ACS Publications. Most Trusted. Most Cited. Most Read
Hierarchical Inorganic Assemblies for Artificial Photosynthesis
My Activity

Figure 1Loading Img
    Article

    Hierarchical Inorganic Assemblies for Artificial Photosynthesis
    Click to copy article linkArticle link copied!

    View Author Information
    Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
    Other Access Options

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2016, 49, 9, 1634–1645
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.6b00182
    Published August 30, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image
    Conspectus

    Artificial photosynthesis is an attractive approach for renewable fuel generation because it offers the prospect of a technology suitable for deployment on highly abundant, non-arable land. Recent leaps forward in the development of efficient and durable light absorbers and catalysts for oxygen evolution and the growing attention to catalysts for carbon dioxide activation brings into focus the tasks of hierarchically integrating the components into assemblies for closing of the photosynthetic cycle. A particular challenge is the efficient coupling of the multi-electron processes of CO2 reduction and H2O oxidation. Among the most important requirements for a complete integrated system are catalytic rates that match the solar flux, efficient charge transport between the various components, and scalability of the photosynthetic assembly on the unprecedented scale of terawatts in order to have impact on fuel consumption.

    To address these challenges, we have developed a heterogeneous inorganic materials approach with molecularly precise control of light absorption and charge transport pathways. Oxo-bridged heterobinuclear units with metal-to-metal charge-transfer transitions absorbing deep in the visible act as single photon, single charge transfer pumps for driving multi-electron catalysts. A photodeposition method has been introduced for the spatially directed assembly of nanoparticle catalysts for selective coupling to the donor or acceptor metal of the light absorber. For CO2 reduction, a Cu oxide cluster is coupled to the Zr center of a ZrOCo light absorber, while coupling of an Ir nanoparticle catalyst for water oxidation to the Co donor affords closing of the photosynthetic cycle of CO2 conversion by H2O to CO and O2. Optical, vibrational, and X-ray spectroscopy provide detailed structural knowledge of the polynuclear assemblies. Time resolved visible and rapid-scan FT-IR studies reveal charge transfer mechanisms and transient surface intermediates under photocatalytic conditions for guiding performance improvements.

    Separation of the water oxidation and carbon dioxide reduction half reactions by a membrane is essential for efficient photoreduction of CO2 by H2O to liquid fuel products. A concept of a macroscale artificial photosystem consisting of arrays of Co oxide–silica core–shell nanotubes is introduced in which each tube operates as a complete, independent photosynthetic unit with built-in membrane separation. The ultrathin amorphous silica shell with embedded molecular wires functions as a proton conducting, molecule impermeable membrane. Photoelectrochemical and transient optical measurements confirm tight control of charge transport through the membrane by the orbital energetics of the wire molecules. Hierarchical arrangement of the components is accomplished by a combination of photodeposition, controlled anchoring, and atomic layer deposition methods.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 97 publications.

