ACS Publications. Most Trusted. Most Cited. Most Read
Volumetric Absorptive Microsampling: A Dried Sample Collection Technique for Quantitative Bioanalysis
My Activity
    Article

    Volumetric Absorptive Microsampling: A Dried Sample Collection Technique for Quantitative Bioanalysis
    Click to copy article linkArticle link copied!

    View Author Information
    Bioanalytical Science and Toxicokinetics, Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Research and Development, Ware, Hertfordshire SG12 0DP, United Kingdom
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2014, 86, 16, 8489–8495
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac5022562
    Published July 24, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Volumetric absorptive microsampling (VAMS) is a novel approach to obtaining a dried blood sample for quantitative bioanalysis that overcomes the area bias and homogeneity issues associated with conventional dried blood spot (DBS) sample when a subpunch is taken. The VAMS sampler absorbs a fixed volume of blood (∼10 μL) in 2–4 s with less than 5% volume variation across the hematocrit range of 20–70% with low tip-to-tip variability. There is no evidence of selective absorption by the tip of the plasma component over whole blood. Recommendations for best practice when collecting samples were developed based upon the results of tests examining a number of potential abuse scenarios.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 327 publications.

    1. Tyler A. Jacobson, Yeunook Bae, Jasdeep S. Kler, Ramsunder Iyer, Runze Zhang, Nathan D. Montgomery, Denise Nunes, Joachim D. Pleil, William E. Funk. Advancing Global Health Surveillance of Mycotoxin Exposures using Minimally Invasive Sampling Techniques: A State-of-the-Science Review. Environmental Science & Technology 2024, 58 (8) , 3580-3594. https://doi.org/10.1021/acs.est.3c04981
    2. Miloš Dvořák, Ondrej Moravčík, Pavel Kubáň. Capillary Electrophoresis with Interchangeable Cartridges for Versatile and Automated Analyses of Dried Blood Spot Samples. Analytical Chemistry 2023, 95 (31) , 11823-11830. https://doi.org/10.1021/acs.analchem.3c02474
    3. Debora A. Lima, Rodrigo A. Schuch, Jéssica S. Salgueiro, Maria Carolina T. Pintão, Valdemir M. Carvalho. Evaluation of Volumetric Absorptive Microsampling and Mass Spectrometry Data-Independent Acquisition of Hemoglobin-Related Clinical Markers. Journal of Proteome Research 2022, 21 (8) , 1816-1828. https://doi.org/10.1021/acs.jproteome.1c00892
    4. Benjamin S. Frey, Derik R. Heiss, Abraham K. Badu-Tawiah. Embossed Paper Platform for Whole Blood Collection, Room Temperature Storage, and Direct Analysis by Pinhole Paper Spray Mass Spectrometry. Analytical Chemistry 2022, 94 (10) , 4417-4425. https://doi.org/10.1021/acs.analchem.1c05340
    5. Dmytro S. Kulyk, Taghi Sahraeian, Suji Lee, Abraham K. Badu-Tawiah. Microsampling with a Solid-Phase Extraction Cartridge: Storage and Online Mass Spectrometry Analysis. Analytical Chemistry 2021, 93 (40) , 13632-13640. https://doi.org/10.1021/acs.analchem.1c02960
    6. Jana Verstraete, Christophe Stove. Patient-Centric Assessment of Thiamine Status in Dried Blood Volumetric Absorptive Microsamples Using LC–MS/MS Analysis. Analytical Chemistry 2021, 93 (4) , 2660-2668. https://doi.org/10.1021/acs.analchem.0c05018
    7. Andrea Santa-Rios, Benjamin D. Barst, Niladri Basu. Mercury Speciation in Whole Blood and Dried Blood Spots from Capillary and Venous Sources. Analytical Chemistry 2020, 92 (5) , 3605-3612. https://doi.org/10.1021/acs.analchem.9b04407
    8. Miloš Dvořák, Lenka Ryšavá, Pavel Kubáň. Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection for Quantitative Analysis of Dried Blood Spots with Unknown Blood Volume. Analytical Chemistry 2020, 92 (1) , 1557-1564. https://doi.org/10.1021/acs.analchem.9b04845
    9. Sigrid Deprez, Lucía Paniagua-González, Sofie Velghe, Christophe P. Stove. Evaluation of the Performance and Hematocrit Independence of the HemaPEN as a Volumetric Dried Blood Spot Collection Device. Analytical Chemistry 2019, 91 (22) , 14467-14475. https://doi.org/10.1021/acs.analchem.9b03179
