Chao-Sung Lai. Gold Nanoframe Array Electrode for Straightforward Detection of Hydrogen Peroxide. Chemosensors 2021, 9 (2) , 37.
    30. Mitradip Bhattacharjee, Dipankar Bandyopadhyay. Conductive Polymer Nanobiosensors. 2021, 85-118.
    31. Swapnita Patra, Sarat K. Swain. Graphene-based nanocomposites for biomedical engineering application. 2021, 197-224.
    32. Vinay Patel, Peter Kruse, Ponnambalam Ravi Selvaganapathy. Solid State Sensors for Hydrogen Peroxide Detection. Biosensors 2021, 11 (1) , 9.
    33. Hye Suk Hwang, Jae Won Jeong, Yoong Ahm Kim, Mincheol Chang. Carbon Nanomaterials as Versatile Platforms for Biosensing Applications. Micromachines 2020, 11 (9) , 814.
    34. Qin Fan, Lude Wang, Duo Xu, Yanhong Duo, Jie Gao, Lei Zhang, Xianbao Wang, Xiang Chen, Jinhua Li, Han Zhang. Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale 2020, 12 (21) , 11364-11394.
    35. Kyung Ho Kim, Sang Hun Lee, Sung Eun Seo, Joonwon Bae, Seon Joo Park, Oh Seok Kwon. Ultrasensitive Stress Biomarker Detection Using Polypyrrole Nanotube Coupled to a Field-Effect Transistor. Micromachines 2020, 11 (4) , 439.
    36. Sang Hun Lee, Kyung Ho Kim, Sung Eun Seo, Mun il Kim, Seon Joo Park, Oh Seok Kwon. Cytochrome C-decorated graphene field-effect transistor for highly sensitive hydrogen peroxide detection. Journal of Industrial and Engineering Chemistry 2020, 83 , 29-34.
    37. Ana Zubiarrain-Laserna, Peter Kruse. Review—Graphene-Based Water Quality Sensors. Journal of The Electrochemical Society 2020, 167 (3) , 037539.
    38. Jaroslav Stejskal. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. Chemical Papers 2020, 74 (1) , 1-54.
    39. Chao Zheng, Xin Jin, Yutao Li, Junchi Mei, Yujie Sun, Mengmeng Xiao, Hong Zhang, Zhiyong Zhang, Guo-Jun Zhang. Sensitive Molybdenum Disulfide Based Field Effect Transistor Sensor for Real-time Monitoring of Hydrogen Peroxide. Scientific Reports 2019, 9 (1)
    40. Murugan Thiruppathi, Pei-Ying Lin, Yi-Te Chou, Hsin-Yu Ho, Li-chen Wu, Ja-an Annie Ho. Simple aminophenol-based electrochemical probes for non-enzymatic, dual amperometric detection of NADH and hydrogen peroxide. Talanta 2019, 200 , 450-457.
    41. Jianzhi Dou, Dejie Li, Huijuan Li, Qi Kang, Jianjun Lu, Dazhong Shen. A differential photoelectrochemical hydrogen peroxide sensor based on catalytic activity difference between two zeolitic imidazolate framework surface coatings. Talanta 2019, 197 , 138-144.
    42. S. Taniselass, M.K. Md Arshad, Subash C.B. Gopinath. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosensors and Bioelectronics 2019, 130 , 276-292.
    43. Muhammad Adil Riaz, Shengli Zhai, Li Wei, Zheng Zhou, Ziwen Yuan, Yanqing Wang, Qianwei Huang, Xiaozhou Liao, Yuan Chen. Ultralow-platinum-loading nanocarbon hybrids for highly sensitive hydrogen peroxide detection. Sensors and Actuators B: Chemical 2019, 283 , 304-311.
    44. J. Hazarika, A. Kumar. Swift Heavy Ion Irradiation Effects on the Properties of Conducting Polymer Nanostructures. 2019, 193-242.
    45. Mihaela Cristina Baican. Polymeric Nanobiosensors. 2019, 151-181.
    46. Zuan‐Tao Lin, Yaxi Li, Jianhua Gu, Huie Wang, Zhuan Zhu, Xia Hong, Zijing Zhang, Qinqin Lu, Jingyi Qiu, Xifan Wang, Jiming Bao, Tianfu Wu. A Conductive Nanowire‐Mesh Biosensor for Ultrasensitive Detection of Serum C‐Reactive Protein in Melanoma. Advanced Functional Materials 2018, 28 (31)
    47. Georgina Alarcon‐Angeles, Manuel Palomar‐Pardavé, Arben Merkoçi. 2D Materials‐based Platforms for Electroanalysis Applications. Electroanalysis 2018, 30 (7) , 1271-1280.
