ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

DnsID in MyCompoundID for Rapid Identification of Dansylated Amine- and Phenol-Containing Metabolites in LC–MS-Based Metabolomics

View Author Information
Departments of Chemistry and Computing Science, University of Alberta, Edmonton, Alberta T6G2G2, Canada
Cite this: Anal. Chem. 2015, 87, 19, 9838–9845
Publication Date (Web):September 1, 2015
https://doi.org/10.1021/acs.analchem.5b02282
Copyright © 2015 American Chemical Society

    Article Views

    2348

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    High-performance chemical isotope labeling (CIL) liquid chromatography–mass spectrometry (LC–MS) is an enabling technology based on rational design of labeling reagents to target a class of metabolites sharing the same functional group (e.g., all the amine-containing metabolites or the amine submetabolome) to provide concomitant improvements in metabolite separation, detection, and quantification. However, identification of labeled metabolites remains to be an analytical challenge. In this work, we describe a library of labeled standards and a search method for metabolite identification in CIL LC–MS. The current library consists of 273 unique metabolites, mainly amines and phenols that are individually labeled by dansylation (Dns). Some of them produced more than one Dns-derivative (isomers or multiple labeled products), resulting in a total of 315 dansyl compounds in the library. These metabolites cover 42 metabolic pathways, allowing the possibility of probing their changes in metabolomics studies. Each labeled metabolite contains three searchable parameters: molecular ion mass, MS/MS spectrum, and retention time (RT). To overcome RT variations caused by experimental conditions used, we have developed a calibration method to normalize RTs of labeled metabolites using a mixture of RT calibrants. A search program, DnsID, has been developed in www.MyCompoundID.org for automated identification of dansyl labeled metabolites in a sample based on matching one or more of the three parameters with those of the library standards. Using human urine as an example, we illustrate the workflow and analytical performance of this method for metabolite identification. This freely accessible resource is expandable by adding more amine and phenol standards in the future. In addition, the same strategy should be applicable for developing other labeled standards libraries to cover different classes of metabolites for comprehensive metabolomics using CIL LC–MS.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.5b02282.

    • LC–MS settings, Tutorial, User Search Example, and Supplemental Figures S1–S6 (PDF)

    • Supplemental tables of Dns-Standards Library, RT shifts before and after calibration, RTs in standards and urine, List of Pathways, and Urine Search Results (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 93 publications.

    1. Carlos R. Canez, Liang Li. Studies of Labware Contamination during Lipid Extraction in Mass Spectrometry-Based Lipidome Analysis. Analytical Chemistry 2024, 96 (8) , 3544-3552. https://doi.org/10.1021/acs.analchem.3c05431
    2. Xin Lu, Peng Dou, Chao Li, Fujian Zheng, Lina Zhou, Xiaoyu Xie, Zixuan Wang, Guowang Xu. Annotation of Dipeptides and Tripeptides Derivatized via Dansylation Based on Liquid Chromatography–Mass Spectrometry and Iterative Quantitative Structure Retention Relationship. Journal of Proteome Research 2023, 22 (6) , 1896-1907. https://doi.org/10.1021/acs.jproteome.3c00002
    3. Xiaotu Liu, Qingqing Lv, Xin Song, Yukun Chen, Lei Zhao, Meilin Yan, Bin Hu, Da Chen. Screening for Bisphenol Chemicals: A Strategy Based on Dansyl Chloride Derivatizatio n Coupled with In-Source Fragmentation by High-Resolution Mass Spectrometry. Analytical Chemistry 2023, 95 (15) , 6227-6234. https://doi.org/10.1021/acs.analchem.2c03461