    10. Divyabharathi Chepyala, Han-Chun Kuo, Kang-Yi Su, Hsiao-Wei Liao, San-Yuan Wang, Surendhar Reddy Chepyala, Lin-Chau Chang, Ching-Hua Kuo. Improved Dried Blood Spot-Based Metabolomics Analysis by a Postcolumn Infused-Internal Standard Assisted Liquid Chromatography-Electrospray Ionization Mass Spectrometry Method. Analytical Chemistry 2019, 91 (16) , 10702-10712. https://doi.org/10.1021/acs.analchem.9b02050
    11. Nicolás M. Morato, Valentina Pirro, Patrick W. Fedick, R. Graham Cooks. Quantitative Swab Touch Spray Mass Spectrometry for Oral Fluid Drug Testing. Analytical Chemistry 2019, 91 (11) , 7450-7457. https://doi.org/10.1021/acs.analchem.9b01637
    12. Gabriel Lenk, Shahid Ullah, Göran Stemme, Olof Beck, Niclas Roxhed. Evaluation of a Volumetric Dried Blood Spot Card Using a Gravimetric Method and a Bioanalytical Method with Capillary Blood from 44 Volunteers. Analytical Chemistry 2019, 91 (9) , 5558-5565. https://doi.org/10.1021/acs.analchem.8b02905
    13. Sofie Velghe, Christophe P. Stove. Evaluation of the Capitainer-B Microfluidic Device as a New Hematocrit-Independent Alternative for Dried Blood Spot Collection. Analytical Chemistry 2018, 90 (21) , 12893-12899. https://doi.org/10.1021/acs.analchem.8b03512
    14. Marcello Pirritano, Tobias Fehlmann, Thomas Laufer, Nicole Ludwig, Gilles Gasparoni, Yongping Li, Eckart Meese, Andreas Keller, Martin Simon. Next Generation Sequencing Analysis of Total Small Noncoding RNAs from Low Input RNA from Dried Blood Sampling. Analytical Chemistry 2018, 90 (20) , 11791-11796. https://doi.org/10.1021/acs.analchem.8b03557
    15. Kathrin I. Foerster, Andrea Huppertz, Andreas D. Meid, Oliver J. Müller, Timolaos Rizos, Lisa Tilemann, Walter E. Haefeli, Jürgen Burhenne. Dried-Blood-Spot Technique to Monitor Direct Oral Anticoagulants: Clinical Validation of a UPLC–MS/MS-Based Assay. Analytical Chemistry 2018, 90 (15) , 9395-9402. https://doi.org/10.1021/acs.analchem.8b02046
    16. Sara Capiau, Leah S. Wilk, Pieter M. M. De Kesel, Maurice C. G. Aalders, and Christophe P. Stove . Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method. Analytical Chemistry 2018, 90 (3) , 1795-1804. https://doi.org/10.1021/acs.analchem.7b03784
    17. Max Hecht, Hanno Evard, Kalev Takkis, Ru̅ta Veigure, Rudolf Aro, Rynno Lohmus, Koit Herodes, Ivo Leito, and Karin Kipper . Sponge Spray—Reaching New Dimensions of Direct Sampling and Analysis by MS. Analytical Chemistry 2017, 89 (21) , 11592-11597. https://doi.org/10.1021/acs.analchem.7b02957
    18. Imelda Ryona and Jack Henion . A Book-Type Dried Plasma Spot Card for Automated Flow-Through Elution Coupled with Online SPE-LC-MS/MS Bioanalysis of Opioids and Stimulants in blood. Analytical Chemistry 2016, 88 (22) , 11229-11237. https://doi.org/10.1021/acs.analchem.6b03691
    19. Sara Capiau, Leah S. Wilk, Maurice C. G. Aalders, and Christophe P. Stove . A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy. Analytical Chemistry 2016, 88 (12) , 6538-6546. https://doi.org/10.1021/acs.analchem.6b01321
    20. Paul Abu-Rabie, Philip Denniff, Neil Spooner, Babur Z. Chowdhry, and Frank S. Pullen . Investigation of Different Approaches to Incorporating Internal Standard in DBS Quantitative Bioanalytical Workflows and Their Effect on Nullifying Hematocrit-Based Assay Bias. Analytical Chemistry 2015, 87 (9) , 4996-5003. https://doi.org/10.1021/acs.analchem.5b00908
    21. Luc Alexis Leuthold, Olivier Heudi, Julien Déglon, Marc Raccuglia, Marc Augsburger, Franck Picard, Olivier Kretz, and Aurélien Thomas . New Microfluidic-Based Sampling Procedure for Overcoming the Hematocrit Problem Associated with Dried Blood Spot Analysis. Analytical Chemistry 2015, 87 (4) , 2068-2071. https://doi.org/10.1021/ac503931g
    22. Richard Maršala, Miloš Dvořák, Pavel Kubáň. Automated capillary electrophoresis analyses of dried blood samples after patient-centric volumetric absorptive microsampling. Advances in Sample Preparation 2025, 13 , 100142. https://doi.org/10.1016/j.sampre.2024.100142
    23. Julia O. Nascimento, Edlaine R. Costa, Rita Estrela, Fernanda L. Moreira. A Narrative Review of Chromatographic Bioanalytical Methods for Quantifying Everolimus in Therapeutic Drug Monitoring Applications. Therapeutic Drug Monitoring 2025, 47 (1) , 49-63. https://doi.org/10.1097/FTD.0000000000001273