    1. Heinrich Salzmann, Annie S. Knapp, Quinlan P. Ashmore, William B. Heston, Lauren J. Rundell, Timothy M. Cunningham, Catherine L. Jahncke, Adam D. Hill. Time-Resolved Silica Luminescence Probes Photoinduced Electron Transfer from Heterobinuclear Units to 2,2′-Bipyridine and O2. The Journal of Physical Chemistry C 2024, 128 (9) , 3844-3856. https://doi.org/10.1021/acs.jpcc.3c07842
    2. Parul Verma, Debabrata Samanta, Papri Sutar, Arup Kundu, Jyotishman Dasgupta, Tapas Kumar Maji. Biomimetic Approach toward Visible Light-Driven Hydrogen Generation Based on a Porphyrin-Based Coordination Polymer Gel. ACS Applied Materials & Interfaces 2023, 15 (21) , 25173-25183. https://doi.org/10.1021/acsami.2c14533
    3. Tylar L. Clark-Winters, Arthur E. Bragg. Electron Transfer in Conjugated Polymer Electrolyte Complexes: Impact of Donor–Acceptor Interactions on Microstructure, Charge Separation, and Charge Recombination. The Journal of Physical Chemistry C 2022, 126 (46) , 19580-19593. https://doi.org/10.1021/acs.jpcc.2c04497
    4. Hongbo Xue, Congcong Yin, Sen Xiong, Jingying Yang, Yong Wang. One-pot Synthesis of Metal-coordinated Covalent Organic Frameworks for Enhanced CO2 Photoreduction. ACS Applied Materials & Interfaces 2022, 14 (44) , 49672-49679. https://doi.org/10.1021/acsami.2c12303
    5. Hongna Zhang, Ian Weiss, Indranil Rudra, Won Jun Jo, Simon Kellner, Georgios Katsoukis, Elena Galoppini, Heinz Frei. Controlling and Optimizing Photoinduced Charge Transfer across Ultrathin Silica Separation Membrane with Embedded Molecular Wires for Artificial Photosynthesis. ACS Applied Materials & Interfaces 2021, 13 (20) , 23532-23546. https://doi.org/10.1021/acsami.1c00735
    6. Yu Chen, Yanfei Zhao, Bo Yu, Yunyan Wu, Xiaoxiao Yu, Shien Guo, Buxing Han, Zhimin Liu. Visible Light-Driven Photoreduction of CO2 to CH4 over TiO2 Using a Multiple-Site Ionic Liquid as an Absorbent and Photosensitizer. ACS Sustainable Chemistry & Engineering 2020, 8 (24) , 9088-9094. https://doi.org/10.1021/acssuschemeng.0c02333
    7. Mehmed Z. Ertem, Javier J. Concepcion. Oxygen Atom Transfer as an Alternative Pathway for Oxygen–Oxygen Bond Formation. Inorganic Chemistry 2020, 59 (9) , 5966-5974. https://doi.org/10.1021/acs.inorgchem.9b03751
    8. Shinbi Lee, Sujeong Kim, Cheolwoo Park, Gun-hee Moon, Ho-Jin Son, Jin-Ook Baeg, Wooyul Kim, Wonyong Choi. Nafion-Assisted Noncovalent Assembly of Molecular Sensitizers and Catalysts for Sustained Photoreduction of CO2 to CO. ACS Sustainable Chemistry & Engineering 2020, 8 (9) , 3709-3717. https://doi.org/10.1021/acssuschemeng.9b06797
    9. Daniel A. Kurtz, Jillian L. Dempsey. Proton-Coupled Electron Transfer Kinetics for the Photoinduced Generation of a Cobalt(III)-Hydride Complex. Inorganic Chemistry 2019, 58 (24) , 16510-16517. https://doi.org/10.1021/acs.inorgchem.9b02445
    10. Yang Shao, Jessica M. de Ruiter, Huub J. M. de Groot, Francesco Buda. Photocatalytic Water Splitting Cycle in a Dye-Catalyst Supramolecular Complex: Ab Initio Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2019, 123 (35) , 21403-21414. https://doi.org/10.1021/acs.jpcc.9b06401
    11. Shaohua Zhang, Jiafu Shi, Yiying Sun, Yizhou Wu, Yishan Zhang, Ziyi Cai, Yixuan Chen, Chun You, Pingping Han, Zhongyi Jiang. Artificial Thylakoid for the Coordinated Photoenzymatic Reduction of Carbon Dioxide. ACS Catalysis 2019, 9 (5) , 3913-3925. https://doi.org/10.1021/acscatal.9b00255
    12. Georgios Katsoukis, Heinz Frei. Heterobinuclear Light Absorber Coupled to Molecular Wire for Charge Transport across Ultrathin Silica Membrane for Artificial Photosynthesis. ACS Applied Materials & Interfaces 2018, 10 (37) , 31422-31432. https://doi.org/10.1021/acsami.8b11684
    13. Adam D. Hill, Georgios Katsoukis, Heinz Frei. Photoinduced Electron Transfer from ZrOCo Binuclear Light Absorber to Pyridine Elucidated by Transient Optical and Infrared Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (35) , 20176-20185. https://doi.org/10.1021/acs.jpcc.8b06435