    4. Chu-Fan Wang, Liang Li. Segment Scan Mass Spectral Acquisition for Increasing the Metabolite Detectability in Chemical Isotope Labeling Liquid Chromatography–Mass Spectrometry Metabolome Analysis. Analytical Chemistry 2022, 94 (33) , 11650-11658. https://doi.org/10.1021/acs.analchem.2c02220
    5. Zhihua Li, Ling Dong, Chi Zhao, Fengju Zhang, Shuang Zhao, Jingjing Zhan, Jia Li, Liang Li. Development of a High-Coverage Quantitative Metabolome Analysis Method Using Four-Channel Chemical Isotope Labeling LC–MS for Analyzing High-Salt Fermented Food. Journal of Agricultural and Food Chemistry 2022, 70 (28) , 8827-8837. https://doi.org/10.1021/acs.jafc.2c03481
    6. Reza Aalizadeh, Nikiforos A. Alygizakis, Emma L. Schymanski, Martin Krauss, Tobias Schulze, María Ibáñez, Andrew D. McEachran, Alex Chao, Antony J. Williams, Pablo Gago-Ferrero, Adrian Covaci, Christoph Moschet, Thomas M. Young, Juliane Hollender, Jaroslav Slobodnik, Nikolaos S. Thomaidis. Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening. Analytical Chemistry 2021, 93 (33) , 11601-11611. https://doi.org/10.1021/acs.analchem.1c02348
    7. Evelyn Rampler, Yasin El Abiead, Harald Schoeny, Mate Rusz, Felina Hildebrand, Veronika Fitz, Gunda Koellensperger. Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics—Standardization, Coverage, and Throughput. Analytical Chemistry 2021, 93 (1) , 519-545. https://doi.org/10.1021/acs.analchem.0c04698
    8. Meijuan Zhang, Yulong Liu, Jia Chen, Haibo Liu, Xiaogang Lu, Jianfeng Wu, Yajiao Zhang, Ying Lin, Qin Liu, Hongmei Wang, Lei Guo, Runli Gao, Bin Xu, Jianwei Xie. Sensitive Untargeted Screening of Nerve Agents and Their Degradation Products Using Liquid Chromatography–High Resolution Mass Spectrometry. Analytical Chemistry 2020, 92 (15) , 10578-10587. https://doi.org/10.1021/acs.analchem.0c01508
    9. Shu-Jian Zheng, Jie Zheng, Cai-Feng Xiong, Hua-Ming Xiao, Shi-Jie Liu, Yu-Qi Feng. Hydrogen–Deuterium Scrambling Based on Chemical Isotope Labeling Coupled with LC–MS: Application to Amine Metabolite Identification in Untargeted Metabolomics. Analytical Chemistry 2020, 92 (2) , 2043-2051. https://doi.org/10.1021/acs.analchem.9b04512
    10. Qingqing Song, Jun Li, Huixia Huo, Yan Cao, Yitao Wang, Yuelin Song, Pengfei Tu. Retention Time and Optimal Collision Energy Advance Structural Annotation Relied on LC–MS/MS: An Application in Metabolite Identification of an Antidementia Agent Namely Echinacoside. Analytical Chemistry 2019, 91 (23) , 15040-15048. https://doi.org/10.1021/acs.analchem.9b03720
    11. Shuang Zhao, Hao Li, Wei Han, Wan Chan, Liang Li. Metabolomic Coverage of Chemical-Group-Submetabolome Analysis: Group Classification and Four-Channel Chemical Isotope Labeling LC-MS. Analytical Chemistry 2019, 91 (18) , 12108-12115. https://doi.org/10.1021/acs.analchem.9b03431
    12. Quan-Fei Zhu, Tian-Yi Zhang, Lin-Lin Qin, Xin-Ming Li, Shu-Jian Zheng, Yu-Qi Feng. Method to Calculate the Retention Index in Hydrophilic Interaction Liquid Chromatography Using Normal Fatty Acid Derivatives as Calibrants. Analytical Chemistry 2019, 91 (9) , 6057-6063. https://doi.org/10.1021/acs.analchem.9b00598
    13. Deying Chen, Jiong Yu, Zhehua Zhang, Xiaoling Su, Liang Li, Lanjuan Li. Controlling Preanalytical Process in High-Coverage Quantitative Metabolomics: Spot-Sample Collection for Mouse Urine and Fecal Metabolome Profiling. Analytical Chemistry 2019, 91 (8) , 4958-4963. https://doi.org/10.1021/acs.analchem.9b00310
    14. Tianjiao Huang, Michael R. Armbruster, John B. Coulton, James L. Edwards. Chemical Tagging in Mass Spectrometry for Systems Biology. Analytical Chemistry 2019, 91 (1) , 109-125. https://doi.org/10.1021/acs.analchem.8b04951
    15. Shuang Zhao, Liang Li. Dansylhydrazine Isotope Labeling LC-MS for Comprehensive Carboxylic Acid Submetabolome Profiling. Analytical Chemistry 2018, 90 (22) , 13514-13522. https://doi.org/10.1021/acs.analchem.8b03435