    24. Daniel O. Reddy, Lishen Zhang, Thomas R. Covey, Richard D. Oleschuk. Design and preparation of a simplified microdroplet generation device for nanoliter volume collection and measurement with liquid microjunction–surface sampling probe–mass spectrometry. Droplet 2025, 8 https://doi.org/10.1002/dro2.158
    25. Bruno Pires, Gonçalo Catarro, Sofia Soares, Joana Gonçalves, Tiago Rosado, Mário Barroso, André R. T. S. Araujo, Eugenia Gallardo. Volumetric Absorptive Microsampling in Toxicology. Toxics 2025, 13 (1) , 25. https://doi.org/10.3390/toxics13010025
    26. Arkadiusz Kocur, Agnieszka Czajkowska, Kamila Rębis, Jacek Rubik, Mateusz Moczulski, Bartłomiej Kot, Maciej Sierakowski, Tomasz Pawiński. Personalization of pharmacotherapy with sirolimus based on volumetric absorptive microsampling (VAMS) in pediatric renal transplant recipients—from LC-MS/MS method validation to clinical application. Pharmacological Reports 2024, 76 (6) , 1443-1455. https://doi.org/10.1007/s43440-024-00663-9
    27. Sandhya Mandlekar, Dhruvitkumar S. Sutaria, Xiaoyun Yang, Ryan Johnson, Yixuan Zou, Brian Dean, Liuxi Chen, Rucha Sane, Kathi Williams, Alison Cardenas, Mary Simon, Saloumeh Fischer. Evaluation of Patient‐Centric Sample Collection Technologies for Pharmacokinetic Assessment of Large and Small Molecules. Clinical Pharmacology & Therapeutics 2024, 116 (3) , 782-794. https://doi.org/10.1002/cpt.3272
    28. Caroline M. Joyce, Paula M. O’Shea, Rebecca Lynch, Sean J. Costelloe, Tommie V. McCarthy, John Coulter, Deirdre Hayes-Ryan, Keelin O’Donoghue. Proof-of-concept study: Remote capillary blood collection for hCG analysis in early pregnancy. European Journal of Obstetrics & Gynecology and Reproductive Biology 2024, 300 , 309-314. https://doi.org/10.1016/j.ejogrb.2024.07.040
    29. Matthias Bantle, Frederike Stöth, Wolfgang Weinmann, Marc Luginbühl. Interlaboratory comparison of phosphatidylethanol in dried blood spots using different sampling devices. Drug Testing and Analysis 2024, https://doi.org/10.1002/dta.3784
    30. Madhura Rajadhyaksha, Vaishali Londhe. Development of LC-MS/MS method for quantification of Lurasidone using volumetric absorptive microsampling (VAMS); a comparative study between dried blood and plasma samples. Journal of Chromatography B 2024, 1244 , 124255. https://doi.org/10.1016/j.jchromb.2024.124255
    31. Christina Johannsen, Léon Reubsaet, Trine Grønhaug Halvorsen. Revolutionizing biomarker analysis one tip at a time—Coupling antibody to Volumetric Absorptive Microsamplers for sensitive LC-MS analysis. Advances in Sample Preparation 2024, 11 , 100121. https://doi.org/10.1016/j.sampre.2024.100121
    32. Marinda Meertens, Niels de Vries, Hilde Rosing, Neeltje Steeghs, Jos H. Beijnen, Alwin D. R. Huitema. Analytical Validation of a Volumetric Absorptive Microsampling Method for Therapeutic Drug Monitoring of the Oral Targeted Anticancer Agents, Abiraterone, Alectinib, Cabozantinib, Imatinib, Olaparib, and Sunitinib, and Metabolites. Therapeutic Drug Monitoring 2024, 46 (4) , 494-502. https://doi.org/10.1097/FTD.0000000000001175
    33. Shreya Madhav Nuguri, Kevin V. Hackshaw, Silvia de Lamo Castellvi, Yalan Wu, Celeste Matos Gonzalez, Chelsea M. Goetzman, Zachary D. Schultz, Lianbo Yu, Rija Aziz, Michelle M. Osuna-Diaz, Katherine R. Sebastian, W. Michael Brode, Monica M. Giusti, Luis Rodriguez-Saona. Surface-Enhanced Raman Spectroscopy Combined with Multivariate Analysis for Fingerprinting Clinically Similar Fibromyalgia and Long COVID Syndromes. Biomedicines 2024, 12 (7) , 1447. https://doi.org/10.3390/biomedicines12071447
    34. Yahdiana Harahap, Callista Andinie Mulyadi, Hary Sakti Muliawan, Habibah A. Wahab. DETERMINATION OF WARFARIN IN VOLUMETRIC ABSORPTIVE MICROSAMPLING BY LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY. Heliyon 2024, 359 , e34500. https://doi.org/10.1016/j.heliyon.2024.e34500
    35. Lucas Schmidt, Kayla Peterson, Thieli Schaefer Nunes, Malgorzata Knap, Lauren Petrick, Julio Alberto Landero-Figueroa. A miniaturized sample preparation method for routine elemental determination in whole blood using volumetric absorptive micro-sampling by ICP-QQQ. Analytical and Bioanalytical Chemistry 2024, 416 (11) , 2711-2724. https://doi.org/10.1007/s00216-023-04881-7