    14. Michal Ejgenberg, Yitzhak Mastai. Hierarchical Superstructures of l-Glutathione. Crystal Growth & Design 2018, 18 (9) , 5063-5068. https://doi.org/10.1021/acs.cgd.8b00524
    15. Natalie Y. Labrador, Eva L. Songcuan, Chathuranga De Silva, Han Chen, Sophia J. Kurdziel, Ranjith K. Ramachandran, Christophe Detavernier, and Daniel V. Esposito . Hydrogen Evolution at the Buried Interface between Pt Thin Films and Silicon Oxide Nanomembranes. ACS Catalysis 2018, 8 (3) , 1767-1778. https://doi.org/10.1021/acscatal.7b02668
    16. Eran Edri, Shaul Aloni, and Heinz Frei . Fabrication of Core–Shell Nanotube Array for Artificial Photosynthesis Featuring an Ultrathin Composite Separation Membrane. ACS Nano 2018, 12 (1) , 533-541. https://doi.org/10.1021/acsnano.7b07125
    17. Santu Das, Saurabh Kumar, Somenath Garai, Ramudu Pochamoni, Shounik Paul, and Soumyajit Roy . Softoxometalate [{K6.5Cu(OH)8.5(H2O)7.5}0.5@{K3PW12O40}]n (n = 1348–2024) as an Efficient Inorganic Material for CO2 Reduction with Concomitant Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (40) , 35086-35094. https://doi.org/10.1021/acsami.7b13507
    18. Eran Edri, Jason K. Cooper, Ian D. Sharp, Dirk M. Guldi, and Heinz Frei . Ultrafast Charge Transfer between Light Absorber and Co3O4 Water Oxidation Catalyst across Molecular Wires Embedded in Silica Membrane. Journal of the American Chemical Society 2017, 139 (15) , 5458-5466. https://doi.org/10.1021/jacs.7b01070
    19. Michele Melchionna, Paolo Fornasiero. What Is to Be Expected from Heterogeneous Catalysis in the Pipeline to Circular Economy?. ChemSusChem 2025, 18 (5) https://doi.org/10.1002/cssc.202402064
    20. Sascha Kubitzky, Raffaella Lettieri, Elena Passaretti, Mariano Venanzi, Marta De Zotti, Claudia Mazzuca, Ernesto Placidi, Emanuela Gatto. A Supramolecular Wire Able to Self‐Assemble on Gold Surface: Controlling the Film Length to Optimize the Device Lifetime and Electron Transfer Efficiency. Advanced Materials Interfaces 2025, 12 (3) https://doi.org/10.1002/admi.202400418
    21. Heinz Frei. Controlled electron transfer by molecular wires embedded in ultrathin insulating membranes for driving redox catalysis. Photosynthesis Research 2024, 162 (2-3) , 473-495. https://doi.org/10.1007/s11120-023-01061-7
    22. Baowen Zhou, Peng Zhou, Wanjae Dong, Zetian Mi. Gallium Nitride‐Based Artificial Photosynthesis Integrated Devices for Solar Hydrogen Generation and Carbon Dioxide Reduction. 2024, 309-339. https://doi.org/10.1002/9781119600862.ch11
    23. Han Yan, Ryan Harmer, Binish Zafar, Elena Galoppini, Lars Gundlach. Interfacial electron transfer of perylenes: Influence of the anchor binding mode. The Journal of Chemical Physics 2024, 160 (3) https://doi.org/10.1063/5.0185342
    24. Soha M. Albukhari, L.A. Al-Hajji, Adel A. Ismail. Minimizing CO2 emissions by photocatalytic CO2 reduction to CH3OH over Li2MnO3/WO3 heterostructures under visible illumination. Environmental Research 2024, 241 , 117573. https://doi.org/10.1016/j.envres.2023.117573
    25. Gege Yang, Wenhan Yang, Hao Gu, Ying Fu, Bin Wang, Hairui Cai, Junmin Xia, Nan Zhang, Chao Liang, Guichuan Xing, Shengchun Yang, Yiwang Chen, Wei Huang. Perovskite‐Solar‐Cell‐Powered Integrated Fuel Conversion and Energy‐Storage Devices. Advanced Materials 2023, 35 (44) https://doi.org/10.1002/adma.202300383
    26. Daniel Vong, Eric C. Novak, Adam J. Moulé, Luke L. Daemen. Photochemistry sample sticks for inelastic neutron scattering. Review of Scientific Instruments 2023, 94 (8) https://doi.org/10.1063/5.0154605
    27. Peipei Huang, Ehab Shaaban, Esraa Ahmad, Allison St. John, Tianqi Jin, Gonghu Li. Well-defined surface catalytic sites for solar CO 2 reduction: heterogenized molecular catalysts and single atom catalysts. Chemical Communications 2023, 59 (61) , 9301-9319. https://doi.org/10.1039/D3CC01821K
    28. Heinz Frei. Ultrathin electron and proton-conducting membranes for nanoscale integrated artificial photosystems. Sustainable Energy & Fuels 2023, 7 (14) , 3213-3231. https://doi.org/10.1039/D3SE00499F
    29. Manish Kumar Sharma, Imran Khan, Kuldeep Kaswan, Snigdha Roy Barman, Subhajit Saha, Wu‐Chiao Hsieh, Yu‐Lun Chueh, Yu‐Lin Wang, Sangmin Lee, Dukhyun Choi, Zong‐Hong Lin. Emergence of Non‐photoresponsive Catalytic Techniques for Environmental Remediation and Energy Generation. Chemistry – An Asian Journal 2023, 18 (9) https://doi.org/10.1002/asia.202300090
    30. Leandro A. Faustino, Antonio E. H. Machado, Pedro I. S. Maia, Javier J. Concepcion, Antonio Otavio T. Patrocinio. Electrocatalytic properties of a novel ruthenium( ii ) terpyridine-based complex towards CO 2 reduction. Dalton Transactions 2023, 52 (14) , 4442-4455. https://doi.org/10.1039/D3DT00121K
    31. Jinhe Zhang, Bin Guan, Xingze Wu, Yujun Chen, Jiangfeng Guo, Zeren Ma, Shibo Bao, Xing Jiang, Lei Chen, Kaiyou Shu, Hongtao Dang, Zelong Guo, Zekai Li, Zhen Huang. Research on photocatalytic CO 2 conversion to renewable synthetic fuels based on localized surface plasmon resonance: current progress and future perspectives. Catalysis Science & Technology 2023, 13 (7) , 1932-1975. https://doi.org/10.1039/D2CY01967A
    32. Yuval Harari, Chandra Shakher Pathak, Eran Edri. Molecular relays in nanometer-scale alumina: effective encapsulation for water-submersed halide perovskite photocathodes. Nanoscale 2023, 15 (10) , 4951-4961. https://doi.org/10.1039/D2NR06530D
    33. Rui‐tang Guo, Juan Wang, Zhe‐xu Bi, Xin Chen, Xing Hu, Wei‐guo Pan. Recent Advances and Perspectives of Core‐Shell Nanostructured Materials for Photocatalytic CO 2 Reduction. Small 2023, 19 (9) https://doi.org/10.1002/smll.202206314
    34. Yan Zuo, Yujia Wang, Gang Dai, Fei Ge, Liyun Fang, Xiangtong Zhou, Chunmei Li, Hongjun Dong. Dual interfacial build-in electric field effect induced by sandwich-type heterojunction for propelling photocatalytic fuel extraction from CO2 in water. Separation and Purification Technology 2023, 308 , 122971. https://doi.org/10.1016/j.seppur.2022.122971
    35. Hongru Zhou, Jun Ke, Desheng Xu, Jie Liu. MnWO4 nanorods embedded into amorphous MoS microsheets in 2D/1D MoS /MnWO4 S–scheme heterojunction for visible-light photocatalytic water oxidation. Journal of Materials Science & Technology 2023, 136 , 169-179. https://doi.org/10.1016/j.jmst.2022.07.021
    36. Shuya Li, Seongsu Park, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Photoelectrochemical approaches for the conversion of lignin at room temperature. Chemical Communications 2023, 59 (4) , 401-413. https://doi.org/10.1039/D2CC05491D
    37. Yanze Wei, Decai Zhao, Jiawei Wan, Dan Wang. Electron–orbital–lattice interactions in hollow multishelled structures. Trends in Chemistry 2022, 4 (11) , 1021-1033. https://doi.org/10.1016/j.trechm.2022.08.004
    38. Gabriel Bury, Yulia Pushkar. Computational Analysis of Structure–Activity Relationships in Highly Active Homogeneous Ruthenium−Based Water Oxidation Catalysts. Catalysts 2022, 12 (8) , 863. https://doi.org/10.3390/catal12080863
    39. Abhik Paul, Subhasis Das Adhikary, Sandhya Kapurwan, Sanjit Konar. En route to artificial photosynthesis: the role of polyoxometalate based photocatalysts. Journal of Materials Chemistry A 2022, 10 (25) , 13152-13169. https://doi.org/10.1039/D2TA02243E
    40. Fernando Fresno, Patricia García‐Muñoz. Synthesis and Characterization of Oxide Photocatalysts for CO 2 Reduction. 2022, 277-316. https://doi.org/10.1002/9783527826940.ch8
    41. Won Jun Jo, Hongna Zhang, Georgios Katsoukis, Heinz Frei. Ultrathin Silica Layers as Separation Membranes for Artificial Photosynthesis. 2022, 298-341. https://doi.org/10.1039/9781839163708-00298
    42. Chao Lu, Xiaoyang Shi, Yilun Liu, Hang Xiao, Junjie Li, Xi Chen. Nanomaterials for adsorption and conversion of CO2 under gentle conditions. Materials Today 2021, 50 , 385-399. https://doi.org/10.1016/j.mattod.2021.03.016
    43. Hai-Ning Wang, Yan-Hong Zou, Yao-Mei Fu, Xing Meng, Li Xue, Hong-Xu Sun, Zhong-Min Su. Integration of zirconium-based metal–organic framework with CdS for enhanced photocatalytic conversion of CO 2 to CO. Nanoscale 2021, 13 (40) , 16977-16985. https://doi.org/10.1039/D1NR04417F
    44. Hai-Ning Wang, Hong-Xu Sun, Yao-Mei Fu, Xing Meng, Yan-Hong Zou, Yu-Ou He, Rui-Gang Yang. Varied proton conductivity and photoreduction CO 2 performance of isostructural heterometallic cluster based metal–organic frameworks. Inorganic Chemistry Frontiers 2021, 8 (17) , 4062-4071. https://doi.org/10.1039/D1QI00742D
    45. Duc-Trung Nguyen, Anis Chouat, Trong-On Do. Highly efficient proton-assisted photocatalytic CO 2 reduction over 3-mercaptopropionic acid-capped quantums dots. Sustainable Energy & Fuels 2021, 5 (16) , 4015-4022. https://doi.org/10.1039/D1SE00641J
    46. Hai-Ning Wang, Yan-Hong Zou, Hong-Xu Sun, Yifa Chen, Shun-Li Li, Ya-Qian Lan. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode. Coordination Chemistry Reviews 2021, 438 , 213906. https://doi.org/10.1016/j.ccr.2021.213906
    47. Wey Yang Teoh. Evolution of Catalysts Design and Synthesis: From Bulk Metal Catalysts to Fine Wires and Gauzes, and that to Nanoparticle Deposits, Metal Clusters, and Single Atoms. 2021, 1-19. https://doi.org/10.1002/9783527813599.ch1
    48. Yan-Hong Zou, Hai-Ning Wang, Xing Meng, Hong-Xu Sun, Zi-Yan Zhou. Self-assembly of TiO 2 /ZIF-8 nanocomposites for varied photocatalytic CO 2 reduction with H 2 O vapor induced by different synthetic methods. Nanoscale Advances 2021, 3 (5) , 1455-1463. https://doi.org/10.1039/D0NA00814A
    49. Zhiqiang Shi, Xuejian Qu, Jinyu Dai, Houbing Zou, Zongtao Zhang, Runwei Wang, Shilun Qiu. Photoactive amphiphilic nanoreactor: A chloroplast-like catalyst for natural oxidation of alcohols. Chemical Engineering Journal 2021, 408 , 127243. https://doi.org/10.1016/j.cej.2020.127243
    50. Weixin Zou, Xiaoqian Wei, Lin Dong. Core–Shell Materials for Photocatalytic CO2 Reduction. 2021, 201-214. https://doi.org/10.1007/978-981-16-0463-8_13
    51. Duc-Trung Nguyen, Chinh-Chien Nguyen, Trong-On Do. Rational one-step synthesis of cobalt clusters embedded-graphitic carbon nitrides for the efficient photocatalytic CO2 reduction under ambient conditions. Journal of Catalysis 2020, 392 , 88-96. https://doi.org/10.1016/j.jcat.2020.09.038
    52. Yanze Wei, Jiawei Wan, Nailiang Yang, Yu Yang, Yanwen Ma, Songcan Wang, Jiangyan Wang, Ranbo Yu, Lin Gu, Lianhui Wang, Lianzhou Wang, Wei Huang, Dan Wang. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. National Science Review 2020, 7 (11) , 1638-1646. https://doi.org/10.1093/nsr/nwaa059
    53. Shuchen Tu, Yuxi Guo, Yihe Zhang, Cheng Hu, Tierui Zhang, Tianyi Ma, Hongwei Huang. Piezocatalysis and Piezo‐Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Advanced Functional Materials 2020, 30 (48) https://doi.org/10.1002/adfm.202005158
    54. Naushad Ahmed, Shalini Tripathi, Arup Sarkar, Kamal Uddin Ansari, Chinmoy Das, Neetu Prajesh, Satoshi Horike, Ramamoorthy Boomishankar, Maheswaran Shanmugam. Chiral tetranuclear copper( ii ) complexes: synthesis, optical and magnetic properties. New Journal of Chemistry 2020, 44 (39) , 16845-16855. https://doi.org/10.1039/D0NJ02856H
    55. Nuria Romero, Renan Barrach Guerra, Laia Gil, Samuel Drouet, Ivan Salmeron-Sànchez, Ona Illa, Karine Philippot, Mirco Natali, Jordi García-Antón, Xavier Sala. TiO 2 -mediated visible-light-driven hydrogen evolution by ligand-capped Ru nanoparticles. Sustainable Energy & Fuels 2020, 4 (8) , 4170-4178. https://doi.org/10.1039/D0SE00446D
    56. David M. Tiede, Gihan Kwon, Xiang He, Karen L. Mulfort, Alex B. F. Martinson. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale 2020, 12 (25) , 13276-13296. https://doi.org/10.1039/D0NR02350G
    57. Jundan Li, Dongni Zhao, Jiangqun Liu, Anan Liu, Dongge Ma. Covalent Organic Frameworks: A Promising Materials Platform for Photocatalytic CO2 Reductions. Molecules 2020, 25 (10) , 2425. https://doi.org/10.3390/molecules25102425
    58. Won Jun Jo, Georgios Katsoukis, Heinz Frei. Ultrathin Amorphous Silica Membrane Enhances Proton Transfer across Solid‐to‐Solid Interfaces of Stacked Metal Oxide Nanolayers while Blocking Oxygen. Advanced Functional Materials 2020, 30 (12) https://doi.org/10.1002/adfm.201909262
    59. Hyeon Shin Lee, Seohyeon Jee, Raekyung Kim, Hoang-Tran Bui, Bupmo Kim, Jung-Keun Kim, Kyo Sung Park, Wonyong Choi, Wooyul Kim, Kyung Min Choi. A highly active, robust photocatalyst heterogenized in discrete cages of metal–organic polyhedra for CO 2 reduction. Energy & Environmental Science 2020, 13 (2) , 519-526. https://doi.org/10.1039/C9EE02619C
    60. Hongjia Wang, Yanjie Wang, Lingju Guo, Xuehua Zhang, Caue Ribeiro, Tao He. Solar-heating boosted catalytic reduction of CO2 under full-solar spectrum. Chinese Journal of Catalysis 2020, 41 (1) , 131-139. https://doi.org/10.1016/S1872-2067(19)63393-0
    61. Zhangsen Chen, Gaixia Zhang, Jai Prakash, Yi Zheng, Shuhui Sun. Rational Design of Novel Catalysts with Atomic Layer Deposition for the Reduction of Carbon Dioxide. Advanced Energy Materials 2019, 9 (37) https://doi.org/10.1002/aenm.201900889
    62. Lang Pei, Taozhu Li, Yongjun Yuan, Tao Yang, Jiasong Zhong, Zhenguo Ji, Shicheng Yan, Zhigang Zou. Schottky junction effect enhanced plasmonic photocatalysis by TaON@Ni NP heterostructures. Chemical Communications 2019, 55 (78) , 11754-11757. https://doi.org/10.1039/C9CC05485E
    63. Moritz Lang, Marcus Klahn, Jennifer Strunk. Photophysical and Catalytic Properties of Silica Supported Early Transition Metal Oxides Relevant for Photocatalytic Applications. Catalysis Letters 2019, 149 (8) , 2291-2306. https://doi.org/10.1007/s10562-019-02803-w
    64. Yapeng Dong, Rong Nie, Jixian Wang, Xiaogang Yu, Pengcheng Tu, Jiazang Chen, Huanwang Jing. Photoelectrocatalytic CO2 reduction based on metalloporphyrin-modified TiO2 photocathode. Chinese Journal of Catalysis 2019, 40 (8) , 1222-1230. https://doi.org/10.1016/S1872-2067(19)63375-9
    65. Bruno M. Aramburu-Trošelj, Paola S. Oviedo, Ivana Ramírez-Wierzbicki, Luis M. Baraldo, Alejandro Cadranel. Inversion of donor–acceptor roles in photoinduced intervalence charge transfers. Chemical Communications 2019, 55 (53) , 7659-7662. https://doi.org/10.1039/C9CC03483H
    66. Emanuela Gatto, Sascha Kubitzky, Marc Schriever, Simona Cesaroni, Claudia Mazzuca, Giulia Marafon, Mariano Venanzi, Marta De Zotti. Building Supramolecular DNA‐Inspired Nanowires on Gold Surfaces: From 2D to 3D. Angewandte Chemie 2019, 131 (22) , 7386-7390. https://doi.org/10.1002/ange.201901683
    67. Emanuela Gatto, Sascha Kubitzky, Marc Schriever, Simona Cesaroni, Claudia Mazzuca, Giulia Marafon, Mariano Venanzi, Marta De Zotti. Building Supramolecular DNA‐Inspired Nanowires on Gold Surfaces: From 2D to 3D. Angewandte Chemie International Edition 2019, 58 (22) , 7308-7312. https://doi.org/10.1002/anie.201901683
    68. Yingying Li, Changhua Wang, Miao Song, Dongsheng Li, Xintong Zhang, Yichun Liu. TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Applied Catalysis B: Environmental 2019, 243 , 760-770. https://doi.org/10.1016/j.apcatb.2018.11.022
    69. Ang Li, Wenjin Zhu, Chengcheng Li, Tuo Wang, Jinlong Gong. Rational design of yolk–shell nanostructures for photocatalysis. Chemical Society Reviews 2019, 48 (7) , 1874-1907. https://doi.org/10.1039/C8CS00711J
    70. Georgios Katsoukis, Heinz Frei. Ultrathin oxide layers for nanoscale integration of molecular light absorbers, catalysts, and complete artificial photosystems. The Journal of Chemical Physics 2019, 150 (4) https://doi.org/10.1063/1.5052453
    71. Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions 2019, 48 (3) , 779-798. https://doi.org/10.1039/C8DT04341H
    72. Guohua Liu, Jinliang Xu, Kaiying Wang. All-in-one photosynthetic assemblies for solar fuels. Materials Today Energy 2018, 10 , 368-379. https://doi.org/10.1016/j.mtener.2018.10.011
    73. Jose A. Cornejo, Hua Sheng, Eran Edri, Caroline M. Ajo-Franklin, Heinz Frei. Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-04707-6
    74. Laura Collado, Anna Reynal, Fernando Fresno, Mariam Barawi, Carlos Escudero, Virginia Perez-Dieste, Juan M. Coronado, David P. Serrano, James R. Durrant, Víctor A. de la Peña O’Shea. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07397-2
    75. Yang Yang, Heng Zhong, Guodong Yao, Runtian He, Binbin Jin, Fangming Jin. Hydrothermal reduction of NaHCO3 into formate with hexanehexol. Catalysis Today 2018, 318 , 10-14. https://doi.org/10.1016/j.cattod.2017.09.005
    76. Santosh Kumar, Rajesh K. Yadav, Kirpa Ram, António Aguiar, Joonseok Koh, Abilio J.F.N. Sobral. Graphene oxide modified cobalt metallated porphyrin photocatalyst for conversion of formic acid from carbon dioxide. Journal of CO2 Utilization 2018, 27 , 107-114. https://doi.org/10.1016/j.jcou.2018.07.008
    77. Yanjie Xu, Shuai Wang, Jun Yang, Bo Han, Rong Nie, Jixian Wang, Jianguo Wang, Huanwang Jing. In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels. Nano Energy 2018, 51 , 442-450. https://doi.org/10.1016/j.nanoen.2018.06.086
    78. Baiyin Wang, Wei Chen, Yanfang Song, Guihua Li, Wei Wei, Jianhui Fang, Yuhan Sun. Recent progress in the photocatalytic reduction of aqueous carbon dioxide. Catalysis Today 2018, 311 , 23-39. https://doi.org/10.1016/j.cattod.2017.10.006
    79. Erin J. Peterson, Ashley E. Kuhn, Margaret H. Roeder, Nicholas A. Piro, W. Scott Kassel, Timothy J. Dudley, Jared J. Paul. Spectroelectrochemical studies of a ruthenium complex containing the pH sensitive 4,4′-dihydroxy-2,2′-bipyridine ligand. Dalton Transactions 2018, 47 (12) , 4149-4161. https://doi.org/10.1039/C7DT04554A
    80. Xianmei Xiang, Fuping Pan, Ying Li. A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials. Advanced Composites and Hybrid Materials 2018, 1 (1) , 6-31. https://doi.org/10.1007/s42114-017-0001-6
    81. Saeid Moradi, Mohammad Ali Zolfigol, Mahmoud Zarei, Diego A. Alonso, Abbas Khoshnood, Aria Tajally. An efficient catalytic method for the synthesis of pyrido[2,3‐ d ]pyrimidines as biologically drug candidates by using novel magnetic nanoparticles as a reusable catalyst. Applied Organometallic Chemistry 2018, 32 (2) https://doi.org/10.1002/aoc.4043
    82. Jian Song, Lei Zhang, Jian Yang, Jin-Song Hu, Xin-Hua Huang. Ag nanoparticle-decorated biscuit-like Bi24O31Cl10 hierarchical microstructure composed of ultrathin nanoflake with outstanding photocatalytic activity. Journal of Alloys and Compounds 2018, 735 , 660-667. https://doi.org/10.1016/j.jallcom.2017.11.190
    83. Soumitra Barman, Santu Das, Sreejith S. S., Somnath Garai, Ramudu Pochamoni, Soumyajit Roy. Selective light driven reduction of CO 2 to HCOOH in water using a {MoV 9 } n ( n = 1332–3600) based soft-oxometalate (SOM). Chemical Communications 2018, 54 (19) , 2369-2372. https://doi.org/10.1039/C7CC09520A
    84. Miloš Đokić, Han Sen Soo. Artificial photosynthesis by light absorption, charge separation, and multielectron catalysis. Chemical Communications 2018, 54 (50) , 6554-6572. https://doi.org/10.1039/C8CC02156B
    85. Shunichi Fukuzumi, Yong-Min Lee, Hyun S. Ahn, Wonwoo Nam. Mechanisms of catalytic reduction of CO 2 with heme and nonheme metal complexes. Chemical Science 2018, 9 (28) , 6017-6034. https://doi.org/10.1039/C8SC02220H
    86. Yanjie Xu, Shuai Wang, Jun Yang, Bo Han, Rong Nie, Jixian Wang, Yapeng Dong, Xiaogang Yu, Jianguo Wang, Huanwang Jing. Highly efficient photoelectrocatalytic reduction of CO 2 on the Ti 3 C 2 /g-C 3 N 4 heterojunction with rich Ti 3+ and pyri-N species. Journal of Materials Chemistry A 2018, 6 (31) , 15213-15220. https://doi.org/10.1039/C8TA03315C
    87. Shunichi Fukuzumi. Production of Liquid Solar Fuels and Their Use in Fuel Cells. Joule 2017, 1 (4) , 689-738. https://doi.org/10.1016/j.joule.2017.07.007
    88. Mohammad Z. Rahman, Patrick C. Tapping, Tak W. Kee, Ronald Smernik, Nigel Spooner, Jillian Moffatt, Youhong Tang, Kenneth Davey, Shi‐Zhang Qiao. A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride. Advanced Functional Materials 2017, 27 (39) https://doi.org/10.1002/adfm.201702384
    89. Guodong Yao, Jia Duo, Binbin Jin, Heng Zhong, Lingyun Lyu, Zhuang Ma, Fangming Jin. Highly-efficient and autocatalytic reduction of NaHCO3 into formate by in situ hydrogen from water splitting with metal/metal oxide redox cycle. Journal of Energy Chemistry 2017, 26 (5) , 881-890. https://doi.org/10.1016/j.jechem.2017.08.011
    90. Heinz Frei. Photocatalytic fuel production. Current Opinion in Electrochemistry 2017, 2 (1) , 128-135. https://doi.org/10.1016/j.coelec.2017.03.009
    91. Heinz Frei. Coupling metal oxide nanoparticle catalysts for water oxidation to molecular light absorbers. Journal of Energy Chemistry 2017, 26 (2) , 241-249. https://doi.org/10.1016/j.jechem.2017.03.001
    92. Rosalba Passalacqua, Siglinda Perathoner, Gabriele Centi. Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. Journal of Energy Chemistry 2017, 26 (2) , 219-240. https://doi.org/10.1016/j.jechem.2017.03.004
    93. Yongjian Jia, Yanjie Xu, Rong Nie, Fengjuan Chen, Zhenping Zhu, Jianguo Wang, Huanwang Jing. Artificial photosynthesis of methanol from carbon dioxide and water via a Nile red-embedded TiO 2 photocathode. Journal of Materials Chemistry A 2017, 5 (11) , 5495-5501. https://doi.org/10.1039/C6TA10231J
    94. David W. Shaffer, Yan Xie, Javier J. Concepcion. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling. Chemical Society Reviews 2017, 46 (20) , 6170-6193. https://doi.org/10.1039/C7CS00542C
    95. Lagnamayee Mohapatra, Kulamani Parida. A review of solar and visible light active oxo-bridged materials for energy and environment. Catalysis Science & Technology 2017, 7 (11) , 2153-2164. https://doi.org/10.1039/C7CY00116A
    96. P. Lanzafame, S. Perathoner, G. Centi, S. Gross, E. J. M. Hensen. Grand challenges for catalysis in the Science and Technology Roadmap on Catalysis for Europe: moving ahead for a sustainable future. Catalysis Science & Technology 2017, 7 (22) , 5182-5194. https://doi.org/10.1039/C7CY01067B
    97. Łukasz Szyrwiel, Dávid Lukács, Dávid F. Srankó, Zsolt Kerner, Aleksandra Kotynia, Justyna Brasuń, Bartosz Setner, Zbigniew Szewczuk, Katarzyna Malec, József S. Pap. Armed by Asp? C-terminal carboxylate in a Dap-branched peptide and consequences in the binding of Cu II and electrocatalytic water oxidation. RSC Advances 2017, 7 (40) , 24657-24666. https://doi.org/10.1039/C7RA03814C

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2016, 49, 9, 1634–1645
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.6b00182
    Published August 30, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    3296

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.