    16. Shu-Jian Zheng, Shi-Jie Liu, Quan-Fei Zhu, Ning Guo, Ya-Lan Wang, Bi-Feng Yuan, Yu-Qi Feng. Establishment of Liquid Chromatography Retention Index Based on Chemical Labeling for Metabolomic Analysis. Analytical Chemistry 2018, 90 (14) , 8412-8420. https://doi.org/10.1021/acs.analchem.8b00901
    17. Xian Luo, Mingrui An, Kyle C. Cuneo, David M. Lubman, Liang Li. High-Performance Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry for Exosome Metabolomics. Analytical Chemistry 2018, 90 (14) , 8314-8319. https://doi.org/10.1021/acs.analchem.8b01726
    18. Xinjie Zhao, Zhongda Zeng, Aiming Chen, Xin Lu, Chunxia Zhao, Chunxiu Hu, Lina Zhou, Xinyu Liu, Xiaolin Wang, Xiaoli Hou, Yaorui Ye, Guowang Xu. Comprehensive Strategy to Construct In-House Database for Accurate and Batch Identification of Small Molecular Metabolites. Analytical Chemistry 2018, 90 (12) , 7635-7643. https://doi.org/10.1021/acs.analchem.8b01482
    19. Dan Wang, Deying Chen, Jiong Yu, Jingqi Liu, Xiaowei Shi, Yanni Sun, Qiaoling Pan, Xian Luo, Jinfeng Yang, Yang Li, Hongcui Cao, Liang Li, Lanjuan Li. Impact of Oxygen Concentration on Metabolic Profile of Human Placenta-Derived Mesenchymal Stem Cells As Determined by Chemical Isotope Labeling LC–MS. Journal of Proteome Research 2018, 17 (5) , 1866-1878. https://doi.org/10.1021/acs.jproteome.7b00887
    20. Di Yu, Lina Zhou, Qiuhui Xuan, Lichao Wang, Xinjie Zhao, Xin Lu, Guowang Xu. Strategy for Comprehensive Identification of Acylcarnitines Based on Liquid Chromatography–High-Resolution Mass Spectrometry. Analytical Chemistry 2018, 90 (9) , 5712-5718. https://doi.org/10.1021/acs.analchem.7b05471
    21. Xian Luo and Liang Li . Metabolomics of Small Numbers of Cells: Metabolomic Profiling of 100, 1000, and 10000 Human Breast Cancer Cells. Analytical Chemistry 2017, 89 (21) , 11664-11671. https://doi.org/10.1021/acs.analchem.7b03100
    22. Deying Chen, Wei Han, Xiaoling Su, Liang Li, and Lanjuan Li . Overcoming Sample Matrix Effect in Quantitative Blood Metabolomics Using Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry. Analytical Chemistry 2017, 89 (17) , 9424-9431. https://doi.org/10.1021/acs.analchem.7b02240
    23. Michael C. Schultz, Jian Zhang, Xian Luo, Oleksandra Savchenko, Liang Li, Michael Deyholos, and Jie Chen . Impact of Low-Intensity Pulsed Ultrasound on Transcript and Metabolite Abundance in Saccharomyces cerevisiae. Journal of Proteome Research 2017, 16 (8) , 2975-2982. https://doi.org/10.1021/acs.jproteome.7b00273
    24. Kevin Hooton and Liang Li . Nonocclusive Sweat Collection Combined with Chemical Isotope Labeling LC–MS for Human Sweat Metabolomics and Mapping the Sweat Metabolomes at Different Skin Locations. Analytical Chemistry 2017, 89 (15) , 7847-7851. https://doi.org/10.1021/acs.analchem.7b01988
    25. Shuang Zhao, Margot Dawe, Kevin Guo, and Liang Li . Development of High-Performance Chemical Isotope Labeling LC–MS for Profiling the Carbonyl Submetabolome. Analytical Chemistry 2017, 89 (12) , 6758-6765. https://doi.org/10.1021/acs.analchem.7b01098
    26. Dorothea Mung and Liang Li . Development of Chemical Isotope Labeling LC-MS for Milk Metabolomics: Comprehensive and Quantitative Profiling of the Amine/Phenol Submetabolome. Analytical Chemistry 2017, 89 (8) , 4435-4443. https://doi.org/10.1021/acs.analchem.6b03737
    27. Shuang Zhao, Xian Luo, and Liang Li . Chemical Isotope Labeling LC-MS for High Coverage and Quantitative Profiling of the Hydroxyl Submetabolome in Metabolomics. Analytical Chemistry 2016, 88 (21) , 10617-10623. https://doi.org/10.1021/acs.analchem.6b02967
    28. Yanqing Fu, Zhihui Zhou, Hongwei Kong, Xin Lu, Xinjie Zhao, Yihui Chen, Jia Chen, Zeming Wu, Zhiliang Xu, Chunxia Zhao, and Guowang Xu . Nontargeted Screening Method for Illegal Additives Based on Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry. Analytical Chemistry 2016, 88 (17) , 8870-8877. https://doi.org/10.1021/acs.analchem.6b02482
    29. Kevin Hooton, Wei Han, and Liang Li . Comprehensive and Quantitative Profiling of the Human Sweat Submetabolome Using High-Performance Chemical Isotope Labeling LC–MS. Analytical Chemistry 2016, 88 (14) , 7378-7386. https://doi.org/10.1021/acs.analchem.6b01930
    30. Yun Zhang, Shuqi Sun, Xuebin Xing, Zhenxia Du, Qiaozhen Guo, and Wenlian Yu . Detection and Identification of Leachables in Vaccine from Plastic Packaging Materials Using UPLC-QTOF MS with Self-Built Polymer Additives Library. Analytical Chemistry 2016, 88 (13) , 6749-6757. https://doi.org/10.1021/acs.analchem.6b01027
    31. Xian Luo, Shuang Zhao, Tao Huan, Difei Sun, R. Magnus N. Friis, Michael C. Schultz, and Liang Li . High-Performance Chemical Isotope Labeling Liquid Chromatography–Mass Spectrometry for Profiling the Metabolomic Reprogramming Elicited by Ammonium Limitation in Yeast. Journal of Proteome Research 2016, 15 (5) , 1602-1612. https://doi.org/10.1021/acs.jproteome.6b00070
    32. Yan Zhang, Fei Liu, Xiu Qin Li, Yan Gao, Kang Cong Li, Qing He Zhang. Generic and accurate prediction of retention times in liquid chromatography by post–projection calibration. Communications Chemistry 2024, 7 (1) https://doi.org/10.1038/s42004-024-01135-0
    33. Qinsheng Chen, Qinwei Lu, Lianglong Zhang, Chenhan Zhang, Jingxian Zhang, Yu Gu, Qingxia Huang, Huiru Tang. A novel endogenous retention-index for minimizing retention-time variations in metabolomic analysis with reversed-phase ultrahigh-performance liquid-chromatography and mass spectrometry. Talanta 2024, 268 , 125318. https://doi.org/10.1016/j.talanta.2023.125318
    34. Chu-Fan Wang, Liang Li. Unraveling the potential of segment scan mass spectral acquisition for chemical isotope labeling LC-MS-based metabolome analysis: Performance assessment across different types of biological samples. Analytica Chimica Acta 2024, 1288 , 342137. https://doi.org/10.1016/j.aca.2023.342137
    35. Lina A. Dahabiyeh, Refat M. Nimer, Khalid M. Sumaily, Mohamad S. Alabdaljabar, Minnie Jacob, Essa M. Sabi, Maged H. Hussein, Anas Abdel Rahman. Metabolomics profiling distinctively identified end-stage renal disease patients from chronic kidney disease patients. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-33377-8
    36. Yunong Li, Hao Li, Taibo Luo, Guohui Lin, Liang Li. Intensity-dependent mass search for improving metabolite database matches in chemical isotope labeling LC-QTOF-MS-based metabolomics. Analytica Chimica Acta 2023, 1272 , 341467. https://doi.org/10.1016/j.aca.2023.341467
    37. Wen-Lu Cai, Can Fang, Li-Fang Liu, Fang-Yuan Sun, Gui-Zhong Xin, Jia-Yi Zheng. Pseudotargeted metabolomics-based random forest model for tracking plant species from herbal products. Phytomedicine 2023, 118 , 154927. https://doi.org/10.1016/j.phymed.2023.154927
    38. Eunwoo Choi, Won Jun Yoo, Hwa-Yong Jang, Tae-Young Kim, Sung Ki Lee, Han Bin Oh. Machine learning liquid chromatography retention time prediction model augments the dansylation strategy for metabolite analysis of urine samples. Journal of Chromatography A 2023, 1705 , 464167. https://doi.org/10.1016/j.chroma.2023.464167
    39. Shuo Gao, Xiaolu Zhou, Mengjie Yue, Shuyun Zhu, Qian Liu, Xian-En Zhao. Advances and perspectives in chemical isotope labeling-based mass spectrometry methods for metabolome and exposome analysis. TrAC Trends in Analytical Chemistry 2023, 162 , 117022. https://doi.org/10.1016/j.trac.2023.117022
    40. Andre Märtens, Johannes Holle, Brit Mollenhauer, Andre Wegner, Jennifer Kirwan, Karsten Hiller. Instrumental Drift in Untargeted Metabolomics: Optimizing Data Quality with Intrastudy QC Samples. Metabolites 2023, 13 (5) , 665. https://doi.org/10.3390/metabo13050665