    48. Jaroslav Stejskal, Miroslava Trchová. Conducting polypyrrole nanotubes: a review. Chemical Papers 2018, 72 (7) , 1563-1595.
    49. Aifeng Liu, Jing Liang, Rongguang Shi, Zongshan Zhao, Yong Tian. Ultrasensitive sensor based on nano-Cu/polyaniline/nickel foam for monitoring H 2 O 2 in exhaled breath. Journal of Breath Research 2018, 12 (3) , 036001.
    50. Yulan Liu, Huizhi Xiong, Huabo Huang, Liang Li, Yineng Huang, Xianghua Yu. Fabrication of poly(N-methylpyrrole) nanotubes for detection of dopamine. Polymer Bulletin 2018, 75 (6) , 2357-2368.
    51. Aftab Aslam Parwaz Khan, Anish Khan, Abdullah M. Asiri. Graphene and Graphene Oxide Polymer Composite for Biosensors Applications. 2018, 93-112.
    52. Samira Mansouri Majd, Abdollah Salimi. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Analytica Chimica Acta 2018, 1000 , 273-282.
    53. Aiqin Zhang, Jiajing Zhou, Paramita Das, Yuanhua Xiao, Feilong Gong, Feng Li, Lizhen Wang, Linsen Zhang, Lixia Wang, Yang Cao, Hongwei Duan. Revisiting Metal Electrodeposition in Porous Anodic Alumina: Toward Tailored Preparation of Metal Nanotube Arrays. Journal of The Electrochemical Society 2018, 165 (3) , D129-D134.
    54. Yuedan Wang, Xing Qing, Quan Zhou, Yang Zhang, Qiongzhen Liu, Ke Liu, Wenwen Wang, Mufang Li, Zhentan Lu, Yuanli Chen, Dong Wang. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosensors and Bioelectronics 2017, 95 , 138-145.
    55. Fengxia Zhang, Ping Zhang, Qiong Wu, Wenjing Xiong, Qi Kang, Dazhong Shen. Impedance response of photoelectrochemical sensor and size-exclusion filter and catalytic effects in Mn3(BTC)2/g-C3N4/TiO2 nanotubes. Electrochimica Acta 2017, 247 , 80-88.
    56. Mani Gajendiran, Jonghoon Choi, Se-Jeong Kim, Keongsoo Kim, Heungsoo Shin, Hyung-Jun Koo, Kyobum Kim. Conductive biomaterials for tissue engineering applications. Journal of Industrial and Engineering Chemistry 2017, 51 , 12-26.
    57. Zhuo Cai, Huizhi Xiong, Zhenni Zhu, Huabo Huang, Liang Li, Yineng Huang, Xianghua Yu. Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications. Synthetic Metals 2017, 227 , 100-105.
    58. Ruizhong Zhang, Wei Chen. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosensors and Bioelectronics 2017, 89 , 249-268.
    59. A. Wisitsoraat, J. Ph. Mensing, C. Karuwan, C. Sriprachuabwong, K. Jaruwongrungsee, D. Phokharatkul, T.M. Daniels, C. Liewhiran, A. Tuantranont. Printed organo-functionalized graphene for biosensing applications. Biosensors and Bioelectronics 2017, 87 , 7-17.
    60. Ji Hyun An, Jyongsik Jang. A highly sensitive FET-type aptasensor using flower-like MoS 2 nanospheres for real-time detection of arsenic( iii ). Nanoscale 2017, 9 (22) , 7483-7492.
    61. Volodymyr V. Tkach, Sílvio C. De Oliveira, Yana G. Ivanushko, Svitlana M. Lukaniova, Reza Ojani, Petró I. Yagodynets´, Aline M. Da Rocha. Estudo de estabilidade da eletrossíntese e do desempenho eletroanalítico do compósito poli(l-metionina)-nano-Au na presença de dopamina e de ácido úrico. Revista Colombiana de Ciencias Químico-Farmacéuticas 2016, 45 (3) , 385-421.
    62. Chul Park, Changsoo Lee, Oh Kwon. Conducting Polymer Based Nanobiosensors. Polymers 2016, 8 (7) , 249.
    63. J. Hazarika, A. Kumar. Structural and optical properties of self-assembled polypyrrole nanotubes. Journal of Polymer Research 2016, 23 (5)
    64. Irina Sapurina, Jaroslav Stejskal, Ivana Šeděnková, Miroslava Trchová, Jana Kovářová, Jiřina Hromádková, Jitka Kopecká, Miroslav Cieslar, Ahmed Abu El-Nasr, Mohamad M. Ayad. Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. Synthetic Metals 2016, 214 , 14-22.
    65. Jin Wook Park, Wonjoo Na, Jyongsik Jang. One-pot synthesis of multidimensional conducting polymer nanotubes for superior performance field-effect transistor-type carcinoembryonic antigen biosensors. RSC Advances 2016, 6 (17) , 14335-14343.
    66. K. S. U. Schirmer, D. Esrafilzadeh, B. C. Thompson, A. F. Quigley, R. M. I. Kapsa, G. G. Wallace. Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles. Journal of Materials Chemistry B 2016, 4 (6) , 1142-1149.
    67. Satyanarayan Pattnaik, Kalpana Swain, Zhiqun Lin. Graphene and graphene-based nanocomposites: biomedical applications and biosafety. Journal of Materials Chemistry B 2016, 4 (48) , 7813-7831.
    68. Pooria Moozarm Nia, Woi Pei Meng, Y. Alias. One-Step Electrodeposition of Polypyrrole-Copper Nano Particles for H 2 O 2 Detection. Journal of The Electrochemical Society 2016, 163 (3) , B8-B14.
    69. Jianxia Li, Leilei Zheng, Lin Zeng, Yan Zhang, Lin Jiang, Jinlin Song. RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors. Journal of Nanomaterials 2016, 2016 , 1-12.
    70. Liwen Xing, Qinfeng Rong, Zhanfang Ma. Non-enzymatic electrochemical sensing of hydrogen peroxide based on polypyrrole/platinum nanocomposites. Sensors and Actuators B: Chemical 2015, 221 , 242-247.
    71. Patrycja Bober, Jaroslav Stejskal, Ivana Šeděnková, Miroslava Trchová, Lenka Martinková, Jan Marek. The deposition of globular polypyrrole and polypyrrole nanotubes on cotton textile. Applied Surface Science 2015, 356 , 737-741.
    72. Muhammad Asif, Ayesha Aziz, Anh Quang Dao, Abdul Hakeem, Haitao Wang, Shuang Dong, Guoan Zhang, Fei Xiao, Hongfang Liu. Real-time tracking of hydrogen peroxide secreted by live cells using MnO2 nanoparticles intercalated layered doubled hydroxide nanohybrids. Analytica Chimica Acta 2015, 898 , 34-41.
    73. Wenjing Zhang, Xiaojian Li, Ruitao Zou, Huizi Wu, Haiyan Shi, Shanshan Yu, Yong Liu. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Scientific Reports 2015, 5 (1)
    74. Jin Wook Park, Jyongsik Jang. Fabrication of graphene/free-standing nanofibrillar PEDOT/P(VDF-HFP) hybrid device for wearable and sensitive electronic skin application. Carbon 2015, 87 , 275-281.
    75. Jie Ding, Qin Zhong, Shule Zhang, Wei Cai. Size- and shape-controlled synthesis and catalytic performance of iron–aluminum mixed oxide nanoparticles for NOX and SO2 removal with hydrogen peroxide. Journal of Hazardous Materials 2015, 283 , 633-642.
    76. Ramendra Sundar Dey. Development of Biosensors from Polymer Graphene Composites. 2015, 277-305.
    77. Shenguang Ge, Feifei Lan, Feng Yu, Jinghua Yu. Applications of graphene and related nanomaterials in analytical chemistry. New Journal of Chemistry 2015, 39 (4) , 2380-2395.
    78. Lihui Wang, Mingyu Wang, Hongyuan Yan, Yanan Yuan, Jing Tian. A new graphene oxide/polypyrrole foam material with pipette-tip solid-phase extraction for determination of three auxins in papaya juice. Journal of Chromatography A 2014, 1368 , 37-43.
    79. Fatemeh Yaghoubidoust, Dedy H.B. Wicaksono, Sheela Chandren, Hadi Nur. Effect of graphene oxide on the structural and electrochemical behavior of polypyrrole deposited on cotton fabric. Journal of Molecular Structure 2014, 1075 , 486-493.
    80. G.A. Álvarez‐Romero, G. Alarcon‐Angeles, A. Merkoçi. Graphene: Insights of its Application in Electrochemical Biosensors for Environmental Monitoring. 2014, 111-140.
    81. Jin Wook Park, Seon Joo Park, Oh Seok Kwon, Choonghyen Lee, Jyongsik Jang. High-performance Hg 2+ FET-type sensors based on reduced graphene oxide–polyfuran nanohybrids. The Analyst 2014, 139 (16) , 3852-3855.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect