Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Peptide Quantification Using 8-Plex Isobaric Tags and Electron Transfer Dissociation Tandem Mass Spectrometry

View Author Information
Departments of Chemistry and Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Imaging Sciences, University of Manchester, Kinnaird House, Kinnaird Road, Manchester M20 4QL, United Kingdom
* To whom correspondence should be addressed. E-mail: [email protected]
†Department of Chemistry, University of Wisconsin.
‡University of Manchester.
§Department of Biomolecular Chemistry, University of Wisconsin.
Cite this: Anal. Chem. 2009, 81, 4, 1693–1698
Publication Date (Web):January 20, 2009
https://doi.org/10.1021/ac8019202
Copyright © 2009 American Chemical Society

    Article Views

    2369

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Isobaric tags for absolute and relative quantitation (iTRAQ) allow for simultaneous relative quantification of peptides from up to eight different samples. Typically peptides labeled with 8-plex iTRAQ tags are pooled and fragmented using beam-type collision activated dissociation (CAD) which, in addition to cleaving the peptide backbone bonds, cleaves the tag to produce reporter ions. The relative intensities of the reporters are directly proportional to the relative abundances of each peptide in the solution phase. Recently, studies using the 4-plex iTRAQ tagging reagent demonstrated that electron transfer dissociation (ETD) of 4-plex iTRAQ labeled peptides cleaves at the N−Cα bond in the tag and allows for up to three channels of quantification. In this paper we investigate the ETD fragmentation patterns of peptides labeled with 8-plex iTRAQ tags. We demonstrate that upon ETD, peptides labeled with 8-plex iTRAQ tags fragment to produce unique reporter ions that allow for five channels of quantification. ETD-MS/MS of these labeled peptides also produces a peak at 322 m/z which, upon resonant excitation (CAD), gives rise to all eight iTRAQ reporter ions and allows for eight channels of quantification. Comparison of this method to beam-type CAD quantification shows a good correlation (y = 0.91x + 0.01, R2 = 0.9383).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 58 publications.

    1. Dahang Yu, Zhe Wang, Kellye A. Cupp-Sutton, Yanting Guo, Qiang Kou, Kenneth Smith, Xiaowen Liu, Si Wu. Quantitative Top-Down Proteomics in Complex Samples Using Protein-Level Tandem Mass Tag Labeling. Journal of the American Society for Mass Spectrometry 2021, 32 (6) , 1336-1344. https://doi.org/10.1021/jasms.0c00464
    2. Nicholas M. Riley and Joshua J. Coon . The Role of Electron Transfer Dissociation in Modern Proteomics. Analytical Chemistry 2018, 90 (1) , 40-64. https://doi.org/10.1021/acs.analchem.7b04810
    3. Gregory K. Potts, Emily A. Voigt, Derek J. Bailey, Christopher M. Rose, Michael S. Westphall, Alexander S. Hebert, John Yin, and Joshua J. Coon . Neucode Labels for Multiplexed, Absolute Protein Quantification. Analytical Chemistry 2016, 88 (6) , 3295-3303. https://doi.org/10.1021/acs.analchem.5b04773
    4. Christopher M. Rose, Matthew J. P. Rush, Nicholas M. Riley, Anna E. Merrill, Nicholas W. Kwiecien, Dustin D. Holden, Christopher Mullen, Michael S. Westphall, Joshua J. Coon. A Calibration Routine for Efficient ETD in Large-Scale Proteomics. Journal of the American Society for Mass Spectrometry 2015, 26 (11) , 1848-1857. https://doi.org/10.1007/s13361-015-1183-1
    5. Mikhail M. Savitski, Toby Mathieson, Nico Zinn, Gavain Sweetman, Carola Doce, Isabelle Becher, Fiona Pachl, Bernhard Kuster, and Marcus Bantscheff . Measuring and Managing Ratio Compression for Accurate iTRAQ/TMT Quantification. Journal of Proteome Research 2013, 12 (8) , 3586-3598. https://doi.org/10.1021/pr400098r