    41. Chu-Fan Wang, Liang Li. Instrument-type effects on chemical isotope labeling LC-MS metabolome analysis: Quadrupole time-of-flight MS vs. Orbitrap MS. Analytica Chimica Acta 2022, 1226 , 340255. https://doi.org/10.1016/j.aca.2022.340255
    42. Vladimir G. Zaikin, Roman S. Borisov. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Critical Reviews in Analytical Chemistry 2022, 52 (6) , 1287-1342. https://doi.org/10.1080/10408347.2021.1873100
    43. Qiuhui Xuan, Chunxiu Hu, Yinan Zhang, Qingqing Wang, Xinjie Zhao, Xinyu Liu, Congrong Wang, Weiping Jia, Guowang Xu. Serum lipidomics profiles reveal potential lipid markers for prediabetes and type 2 diabetes in patients from multiple communities. Frontiers in Endocrinology 2022, 13 https://doi.org/10.3389/fendo.2022.966823
    44. Andrea Aguilar, Humberto Mattos, Beatriz Carnicero, Nataly Sanhueza, David Muñoz, Mariana Teles, Lluis Tort, Sebastian Boltaña. Metabolomic Profiling Reveals Changes in Amino Acid and Energy Metabolism Pathways in Liver, Intestine and Brain of Zebrafish Exposed to Different Thermal Conditions. Frontiers in Marine Science 2022, 9 https://doi.org/10.3389/fmars.2022.835379
    45. Hsiu-Chuan Chen, Pin-Duo Lee, Yan-Zin Chang. Development of a rapid and sensitive LC-MS/MS assay for the quantification of commonly abused drugs in Asia in a micro-segment of a single hair using microwave-assisted extraction and dansyl chloride derivatization. Journal of Pharmaceutical and Biomedical Analysis 2022, 213 , 114678. https://doi.org/10.1016/j.jpba.2022.114678
    46. Ya-Ju Hsieh, Kun-Yi Chien, Chun-Ming Chang, Cheng-Yu Hung, Liang Li, Wei-Fan Chiang, Cheng-Chia Lee, Chih-Hsiang Chang, Ying-Hsu Chang, Jau-Song Yu, Yi-Ting Chen. Development of a method for dansylation of metabolites using organic solvent-compatible buffer systems for amine/phenol submetabolome analysis. Analytica Chimica Acta 2022, 1189 , 339218. https://doi.org/10.1016/j.aca.2021.339218
    47. Ankhbayar Lkhagva, Hwan-Ching Tai. Dimethylcysteine (DiCys)/o-Phthalaldehyde Derivatization for Chiral Metabolite Analyses: Cross-Comparison of Six Chiral Thiols. Molecules 2021, 26 (24) , 7416. https://doi.org/10.3390/molecules26247416
    48. Yu-Ning Hu, Jin-Tao Zhan, Quan-Fei Zhu, Ting Hu, Na An, Zhen Zhou, Yong Liang, Wei Wang, Zhi Han, Jie Wang, Fu-Qiang Xu, Yu-Qi Feng. A mathematical method for calibrating the signal drift in liquid chromatography - mass spectrometry analysis. Talanta 2021, 233 , 122511. https://doi.org/10.1016/j.talanta.2021.122511
    49. Xuan Lu, Xinli Zhu, Deying Chen, Jiahang Zhou, Jiong Yu, Jue Xie, Senxiang Yan, Hongcui Cao, Liang Li, Lanjuan Li. Metabolic profile of irradiated whole blood by chemical isotope-labeling liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2021, 204 , 114247. https://doi.org/10.1016/j.jpba.2021.114247
    50. Dalia Sriwi, Mohamad S. Alabdaljabar, Minnie Jacob, Ahmed H. Mujamammi, Xinyun Gu, Essa M. Sabi, Liang Li, Maged H. Hussein, Majed Dasouki, Anas M. Abdel Rahman. Metabolomics Profiling of Cystic Renal Disease towards Biomarker Discovery. Biology 2021, 10 (8) , 770. https://doi.org/10.3390/biology10080770
    51. Shuang Zhao, Liang Li. Chemical Derivatization for Polar Metabolome Analysis. 2021, 27-40. https://doi.org/10.1039/9781839163524-00027
    52. Deying Chen, Shuang Zhao, Wei Han, Elvis Lo, Xiaoling Su, Liang Li, Lanjuan Li. High tolerance to instrument drifts by differential chemical isotope labeling LC‐MS: A case study of the effect of LC leak in long‐term sample runs on quantitative metabolome analysis. Journal of Mass Spectrometry 2021, 56 (4) https://doi.org/10.1002/jms.4589
    53. Shereen M. Aleidi, Lina A. Dahabiyeh, Xinyun Gu, Mohammed Al Dubayee, Awad Alshahrani, Hicham Benabdelkamel, Muhammad Mujammami, Liang Li, Ahmad Aljada, Anas M. Abdel Rahman. Obesity Connected Metabolic Changes in Type 2 Diabetic Patients Treated With Metformin. Frontiers in Pharmacology 2021, 11 https://doi.org/10.3389/fphar.2020.616157