    36. Cathy M. Jacobs, Julia C. Radosa, Lea Wagmann, Julia S. M. Zimmermann, Askin C. Kaya, Aylin Aygün, Tatjana Edel, Lisa Stotz, Mohamed Ismaeil, Erich-Franz Solomayer, Markus R. Meyer. Towards clinical adherence monitoring of oral endocrine breast cancer therapies by LC-HRMS—method development, validation, comparison of four sample matrices, and proof of concept. Analytical and Bioanalytical Chemistry 2024, 416 (12) , 2969-2981. https://doi.org/10.1007/s00216-024-05244-6
    37. Miloš Dvořák, Pavel Kubáň. Automated analyses of dried blood spots collected by volumetric microsampling devices. Analytica Chimica Acta 2024, 46 , 342718. https://doi.org/10.1016/j.aca.2024.342718
    38. Lauren Petrick, Haibin Guan, Grier P. Page, Georgia Dolios, Megan M. Niedzwiecki, Robert O. Wright, Rosalind J. Wright. Comparison of maternal venous blood metabolomics collected as dried blood spots, dried blood microsamplers, and plasma for integrative environmental health research. Environment International 2024, 187 , 108663. https://doi.org/10.1016/j.envint.2024.108663
    39. Federico Ponzetto, Mirko Parasiliti-Caprino, Laura Leoni, Lorenzo Marinelli, Antonello Nonnato, Raul Nicoli, Tiia Kuuranne, Ezio Ghigo, Giulio Mengozzi, Fabio Settanni. LC-MS/MS measurement of endogenous steroid hormones and phase II metabolites in blood volumetric absorptive microsampling (VAMS) for doping control purposes. Clinica Chimica Acta 2024, 557 , 117890. https://doi.org/10.1016/j.cca.2024.117890
    40. Lars Löfgren, Marianne von Euler Chelpin, Maria Bhat, Magnus Althage, Andreas Hober, Fredrik Edfors, Tim Ruckh, Benjamin Challis, Pia Davidsson, Tasso Miliotis. Patient-Centric Quantitative Microsampling for Accurate Determination of Urine Albumin to Creatinine Ratio (UACR) in a Clinical Setting. The Journal of Applied Laboratory Medicine 2024, 9 (2) , 329-341. https://doi.org/10.1093/jalm/jfad111
    41. Antonius T Otten, Hedwig H van der Meulen, Maurice Steenhuis, Floris C Loeff, Daan J Touw, Jos G W Kosterink, Henderik W Frijlink, Theo Rispens, Gerard Dijkstra, Marijn C Visschedijk, Arno R Bourgonje. Clinical Validation of a Capillary Blood Home-Based Self-Sampling Technique for Monitoring of Infliximab, Vedolizumab, and C-Reactive Protein Concentrations in Patients With Inflammatory Bowel Disease. Inflammatory Bowel Diseases 2024, 30 (3) , 325-335. https://doi.org/10.1093/ibd/izad103
    42. Jarrod Roach, Rohit Mital, Jacob J. Haffner, Nathan Colwell, Randy Coats, Horvey M. Palacios, Zongyuan Liu, Joseane L.P. Godinho, Monica Ness, Thilini Peramuna, Laura-Isobel McCall. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024, 222 , 81-99. https://doi.org/10.1016/j.ymeth.2023.12.007
    43. Anthony Breton, Ciprian Mihai Cirtiu, Cyril Muehlethaler, James Rudge, Normand Fleury. Validation of Mitra ® VAMS ® as a Blood Collection Technique for Trace Elements Analysis Using ICP-MS/MS. Bioanalysis 2024, 16 (4) , 203-217. https://doi.org/10.4155/bio-2023-0180
    44. Katty Wan, Olga Kavetska, Bharat Damle, Haihong Shi, Donna S. Cox, Olayide Oladoyinbo, Phylinda Chan, Ravi Shankar P. Singh, Susan Craft, Erwin Berthier, Brian Corrigan. Patient Centric Microsampling to Support Paxlovid Clinical Development: Bridging and Implementation. Clinical Pharmacology & Therapeutics 2024, 115 (1) , 42-51. https://doi.org/10.1002/cpt.3025
    45. Eleonora Bossi, Elena Limo, Lisa Pagani, Nicole Monza, Simone Serrao, Vanna Denti, Giuseppe Astarita, Giuseppe Paglia. Revolutionizing Blood Collection: Innovations, Applications, and the Potential of Microsampling Technologies for Monitoring Metabolites and Lipids. Metabolites 2024, 14 (1) , 46. https://doi.org/10.3390/metabo14010046
    46. Shreya Madhav Nuguri, Kevin V. Hackshaw, Silvia de Lamo Castellvi, Haona Bao, Siyu Yao, Rija Aziz, Scott Selinger, Zhanna Mikulik, Lianbo Yu, Michelle M. Osuna-Diaz, Katherine R. Sebastian, M. Monica Giusti, Luis Rodriguez-Saona. Portable Mid-Infrared Spectroscopy Combined with Chemometrics to Diagnose Fibromyalgia and Other Rheumatologic Syndromes Using Rapid Volumetric Absorptive Microsampling. Molecules 2024, 29 (2) , 413. https://doi.org/10.3390/molecules29020413
    47. Kenichi Tamama. Therapeutic drug monitoring using alternative specimens. 2024, 91-106. https://doi.org/10.1016/B978-0-443-18649-3.00016-1
    48. Janetta Bryksin, Heather Stieglitz. Effects of preanalytical variables in therapeutic drug monitoring. 2024, 37-66. https://doi.org/10.1016/B978-0-443-18649-3.00004-5
    49. John Takyi-Williams, Abbie D Leino, Ruiting Li, Kevin J Downes, Athena F Zuppa, Amanda Bwint, Bo Wen, Duxin Sun, Marc H Scheetz, Manjunath P Pai. Bioanalysis of Six Antibiotics from Volumetric Microsamples: A New Tool for Precision Dosing in Critically ill Children. Bioanalysis 2024, 16 (1) , 19-31. https://doi.org/10.4155/bio-2023-0171
    50. Ole Martin Drevland, Marte Grasdal, Rasmus K. Carlsen, Karsten Midtvedt, Ida Robertsen, Trond G. Jenssen, Shadi Alipour, Nils T. Vethe, Anders Åsberg, Geir Mjøen. Patiromer Does Not Alter Tacrolimus Pharmacokinetics in Kidney Transplant Recipients When Administered Three Hours Post–Tacrolimus. Transplantation Direct 2024, 10 (12) , e1733. https://doi.org/10.1097/TXD.0000000000001733
    51. Regina V. Oliveira, Marc Yves Chalom, Carlos Roberto V. Kiffer. Collection and Bioanalysis of Quantitative Microsamples. 2023, 93-152. https://doi.org/10.1002/9781119615583.ch4
    52. Sigrid Deprez, Liesl Heughebaert, Nick Verougstraete, Veronique Stove, Alain G. Verstraete, Christophe P. Stove. Automation in Microsampling. 2023, 153-204. https://doi.org/10.1002/9781119615583.ch5
    53. Jinming Xing, Joseph Loureiro, Dmitri Mikhailov, Arkady I. Gusev. Utilization of Patient Centric Sampling in Clinical Blood Sample Collection and Protein Biomarker Analysis. 2023, 297-326. https://doi.org/10.1002/9781119615583.ch9
    54. Ganesh S. Moorthy, Christina Vedar, Athena F. Zuppa. Considerations for Implementation of Microsampling in Pediatric Clinical Research and Patient Care. 2023, 263-276. https://doi.org/10.1002/9781119615583.ch7
    55. Chiara Tuma, Arne Schick, Nele Pommerening, Hans Braun, Mario Thevis. Effects of an Individualized vs. Standardized Vitamin D Supplementation on the 25(OH)D Level in Athletes. Nutrients 2023, 15 (22) , 4747. https://doi.org/10.3390/nu15224747
    56. Sneha Kaareddy, Pooja Dhakne, Megha Pillai, Niraj Rajput, Tarang Jadav, Rakesh K. Tekade, Pinaki Sengupta. Dried Blood Spot Sampling in Protein and Peptide Bioanalysis: Optimism, Experience, and the Path Forward. International Journal of Peptide Research and Therapeutics 2023, 29 (6) https://doi.org/10.1007/s10989-023-10570-x
    57. Jaime Millán-Santiago, Rosalba Vitagliano, Fortunata Mondella, Roberto Mandrioli, Roccaldo Sardella, Tomaž Vovk, Rafael Lucena, Soledad Cárdenas, Federico Boaron, Alessandro Serretti, Carmine Petio, Michele Protti, Laura Mercolini. Volumetric absorptive microsampling for the therapeutic drug monitoring of psychiatric patients treated with cariprazine. Journal of Pharmaceutical and Biomedical Analysis 2023, 236 , 115740. https://doi.org/10.1016/j.jpba.2023.115740
    58. Daniel Marques de Sá e Silva, Marlene Thaitumu, Georgios Theodoridis, Michael Witting, Helen Gika. Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites. Metabolites 2023, 13 (10) , 1038. https://doi.org/10.3390/metabo13101038
    59. Ola Ramadan, Lea Marie Schatz, Ingeborg van den Heuvel, Katja Masjosthusmann, Andreas H. Groll, Georg Hempel. Developing a Method for Quantifying Meropenem in Children—Volumetric Adsorptive Microsampling Versus Plasma Sampling. Therapeutic Drug Monitoring 2023, 45 (5) , 623-630. https://doi.org/10.1097/FTD.0000000000001105
    60. Nur Nabihah Binte Zailani, Paul Chi-Lui Ho. Dried Blood Spots—A Platform for Therapeutic Drug Monitoring (TDM) and Drug/Disease Response Monitoring (DRM). European Journal of Drug Metabolism and Pharmacokinetics 2023, 48 (5) , 467-494. https://doi.org/10.1007/s13318-023-00846-4
    61. Kimberly C Lee, Katty X Wan, Jason Barricklow, Chay Ngee Lim, Stephen Clarke, Daniel Potts, Kevin Holmes, Pilar Gonzalez, Olga Kavetska. Using Mitra Sampling to Support First-in-Human Pharmacokinetic Evaluations for PF-07059013. Bioanalysis 2023, 15 (17) , 1083-1094. https://doi.org/10.4155/bio-2023-0066
    62. Ming-Luan Chen, Kevork Mekhssian, Muskaan Dutt, Jeff Plomley, Anahita Keyhani. Volumetric Absorptive Microsampling Coupled with Hybridization LC–MS/MS for Quantitation of Antisense Oligonucleotides. Bioanalysis 2023, 15 (18) , 1115-1128. https://doi.org/10.4155/bio-2023-0092
    63. Arkadiusz Kocur, Jacek Rubik, Paweł Czarnowski, Agnieszka Czajkowska, Dorota Marszałek, Maciej Sierakowski, Marta Górska, Tomasz Pawiński. Therapeutic drug monitoring of mycophenolic acid (MPA) using volumetric absorptive microsampling (VAMS) in pediatric renal transplant recipients: ultra-high-performance liquid chromatography-tandem mass spectrometry analytical method development, cross-validation, and clinical application. Pharmacological Reports 2023, 75 (4) , 1026-1042. https://doi.org/10.1007/s43440-023-00509-w
    64. Rhea Veda Nugraha, Vycke Yunivita, Prayudi Santoso, Aliya Nur Hasanah, Rob E. Aarnoutse, Rovina Ruslami. Analytical and Clinical Validation of Assays for Volumetric Absorptive Microsampling (VAMS) of Drugs in Different Blood Matrices: A Literature Review. Molecules 2023, 28 (16) , 6046. https://doi.org/10.3390/molecules28166046
    65. Prerna Dodeja, Spiros Giannoutsos, Steve Caritis, Raman Venkataramanan. Applications of Volumetric Absorptive Microsampling Technique: A Systematic Critical Review. Therapeutic Drug Monitoring 2023, 45 (4) , 431-462. https://doi.org/10.1097/FTD.0000000000001083
    66. Abbie D. Leino, John Takyi-Williams, Manjunath P. Pai. Volumetric Absorptive Microsampling to Enhance the Therapeutic Drug Monitoring of Tacrolimus and Mycophenolic Acid: A Systematic Review and Critical Assessment. Therapeutic Drug Monitoring 2023, 45 (4) , 463-478. https://doi.org/10.1097/FTD.0000000000001066
    67. Alessia Cafaro, Matteo Conti, Federica Pigliasco, Sebastiano Barco, Roberto Bandettini, Giuliana Cangemi. Biological Fluid Microsampling for Therapeutic Drug Monitoring: A Narrative Review. Biomedicines 2023, 11 (7) , 1962. https://doi.org/10.3390/biomedicines11071962
    68. Unnati Kapadnis, Chuck Locuson, Heidi Okamura, Gianluca De Rienzo, Cece Cotter, Dongwei Zhu, Rohini Narayanaswami, Jose Castro-Perez, Punit Marathe, Wen-Chu Yang. Volumetric Absorptive Microsampling as An Effective Microsampling Technique for LC–MS/MS Bioanalysis of Biomarkers in Drug Discovery. Bioanalysis 2023, 15 (14) , 845-859. https://doi.org/10.4155/bio-2023-0059
    69. Lan Gao, Neil Smith, Diksha Kaushik, Sarah Milner, Ronald Kong. Validation and application of volumetric absorptive microsampling (VAMS) dried blood method for phenylalanine measurement in patients with phenylketonuria. Clinical Biochemistry 2023, 116 , 65-74. https://doi.org/10.1016/j.clinbiochem.2023.03.012
    70. Enaksha R Wickremsinhe, Rodney L Decker, Lisa B Lee, Erica Lelle, Lena A Carlton, Stuart Y Keller, Apurva Prakash. Microsampling in Pediatric Studies: Pharmacokinetic Sampling For Baricitinib (Olumiant™) in Global Pediatric Studies. Bioanalysis 2023, 15 (11) , 621-636. https://doi.org/10.4155/bio-2023-0044
    71. Mohsen Shafiei, Alina Mahmood, Philip Beale, Peter Galettis, Jennifer Martin, Andrew J. McLachlan, Prunella Blinman. Dried Blood Spot Sampling in the Monitoring of Anticancer Therapy for Solid Tumors: A Systematic Review. Therapeutic Drug Monitoring 2023, 45 (3) , 293-305. https://doi.org/10.1097/FTD.0000000000001082
    72. Callista Mulyadi, Yahdiana Harahap, Hary Muliawan. Comparison of Microsampling and Conventional Sampling Techniques for Quantification of Warfarin in Blood Samples: A Systematic Review. Sciences of Pharmacy 2023, 2 (3) , 55-72. https://doi.org/10.58920/sciphar02030055
    73. Yahdiana Harahap, Roesytas Fitria Noer, Timbul Partogi H. Simorangkir. Development and validation of method for analysis of favipiravir and remdesivir in volumetric absorptive microsampling with ultra high-performance liquid chromatography–tandem mass spectrophotometry. Frontiers in Medicine 2023, 10 https://doi.org/10.3389/fmed.2023.1022605
    74. Chiara Tuma, Andreas Thomas, Hans Braun, Mario Thevis. Quantification of 25-hydroxyvitamin D2 and D3 in Mitra® devices with volumetric absorptive microsampling technology (VAMS®) by UHPLC-HRMS for regular vitamin D status monitoring. Journal of Pharmaceutical and Biomedical Analysis 2023, 228 , 115314. https://doi.org/10.1016/j.jpba.2023.115314
    75. Zidekova Nela, Prso Kristian, Babalova Lucia, Sivak Stefan, Kurca Egon, Mokry Juraj, Nosal Vladimir, Kertys Martin. Volumetric Absorptive Microsampling Technique in the LC-MS Determination of Direct Oral Anticoagulants. Acta Medica Martiniana 2023, 23 (1) , 23-31. https://doi.org/10.2478/acm-2023-0004
    76. Carla E. Scuderi, Suzanne L. Parker, Margaret Jacks, George T. John, Brett McWhinney, Jacobus Ungerer, Andrew J. Mallett, Helen G. Healy, Jason A. Roberts, Christine E. Staatz. Serum Creatinine and Tacrolimus Assessment With VAMS Finger-Prick Microsampling: A Diagnostic Test Study. Kidney Medicine 2023, 5 (4) , 100610. https://doi.org/10.1016/j.xkme.2023.100610
    77. Seungji Yoo, Giseob Kim, Soyeon Kim, Jungeun Ha, Beom Sik Cho, Dong Jin Joo, Jangik I. Lee. Volumetric Absorptive Microsampling for the Therapeutic Drug Monitoring of Everolimus in Patients Who Have Undergone Liver Transplant. Therapeutic Drug Monitoring 2023, 45 (2) , 223-228. https://doi.org/10.1097/FTD.0000000000001033
    78. Yang Tang, Liuxi Chen, Xiaorong Liang, Brian Dean, Jianshuang Wang. Exploring the potential of dried plasma collection cards for liquid chromatography coupled with tandem mass spectrometry quantitation of giredestrant in human plasma. Biomedical Chromatography 2023, 37 (3) https://doi.org/10.1002/bmc.5554
    79. Keith R. Baillargeon, Charles R. Mace. Microsampling tools for collecting, processing, and storing blood at the point‐of‐care. Bioengineering & Translational Medicine 2023, 8 (2) https://doi.org/10.1002/btm2.10476
    80. Miguel Gambell Barroso, Louise Gustafsson, Victoria Barclay, Camilla Linder. A Validated Method for the Determination of Hematocrit in Dried Blood Spots Using Image Analysis. Bioanalysis 2023, 15 (6) , 331-341. https://doi.org/10.4155/bio-2023-0018
    81. Gaudry Bruno Troché, Tue Søeborg, Thóra Brynja Bödvarsdottir, Mads Bjelke, Nikoline Juul Nielsen. Comparison of Pharmacokinetic Study Profiles of Insulin in Rat Plasma Through Conventional Sampling and Microsampling by Micro-LC–MS/MS. Bioanalysis 2023, 15 (5) , 283-294. https://doi.org/10.4155/bio-2023-0006
    82. Francesca Cendali, Angelo D'Alessandro, Travis Nemkov. Dried blood spot characterization of sex‐based metabolic responses to acute running exercise. Analytical Science Advances 2023, 4 (1-2) , 37-48. https://doi.org/10.1002/ansa.202200039
    83. Lenka Ryšavá, Jana Dorazilová, Miloš Dvořák, Petr Sedláček, Lucy Vojtová, Pavel Kubáň. Fully soluble polymeric foams for in-vial dried blood spot collection and analysis of acidic drugs by capillary electrophoresis. Analytica Chimica Acta 2023, 1241 , 340793. https://doi.org/10.1016/j.aca.2023.340793
    84. Sigrid Deprez, Katleen Van Uytfanghe, Christophe P. Stove. Liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of immunosuppressants and creatinine from a single dried blood spot using the Capitainer® qDBS device. Analytica Chimica Acta 2023, 1242 , 340797. https://doi.org/10.1016/j.aca.2023.340797
    85. Chiara Volani, Christa Malfertheiner, Giulia Caprioli, Søren Fjelstrup, Peter P. Pramstaller, Johannes Rainer, Giuseppe Paglia. VAMS-Based Blood Capillary Sampling for Mass Spectrometry-Based Human Metabolomics Studies. Metabolites 2023, 13 (2) , 146. https://doi.org/10.3390/metabo13020146
    86. Herman Veenhof, Remco A. Koster, Lenneke A.T. Junier, Peter Zweipfenning, Daan J. Touw. Results From a Proficiency Testing Pilot for Immunosuppressant Microsampling Assays. Therapeutic Drug Monitoring 2023, 45 (1) , 61-68. https://doi.org/10.1097/FTD.0000000000001019
    87. Michael S. F. Hoffman, James W. McKeage, Jiali Xu, Bryan P. Ruddy, Poul M. F. Nielsen, Andrew J. Taberner. Minimally invasive capillary blood sampling methods. Expert Review of Medical Devices 2023, 20 (1) , 5-16. https://doi.org/10.1080/17434440.2023.2170783
    88. Cathy M. Jacobs, Michael Kunz, Felix Mahfoud, Lea Wagmann, Markus R. Meyer. Closing the gap — development of an analytical methodology using volumetric absorptive microsampling of finger prick blood followed by LC-HRMS/MS for adherence monitoring of antihypertensive drugs. Analytical and Bioanalytical Chemistry 2023, 415 (1) , 167-177. https://doi.org/10.1007/s00216-022-04394-9
    89. Sigrid Deprez, Christophe P. Stove. Dried blood microsampling-assisted therapeutic drug monitoring of immunosuppressants: An overview. Journal of Chromatography A 2023, 1689 , 463724. https://doi.org/10.1016/j.chroma.2022.463724