    6. Angela Bachi, Isabella Dalle-Donne, and Andrea Scaloni . Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chemical Reviews 2013, 113 (1) , 596-698. https://doi.org/10.1021/cr300073p
    7. Graeme C. McAlister, Edward L. Huttlin, Wilhelm Haas, Lily Ting, Mark P. Jedrychowski, John C. Rogers, Karsten Kuhn, Ian Pike, Robert A. Grothe, Justin D. Blethrow, and Steven P. Gygi . Increasing the Multiplexing Capacity of TMTs Using Reporter Ion Isotopologues with Isobaric Masses. Analytical Chemistry 2012, 84 (17) , 7469-7478. https://doi.org/10.1021/ac301572t
    8. Thilo Werner, Isabelle Becher, Gavain Sweetman, Carola Doce, Mikhail M. Savitski, and Marcus Bantscheff . High-Resolution Enabled TMT 8-plexing. Analytical Chemistry 2012, 84 (16) , 7188-7194. https://doi.org/10.1021/ac301553x
    9. Sharon Leong, Andrea C. Nunez, Mike Z. Lin, Ben Crossett, Richard I. Christopherson, and Robert C. Baxter . iTRAQ-Based Proteomic Profiling of Breast Cancer Cell Response to Doxorubicin and TRAIL. Journal of Proteome Research 2012, 11 (7) , 3561-3572. https://doi.org/10.1021/pr2012335
    10. Yali Lu, Xiao Zhou, Paul M. Stemmer, Gavin E. Reid. Sulfonium Ion Derivatization, Isobaric Stable Isotope Labeling and Data Dependent CID- and ETD-MS/MS for Enhanced Phosphopeptide Quantitation, Identification and Phosphorylation Site Characterization. Journal of the American Society for Mass Spectrometry 2012, 23 (4) , 577-593. https://doi.org/10.1007/s13361-011-0190-0
    11. Mikhail M. Savitski, Gavain Sweetman, Manor Askenazi, Jarrod A. Marto, Manja Lang, Nico Zinn, and Marcus Bantscheff . Delayed Fragmentation and Optimized Isolation Width Settings for Improvement of Protein Identification and Accuracy of Isobaric Mass Tag Quantification on Orbitrap-Type Mass Spectrometers. Analytical Chemistry 2011, 83 (23) , 8959-8967. https://doi.org/10.1021/ac201760x
    12. Zhibin Ning, Hu Zhou, Fangjun Wang, Mohamed Abu-Farha, and Daniel Figeys . Analytical Aspects of Proteomics: 2009–2010. Analytical Chemistry 2011, 83 (12) , 4407-4426. https://doi.org/10.1021/ac200857t
    13. Rui-Xiang Sun, Meng-Qiu Dong, Chun-Qing Song, Hao Chi, Bing Yang, Li-Yun Xiu, Li Tao, Zhi-Yi Jing, Chao Liu, Le-Heng Wang, Yan Fu, and Si-Min He . Improved Peptide Identification for Proteomic Analysis Based on Comprehensive Characterization of Electron Transfer Dissociation Spectra. Journal of Proteome Research 2010, 9 (12) , 6354-6367. https://doi.org/10.1021/pr100648r
    14. Melissa M. Grant, Andrew J. Creese, Gordon Barr, Martin R. Ling, Ann E. Scott, John B. Matthews, Helen R. Griffiths, Helen J. Cooper and Iain L. C. Chapple . Proteomic Analysis of a Noninvasive Human Model of Acute Inflammation and Its Resolution: The Twenty-one Day Gingivitis Model. Journal of Proteome Research 2010, 9 (9) , 4732-4744. https://doi.org/10.1021/pr100446f
    15. Tine E. Thingholm, Giuseppe Palmisano, Frank Kjeldsen and Martin R. Larsen. Undesirable Charge-Enhancement of Isobaric Tagged Phosphopeptides Leads to Reduced Identification Efficiency. Journal of Proteome Research 2010, 9 (8) , 4045-4052. https://doi.org/10.1021/pr100230q
    16. Peter Pichler, Thomas Köcher, Johann Holzmann, Michael Mazanek, Thomas Taus, Gustav Ammerer, and Karl Mechtler . Peptide Labeling with Isobaric Tags Yields Higher Identification Rates Using iTRAQ 4-Plex Compared to TMT 6-Plex and iTRAQ 8-Plex on LTQ Orbitrap. Analytical Chemistry 2010, 82 (15) , 6549-6558. https://doi.org/10.1021/ac100890k