    54. Xian Luo, Liang Li. Metabolomics of Small Numbers of Cells Using Chemical Isotope Labeling Combined with Nanoflow LC-MS. 2021, 49-60. https://doi.org/10.1007/978-1-0716-0864-7_4
    55. Shuang Zhao, Liang Li. Chemical Isotope Labeling LC-MS for Metabolomics. 2021, 1-18. https://doi.org/10.1007/978-3-030-51652-9_1
    56. Afshan Masood, Minnie Jacob, Xinyun Gu, Mai Abdel Jabar, Hicham Benabdelkamel, Imran Nizami, Liang Li, Majed Dasouki, Anas M. Abdel Rahman. Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function. Metabolomics 2021, 17 (1) https://doi.org/10.1007/s11306-020-01760-5
    57. Xinyun Gu, Mohammed Al Dubayee, Awad Alshahrani, Afshan Masood, Hicham Benabdelkamel, Mahmoud Zahra, Liang Li, Anas M. Abdel Rahman, Ahmad Aljada. Distinctive Metabolomics Patterns Associated With Insulin Resistance and Type 2 Diabetes Mellitus. Frontiers in Molecular Biosciences 2020, 7 https://doi.org/10.3389/fmolb.2020.609806
    58. Pei-Chun Hsueh, Kuo-An Wu, Chia-Yu Yang, Chia-Wei Hsu, Chih-Liang Wang, Chu-Mi Hung, Yi-Ting Chen, Jau-Song Yu, Chih-Ching Wu. Metabolomic profiling of parapneumonic effusion reveals a regulatory role of dipeptides in interleukin-8 production in neutrophil-like cells. Analytica Chimica Acta 2020, 1128 , 238-250. https://doi.org/10.1016/j.aca.2020.06.022
    59. Fujian Zheng, Xinjie Zhao, Zhongda Zeng, Lichao Wang, Wangjie Lv, Qingqing Wang, Guowang Xu. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography–mass spectrometry. Nature Protocols 2020, 15 (8) , 2519-2537. https://doi.org/10.1038/s41596-020-0341-5
    60. Yunong Li, Liang Li. Retention time shift analysis and correction in chemical isotope labeling liquid chromatography/mass spectrometry for metabolome analysis. Rapid Communications in Mass Spectrometry 2020, 34 (S1) https://doi.org/10.1002/rcm.8643
    61. Qiushi Sun, Teresa W-M. Fan, Andrew N. Lane, Richard M. Higashi. Applications of chromatography-ultra high-resolution MS for stable isotope-resolved metabolomics (SIRM) reconstruction of metabolic networks. TrAC Trends in Analytical Chemistry 2020, 123 , 115676. https://doi.org/10.1016/j.trac.2019.115676
    62. Ankhbayar Lkhagva, Ching-Chieh Shen, Yun-Shiuan Leung, Hwan-Ching Tai. Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2020, 1610 , 460536. https://doi.org/10.1016/j.chroma.2019.460536
    63. Minnie Jacob, Xinyun Gu, Xian Luo, Hamoud Al-Mousa, Rand Arnaout, Bandar Al-Saud, Andreas L. Lopata, Liang Li, Majed Dasouki, Anas Rahman. Metabolomics Distinguishes DOCK8 Deficiency from Atopic Dermatitis: Towards a Biomarker Discovery. Metabolites 2019, 9 (11) , 274. https://doi.org/10.3390/metabo9110274
    64. Paiboon Tunsagool, Xiaohang Wang, Wichitra Leelasuphakul, Warangkana Jutidamrongphan, Narumon Phaonakrop, Janthima Jaresitthikunchai, Sittiruk Roytrakul, Guanqun Chen, Liang Li. Metabolomic study of stress responses leading to plant resistance in mandarin fruit mediated by preventive applications of Bacillus subtilis cyclic lipopeptides. Postharvest Biology and Technology 2019, 156 , 110946. https://doi.org/10.1016/j.postharvbio.2019.110946
    65. Teresa Mairinger, Ruwan Kurulugama, Tim J. Causon, George Stafford, John Fjeldsted, Stephan Hann. Rapid screening methods for yeast sub‐metabolome analysis with a high‐resolution ion mobility quadrupole time‐of‐flight mass spectrometer. Rapid Communications in Mass Spectrometry 2019, 33 (S2) , 66-74. https://doi.org/10.1002/rcm.8420
    66. Dorothea Mung, Liang Li. Chemical isotope labeling liquid chromatography mass spectrometry for investigating acute dietary effects of cow milk consumption on human urine metabolome. Journal of Food and Drug Analysis 2019, 27 (2) , 565-574. https://doi.org/10.1016/j.jfda.2018.10.007
    67. Xiaohang Wang, Wei Han, Jing Yang, David Westaway, Liang Li. Development of chemical isotope labeling LC-MS for tissue metabolomics and its application for brain and liver metabolome profiling in Alzheimer's disease mouse model. Analytica Chimica Acta 2019, 1050 , 95-104. https://doi.org/10.1016/j.aca.2018.10.060
    68. Chia-Wei Hsu, Yi-Ting Chen, Ya-Ju Hsieh, Kai-Ping Chang, Pei-Chun Hsueh, Ting-Wen Chen, Jau-Song Yu, Yu-Sun Chang, Liang Li, Chih-Ching Wu. Integrated analyses utilizing metabolomics and transcriptomics reveal perturbation of the polyamine pathway in oral cavity squamous cell carcinoma. Analytica Chimica Acta 2019, 1050 , 113-122. https://doi.org/10.1016/j.aca.2018.10.070
    69. Michaela Schwaiger, Harald Schoeny, Yasin El Abiead, Gerrit Hermann, Evelyn Rampler, Gunda Koellensperger. Merging metabolomics and lipidomics into one analytical run. The Analyst 2019, 144 (1) , 220-229. https://doi.org/10.1039/C8AN01219A
    70. Yang Wang, Li Ma, Mengliu Zhang, Meiwan Chen, Peng Li, Chengwei He, Chunyan Yan, Jian-Bo Wan. A Simple Method for Peak Alignment Using Relative Retention Time Related to an Inherent Peak in Liquid Chromatography-Mass Spectrometry-Based Metabolomics. Journal of Chromatographic Science 2019, 57 (1) , 9-16. https://doi.org/10.1093/chromsci/bmy074
    71. Xian Luo, Xinyun Gu, Liang Li. Development of a simple and efficient method of harvesting and lysing adherent mammalian cells for chemical isotope labeling LC-MS-based cellular metabolomics. Analytica Chimica Acta 2018, 1037 , 97-106. https://doi.org/10.1016/j.aca.2017.11.054
    72. Yanni Sun, Deying Chen, Jingqi Liu, Yanping Xu, Xiaowei Shi, Xian Luo, Qiaoling Pan, Jiong Yu, Jinfeng Yang, Hongcui Cao, Liang Li, Lanjuan Li. Metabolic profiling associated with autophagy of human placenta-derived mesenchymal stem cells by chemical isotope labeling LC−MS. Experimental Cell Research 2018, 372 (1) , 52-60. https://doi.org/10.1016/j.yexcr.2018.09.009
    73. Shraddha Sapkota, Tao Huan, Tran Tran, Jiamin Zheng, Richard Camicioli, Liang Li, Roger A. Dixon. Alzheimer’s Biomarkers From Multiple Modalities Selectively Discriminate Clinical Status: Relative Importance of Salivary Metabolomics Panels, Genetic, Lifestyle, Cognitive, Functional Health and Demographic Risk Markers. Frontiers in Aging Neuroscience 2018, 10 https://doi.org/10.3389/fnagi.2018.00296
    74. Tao Huan, Tran Tran, Jiamin Zheng, Shraddha Sapkota, Stuart W. MacDonald, Richard Camicioli, Roger A. Dixon, Liang Li. Metabolomics Analyses of Saliva Detect Novel Biomarkers of Alzheimer’s Disease. Journal of Alzheimer's Disease 2018, 65 (4) , 1401-1416. https://doi.org/10.3233/JAD-180711
    75. Pandiyaraj Kanagavalli, Shanmugam Senthil Kumar. Stable and Sensitive Amperometric Determination of Endocrine Disruptor Bisphenol A at Residual Metal Impurities Within SWCNT. Electroanalysis 2018, 30 (3) , 445-452. https://doi.org/10.1002/elan.201700596
    76. Dorothea Mung, Liang Li. Applying quantitative metabolomics based on chemical isotope labeling LC-MS for detecting potential milk adulterant in human milk. Analytica Chimica Acta 2018, 1001 , 78-85. https://doi.org/10.1016/j.aca.2017.11.019
    77. Wei Han, Liang Li. Chemical Isotope Labeling LC-MS for Human Blood Metabolome Analysis. 2018, 213-225. https://doi.org/10.1007/978-1-4939-7592-1_14
    78. Dajana Vuckovic. Improving metabolome coverage and data quality: advancing metabolomics and lipidomics for biomarker discovery. Chemical Communications 2018, 54 (50) , 6728-6749. https://doi.org/10.1039/C8CC02592D
    79. Wei Han, Shraddha Sapkota, Richard Camicioli, Roger A. Dixon, Liang Li. Profiling novel metabolic biomarkers for Parkinson's disease using in‐depth metabolomic analysis. Movement Disorders 2017, 32 (12) , 1720-1728. https://doi.org/10.1002/mds.27173
    80. Marney L. Doran, Jose M. Knee, Nan Wang, Teresa Z. Rzezniczak, Tony L. Parkes, Liang Li, Thomas J.S. Merritt. Metabolomic analysis of oxidative stress: Superoxide dismutase mutation and paraquat induced stress in Drosophila melanogaster. Free Radical Biology and Medicine 2017, 113 , 323-334. https://doi.org/10.1016/j.freeradbiomed.2017.10.011