    90. Mark P. Molloy, Cameron Hill, Matthew J. McKay, Ben R. Herbert. Proteome Analysis of Whole Blood Collected by Volumetric Absorptive Microsampling. 2023, 173-179. https://doi.org/10.1007/978-1-0716-2978-9_11
    91. Chih-Ning Cheng, Yu-Fong Peng, Ju-Yu Chen, Guan-Yuan Chen, Te-I Weng, Ching-Hua Kuo. Development of the dried blood spot preparation protocol for comprehensive evaluation of the hematocrit effect. Analytica Chimica Acta 2023, 1239 , 340650. https://doi.org/10.1016/j.aca.2022.340650
    92. Anthony Breton, Ciprian Mihai Cirtiu, Normand Fleury, André Lajeunesse, James Rudge. Method development for the quantification of lead levels in whole blood sampled on Mitra ® with VAMS ® tips by inductively coupled plasma–MS/MS. Bioanalysis 2023, 15 (2) , 71-81. https://doi.org/10.4155/bio-2022-0242
    93. Arkadiusz Kocur, Tomasz Pawiński. Volumetric Absorptive Microsampling in Therapeutic Drug Monitoring of Immunosuppressive Drugs—From Sampling and Analytical Issues to Clinical Application. International Journal of Molecular Sciences 2023, 24 (1) , 681. https://doi.org/10.3390/ijms24010681
    94. Arkadiusz Kocur, Dorota Marszałek, Jacek Rubik, Agnieszka Czajkowska, Tomasz Pawiński. Therapeutic Drug Monitoring of Tacrolimus Based on Volumetric Absorptive Microsampling Technique (VAMS) in Renal Transplant Pediatric Recipients—LC-MS/MS Method Development, Hematocrit Effect Evaluation, and Clinical Application. Pharmaceutics 2023, 15 (1) , 299. https://doi.org/10.3390/pharmaceutics15010299
    95. Laura Boffel, Lisa Delahaye, Luc De Baerdemaeker, Christophe P. Stove. Application of a Volumetric Absorptive Microsampling (VAMS)-Based Method for the Determination of Paracetamol and Four of its Metabolites as a Tool for Pharmacokinetic Studies in Obese and Non-Obese Patients. Clinical Pharmacokinetics 2022, 61 (12) , 1719-1733. https://doi.org/10.1007/s40262-022-01187-2
    96. Katie F. Maass, Matthew D. Barfield, Mototsugu Ito, Christopher A. James, Olga Kavetska, Marc Kozinn, Parag Kumar, Maureen Lepak, Luc Alexis Leuthold, Wenkui Li, Dmitri Mikhailov, Shefali Patel, Nisha L. Perez, Deanne Jackson Rudd, Blisse Vakkalagadda, Tracy M. Williams, Jiuhong Zha, Xin Zhang, Melanie D. Anderson. Leveraging patient‐centric sampling for clinical drug development and decentralized clinical trials: Promise to reality. Clinical and Translational Science 2022, 15 (12) , 2785-2795. https://doi.org/10.1111/cts.13411
    97. Xueqiao Wang, Xinhua Dai, Shiqi Wan, Yu Fan, Lijuan Wu, Huan Xu, Lin Yan, Xingxin Gong, Yamei Li, Yao Luo, Yangjuan Bai, Yi Li. A Volumetric Absorptive Microsampling UPLC-MS/MS Method for Simultaneous Quantification of Tacrolimus, Mycophenolic Acid and Creatinine in Whole Blood of Renal Transplant Recipients. Pharmaceutics 2022, 14 (12) , 2547. https://doi.org/10.3390/pharmaceutics14122547
    98. Rachel S Carling, Catharine John, Erin C Emmett, Donna Austin, Colin Hastie, Camilla Liscio. Automation of tacrolimus measurement on volumetric absorptive microsampling devices by tandem mass spectrometry. Bioanalysis 2022, 14 (23) , 1487-1496. https://doi.org/10.4155/bio-2022-0202
    99. Sergi Pascual-Caro, Francesc Borrull, Marta Calull, Carme Aguilar. Recent chromatographic and electrophoretic based methods for determining drugs of abuse in urine and oral fluid: A review from 2018 to June 2021. TrAC Trends in Analytical Chemistry 2022, 156 , 116705. https://doi.org/10.1016/j.trac.2022.116705
    100. Tom C. Zwart, Erik Metscher, Paul J. M. van der Boog, Jesse J. Swen, Johan W. de Fijter, Henk‐Jan Guchelaar, Aiko P. J. de Vries, Dirk Jan A. R. Moes. Volumetric microsampling for simultaneous remote immunosuppressant and kidney function monitoring in outpatient kidney transplant recipients. British Journal of Clinical Pharmacology 2022, 88 (11) , 4854-4869. https://doi.org/10.1111/bcp.15433
    Load more citations

    Analytical Chemistry

    Cite this: Anal. Chem. 2014, 86, 16, 8489–8495
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac5022562
    Published July 24, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    4548

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.