    17. Graeme C. McAlister, Doug Phanstiel, Craig D. Wenger, M. Violet Lee and Joshua J. Coon. Analysis of Tandem Mass Spectra by FTMS for Improved Large-Scale Proteomics with Superior Protein Quantification. Analytical Chemistry 2010, 82 (1) , 316-322. https://doi.org/10.1021/ac902005s
    18. Jianjun Zhai, Xiaoyan Liu, Zhenyu Huang, Haining Zhu. RABA (Reductive Alkylation By Acetone): A novel stable isotope labeling approach for quantitative proteomics. Journal of the American Society for Mass Spectrometry 2009, 20 (7) , 1366-1377. https://doi.org/10.1016/j.jasms.2009.03.027
    19. Mohamed Abu-Farha, Fred Elisma, Houjiang Zhou, Ruijun Tian, Hu Zhou, Mehmet Selim Asmer and Daniel Figeys. Proteomics: From Technology Developments to Biological Applications. Analytical Chemistry 2009, 81 (12) , 4585-4599. https://doi.org/10.1021/ac900735j
    20. Feng Yang, Si Wu, David L. Stenoien, Rui Zhao, Matthew E. Monroe, Marina A. Gritsenko, Samuel O. Purvine, Ashoka D. Polpitiya, Nikola Tolić, Qibin Zhang, Angela D. Norbeck, Daniel J. Orton, Ronald J. Moore, Keqi Tang, Gordon A. Anderson, Ljiljana Paša-Tolić, David G. Camp, II and Richard D. Smith. Combined Pulsed-Q Dissociation and Electron Transfer Dissociation for Identification and Quantification of iTRAQ-Labeled Phosphopeptides. Analytical Chemistry 2009, 81 (10) , 4137-4143. https://doi.org/10.1021/ac802605m
    21. Xiulan Chen, Yaping Sun, Tingting Zhang, Lian Shu, Peter Roepstorff, Fuquan Yang. Quantitative Proteomics Using Isobaric Labeling: A Practical Guide. Genomics, Proteomics & Bioinformatics 2021, 19 (5) , 689-706. https://doi.org/10.1016/j.gpb.2021.08.012
    22. Rocco J. Rotello, Timothy D. Veenstra. Mass Spectrometry Techniques: Principles and Practices for Quantitative Proteomics. Current Protein & Peptide Science 2021, 22 (2) , 121-133. https://doi.org/10.2174/1389203721666200921153513
    23. Timothy J. Williams, Michelle A. Allen, Yan Liao, Mark J. Raftery, Ricardo Cavicchioli, . Sucrose Metabolism in Haloarchaea: Reassessment Using Genomics, Proteomics, and Metagenomics. Applied and Environmental Microbiology 2019, 85 (6) https://doi.org/10.1128/AEM.02935-18
    24. Abhinav Kumar, Bevin Gangadharan, Jeremy Cobbold, Mark Thursz, Nicole Zitzmann. Absolute quantitation of disease protein biomarkers in a single LC-MS acquisition using apolipoprotein F as an example. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-12229-2
    25. Y. Liao, T. J. Williams, J. Ye, J. Charlesworth, B. P. Burns, A. Poljak, M. J. Raftery, R. Cavicchioli. Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep37454
    26. Robert F Lera, Gregory K Potts, Aussie Suzuki, James M Johnson, Edward D Salmon, Joshua J Coon, Mark E Burkard. Decoding Polo-like kinase 1 signaling along the kinetochore–centromere axis. Nature Chemical Biology 2016, 12 (6) , 411-418. https://doi.org/10.1038/nchembio.2060
    27. Hubert Rehm, Thomas Letzel. Proteomics. 2016, 233-346. https://doi.org/10.1007/978-3-662-48851-5_7
    28. Hongyan Shen, Mingrui An, Xiao Zou, Xuyang Zhao, Qingsong Wang, Guowen Xing, Jianguo Ji. Evaluation of the accuracy of protein quantification using isotope TMPP-labeled peptides. PROTEOMICS 2015, 15 (17) , 2903-2909. https://doi.org/10.1002/pmic.201400495
    29. Dennis Linke, Tomas Koudelka, Alexander Becker, Andreas Tholey. Identification and relative quantification of phosphopeptides by a combination of multi‐protease digestion and isobaric labeling. Rapid Communications in Mass Spectrometry 2015, 29 (10) , 919-926. https://doi.org/10.1002/rcm.7185
    30. Narimon Honarpour, Christopher M. Rose, Justin Brumbaugh, Jody Anderson, Robert L.J. Graham, Michael J. Sweredoski, Sonja Hess, Joshua J. Coon, Raymond J. Deshaies. F-box Protein FBXL16 Binds PP2A-B55α and Regulates Differentiation of Embryonic Stem Cells along the FLK1+ Lineage. Molecular & Cellular Proteomics 2014, 13 (3) , 780-791. https://doi.org/10.1074/mcp.M113.031765
    31. Narciso Couto, Caroline A. Evans, Jagroop Pandhal, Wen Qiu, Trong K. Pham, Josselin Noirel, Phillip C. Wright. Making Sense Out of the Proteome: the Utility of iTRAQ and TMT. 2014, 49-79. https://doi.org/10.1039/9781782626985-00049
    32. Simona Arena, Anna Maria Salzano, Giovanni Renzone, Chiara D'Ambrosio, Andrea Scaloni. Non‐enzymatic glycation and glycoxidation protein products in foods and diseases: An interconnected, complex scenario fully open to innovative proteomic studies. Mass Spectrometry Reviews 2014, 33 (1) , 49-77. https://doi.org/10.1002/mas.21378
    33. . Quantitative Proteomics. 2013, 59-86. https://doi.org/10.1002/9781118634493.ch3
    34. Panpan Yu, Trairak Pisitkun, Guanghui Wang, Rong Wang, Yasuhiro Katagiri, Marjan Gucek, Mark A. Knepper, Herbert M. Geller, . Global Analysis of Neuronal Phosphoproteome Regulation by Chondroitin Sulfate Proteoglycans. PLoS ONE 2013, 8 (3) , e59285. https://doi.org/10.1371/journal.pone.0059285
    35. Johan Lengqvist, AnnSofi Sandberg. Stable Isotope Labeling Methods in Protein Profiling. 2013, 21-51. https://doi.org/10.1007/978-1-4614-7209-4_3
    36. Jingjing You, Mark D. Willcox, Michele C. Madigan, Valerie Wasinger, Belinda Schiller, Bradley J. Walsh, Peter H. Graham, John H. Kearsley, Yong Li. Tear Fluid Protein Biomarkers. 2013, 151-196. https://doi.org/10.1016/B978-0-12-800096-0.00004-4
    37. Amelia C. Peterson, Jason D. Russell, Derek J. Bailey, Michael S. Westphall, Joshua J. Coon. Parallel Reaction Monitoring for High Resolution and High Mass Accuracy Quantitative, Targeted Proteomics. Molecular & Cellular Proteomics 2012, 11 (11) , 1475-1488. https://doi.org/10.1074/mcp.O112.020131
    38. Caroline Evans, Josselin Noirel, Saw Yen Ow, Malinda Salim, Ana G. Pereira-Medrano, Narciso Couto, Jagroop Pandhal, Duncan Smith, Trong Khoa Pham, Esther Karunakaran, Xin Zou, Catherine A. Biggs, Phillip C. Wright. An insight into iTRAQ: where do we stand now?. Analytical and Bioanalytical Chemistry 2012, 404 (4) , 1011-1027. https://doi.org/10.1007/s00216-012-5918-6
    39. Marcus Bantscheff, Simone Lemeer, Mikhail M. Savitski, Bernhard Kuster. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Analytical and Bioanalytical Chemistry 2012, 404 (4) , 939-965. https://doi.org/10.1007/s00216-012-6203-4
    40. Zeyu Sun, Karyn L. Hamilton, Kenneth F. Reardon. Phosphoproteomics and molecular cardiology: Techniques, applications and challenges. Journal of Molecular and Cellular Cardiology 2012, 53 (3) , 354-368. https://doi.org/10.1016/j.yjmcc.2012.06.001
    41. Job D. Cardoza, Jignesh R. Parikh, Scott B. Ficarro, Jarrod A. Marto. Mass spectrometry‐based proteomics: qualitative identification to activity‐based protein profiling. WIREs Systems Biology and Medicine 2012, 4 (2) , 141-162. https://doi.org/10.1002/wsbm.166
    42. Richard D. Unwin, Emma Carrick, Anthony D. Whetton. Relative Quantification Mass Spectrometry Using iTRAQ Isobaric Tags. 2012, 77-95. https://doi.org/10.1007/978-94-007-4330-4_5
    43. Justin Brumbaugh, Christopher M. Rose, Douglas H. Phanstiel, James A. Thomson, Joshua J. Coon. Proteomics and pluripotency. Critical Reviews in Biochemistry and Molecular Biology 2011, 46 (6) , 493-506. https://doi.org/10.3109/10409238.2011.624491
    44. Timothy J. Williams, Federico M. Lauro, Haluk Ertan, Dominic W. Burg, Anne Poljak, Mark J. Raftery, Ricardo Cavicchioli. Defining the response of a microorganism to temperatures that span its complete growth temperature range (−2°C to 28°C) using multiplex quantitative proteomics. Environmental Microbiology 2011, 13 (8) , 2186-2203. https://doi.org/10.1111/j.1462-2920.2011.02467.x
    45. Oliver Pilak, Stephen J. Harrop, Khawar S. Siddiqui, Kevin Chong, Davide De Francisci, Dominic Burg, Timothy J. Williams, Ricardo Cavicchioli, Paul M. G. Curmi. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer. Environmental Microbiology 2011, 13 (8) , 2232-2249. https://doi.org/10.1111/j.1462-2920.2011.02477.x
    46. Martin Taubert, Nico Jehmlich, Carsten Vogt, Hans H. Richnow, Frank Schmidt, Martin von Bergen, Jana Seifert. Time resolved protein‐based stable isotope probing (Protein‐SIP) analysis allows quantification of induced proteins in substrate shift experiments. PROTEOMICS 2011, 11 (11) , 2265-2274. https://doi.org/10.1002/pmic.201000788
    47. Feng Lin, Liang Chen, Rui Liang, Zhaofeng Zhang, Junbo Wang, Muyi Cai, Yong Li. Pilot-scale production of low molecular weight peptides from corn wet milling byproducts and the antihypertensive effects in vivo and in vitro. Food Chemistry 2011, 124 (3) , 801-807. https://doi.org/10.1016/j.foodchem.2010.06.099
    48. Mari Enoksson, Miklós Békés, Laurence M. Brill, Khatereh Motamedchaboki. Protocols for LC-MS/MS-Based Quantitative Analysis of Proteolytic Substrates from Complex Mixtures. 2011, 671-687. https://doi.org/10.1007/978-94-007-0828-0_31
    49. Emily O. Burton, William J. Hickey. Assessing Variability in Gel-Based Proteomic Analysis of Nitrosomonas europaea. 2011, 435-463. https://doi.org/10.1016/B978-0-12-386489-5.00018-X
    50. Andrew W. Jones, Helen J. Cooper. Dissociation techniques in mass spectrometry-based proteomics. The Analyst 2011, 136 (17) , 3419. https://doi.org/10.1039/c0an01011a
    51. Achim Treumann, Bernd Thiede. Isobaric protein and peptide quantification: perspectives and issues. Expert Review of Proteomics 2010, 7 (5) , 647-653. https://doi.org/10.1586/epr.10.29
    52. Péter Horvatovich, Berend Hoekman, Natalia Govorukhina, Rainer Bischoff. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples. Journal of Separation Science 2010, 33 (10) , 1421-1437. https://doi.org/10.1002/jssc.201000050
    53. Ulrich auf dem Keller, Anna Prudova, Magda Gioia, Georgina S. Butler, Christopher M. Overall. A Statistics-based Platform for Quantitative N-terminome Analysis and Identification of Protease Cleavage Products. Molecular & Cellular Proteomics 2010, 9 (5) , 912-927. https://doi.org/10.1074/mcp.M000032-MCP201
    54. Peter L. Horvatovich, Rainer Bischoff. Current Technological Challenges in Biomarker Discovery and Validation. European Journal of Mass Spectrometry 2010, 16 (1) , 101-121. https://doi.org/10.1255/ejms.1050
    55. John F. Timms, Pedro R. Cutillas. Overview of Quantitative LC-MS Techniques for Proteomics and Activitomics. 2010, 19-45. https://doi.org/10.1007/978-1-60761-780-8_2
    56. Nikolai Mischerikow, Pim van Nierop, Ka Wan Li, Hans-Gert Bernstein, August B. Smit, Albert J. R. Heck, A. F. Maarten Altelaar. Gaining efficiency by parallel quantification and identification of iTRAQ-labeled peptides using HCD and decision tree guided CID/ETD on an LTQ Orbitrap. The Analyst 2010, 135 (10) , 2643. https://doi.org/10.1039/c0an00267d
    57. Gwënaël Pottiez, Christophe Flahaut, Roméo Cecchelli, Yannis Karamanos. Understanding the blood–brain barrier using gene and protein expression profiling technologies. Brain Research Reviews 2009, 62 (1) , 83-98. https://doi.org/10.1016/j.brainresrev.2009.09.004
    58. . Current literature in mass spectrometry. Journal of Mass Spectrometry 2009, 1127-1136. https://doi.org/10.1002/jms.1492