    81. Rachel Spicer, Reza M. Salek, Pablo Moreno, Daniel Cañueto, Christoph Steinbeck. Navigating freely-available software tools for metabolomics analysis. Metabolomics 2017, 13 (9) https://doi.org/10.1007/s11306-017-1242-7
    82. Yun-Lu HE, Yan-Bo LUO, Huan CHEN, Hong-Wei HOU, Qing-Yuan HU. Research Progress in Analysis of Small Molecule Metabolites in Bio-matrices by Stable Isotope Coded Derivatization Combining with Liquid Chromatography–tandem Mass Spectrometry. Chinese Journal of Analytical Chemistry 2017, 45 (7) , 1066-1077. https://doi.org/10.1016/S1872-2040(17)61026-0
    83. Elena Sánchez-López, Antonio L. Crego, María Luisa Marina. Design of strategies to study the metabolic profile of highly polar compounds in plasma by reversed-phase liquid chromatography–high resolution mass spectrometry. Journal of Chromatography A 2017, 1490 , 156-165. https://doi.org/10.1016/j.chroma.2017.02.029
    84. Yi-Hsuan Lee, Ying-Chi Lin, Chia-Hsien Feng, Wei-Lung Tseng, Chi-Yu Lu. A derivatization-enhanced detection strategy in mass spectrometry: analysis of 4-hydroxybenzoates and their metabolites after keratinocytes are exposed to UV radiation. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep39907
    85. Deying Chen, Xiaoling Su, Nan Wang, Yunong Li, Hua Yin, Liang Li, Lanjuan Li. Chemical Isotope Labeling LC-MS for Monitoring Disease Progression and Treatment in Animal Models: Plasma Metabolomics Study of Osteoarthritis Rat Model. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep40543
    86. Yiman Wu, Femke Streijger, Yining Wang, Guohui Lin, Sean Christie, Jean-Marc Mac-Thiong, Stefan Parent, Christopher S. Bailey, Scott Paquette, Michael C. Boyd, Tamir Ailon, John Street, Charles G. Fisher, Marcel F. Dvorak, Brian K. Kwon, Liang Li. Parallel Metabolomic Profiling of Cerebrospinal Fluid and Serum for Identifying Biomarkers of Injury Severity after Acute Human Spinal Cord Injury. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep38718
    87. Jing Xu, Yanhua Chen, Ruiping Zhang, Jiuming He, Yongmei Song, Jingbo Wang, Huiqing Wang, Luhua Wang, Qimin Zhan, Zeper Abliz. Global metabolomics reveals potential urinary biomarkers of esophageal squamous cell carcinoma for diagnosis and staging. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep35010
    88. Tao Huan, Jia Wen Xian, Wing Nang Leung, Liang Li, Chun Wai Chan. Cerebrospinal Fluid Metabolomics After Natural Product Treatment in an Experimental Model of Cerebral Ischemia. OMICS: A Journal of Integrative Biology 2016, 20 (11) , 670-680. https://doi.org/10.1089/omi.2016.0112
    89. Tao Huan, Dean A. Troyer, Liang Li. Metabolite Analysis and Histology on the Exact Same Tissue: Comprehensive Metabolomic Profiling and Metabolic Classification of Prostate Cancer. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep32272
    90. Weifeng Shen, Wei Han, Yunong Li, Zhiqi Meng, Leiming Cai, Liang Li. Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics. Analytica Chimica Acta 2016, 942 , 1-11. https://doi.org/10.1016/j.aca.2016.06.004
    91. Tim J. Causon, Stephan Hann. Review of sample preparation strategies for MS-based metabolomic studies in industrial biotechnology. Analytica Chimica Acta 2016, 938 , 18-32. https://doi.org/10.1016/j.aca.2016.07.033
    92. Juan Peng, Yun Feng, Xiao-Xia Han, Zuo-Ning Gao. Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. Microchimica Acta 2016, 183 (7) , 2289-2296. https://doi.org/10.1007/s00604-016-1865-9
    93. Xiaoling Su, Nan Wang, Deying Chen, Yunong Li, Yingfeng Lu, Tao Huan, Wei Xu, Liang Li, Lanjuan Li. Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes. Analytica Chimica Acta 2016, 903 , 100-109. https://doi.org/10.1016/j.aca.2015.11.027

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect