ACS Publications. Most Trusted. Most Cited. Most Read
LipidHunter Identifies Phospholipids by High-Throughput Processing of LC-MS and Shotgun Lipidomics Datasets
My Activity
    Article

    LipidHunter Identifies Phospholipids by High-Throughput Processing of LC-MS and Shotgun Lipidomics Datasets
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
    *E-mail: [email protected]. Institut für Bioanalytische Chemie, Biotechnologisch-Biomedizinisches Zentrum, Deutscher Platz 5, 04103 Leipzig, Germany.
    Other Access OptionsSupporting Information (12)

    Analytical Chemistry

    Cite this: Anal. Chem. 2017, 89, 17, 8800–8807
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.7b01126
    Published July 28, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Lipids are dynamic constituents of biological systems, rapidly responding to any changes in physiological conditions. Thus, there is a large interest in lipid-derived markers for diagnostic and prognostic applications, especially in translational and systems medicine research. As lipid identification remains a bottleneck of modern untargeted lipidomics, we developed LipidHunter, a new open source software for the high-throughput identification of phospholipids in data acquired by LC-MS and shotgun experiments. LipidHunter resembles a workflow of manual spectra annotation. Lipid identification is based on MS/MS data analysis in accordance with defined fragmentation rules for each phospholipid (PL) class. The software tool matches product and neutral loss signals obtained by collision-induced dissociation to a user-defined white list of fatty acid residues and PL class-specific fragments. The identified signals are tested against elemental composition and bulk identification provided via LIPID MAPS search. Furthermore, LipidHunter provides information-rich tabular and graphical reports allowing to trace back key identification steps and perform data quality control. Thereby, 202 discrete lipid species were identified in lipid extracts from rat primary cardiomyocytes treated with a peroxynitrite donor. Their relative quantification allowed the monitoring of dynamic reconfiguration of the cellular lipidome in response to mild nitroxidative stress. LipidHunter is available free for download at https://bitbucket.org/SysMedOs/lipidhunter.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.7b01126.

    • Descriptions of the supplementary tables and Figures S1–S7 (PDF)

    • LipidHunter User Guide (PDF)

    • Examples of LipidHunter identification results for lipids from different PL classes with low, medium, and high abundances of precursor ions (Figures 1–20) (PDF)

    • Table S-1. Configuration file used to define the white list for fatty acid residues (XLSX)

    • Table S-2. Configuration file used to define PL class specific ions (XLSX)

    • Table S-3. Configuration file used to define weight factors Wfrag (XLSX)

    • Table S-4. LipidHunter output tables for PC, PE, PS, PI, PG, and PA lipids exemplified for 70 min_SIN sample (XLSX)

    • Table S-5. Summary of PLs identified by LipidHunter in lipid extracts from cardiomyocytes treated with SIN-1 (XLSX)

    • Table S-6. Comparison between LipidHunter and LipidBlast results for PL identification (XLSX)

    • Table S-7. Summary of relative quantification for discrete PLs identified by LipidHunter in extracts from SIN-1 treated cardiomyocytes using Progenesis QI (XLSX)

    • Table S-8. Human serum PLs identified by LipidHunter (XLSX)

    • Table S-9. PLs identified by LipidHunter in shotgun DDA data sets (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 55 publications.

    1. Yao Qian, Xiaoxiao Ma. Advances in Tandem Mass Spectrometry Imaging for Next-Generation Spatial Metabolomics. Analytical Chemistry 2025, 97 (14) , 7589-7599. https://doi.org/10.1021/acs.analchem.5c00157
    2. Paul D. Hutchins, Camila A. Saez Cabezas, Joshua S. Enokida, Yushan Hu, Yuming Lai, Victoria Mazure, Marie Martin, Kelly Setula, John R. Stutzman, James H. Wade. Monitoring Epoxidized Soybean Oil Degradation Using Liquid Chromatography–Mass Spectrometry and In Silico Spectral Libraries. Journal of the American Society for Mass Spectrometry 2024, 35 (8) , 1940-1949. https://doi.org/10.1021/jasms.4c00212
    3. Sara Martínez, Oihane E. Albóniga, María Rosa López-Huertas, Ana Gradillas, Coral Barbas. Reinforcing the Evidence of Mitochondrial Dysfunction in Long COVID Patients Using a Multiplatform Mass Spectrometry-Based Metabolomics Approach. Journal of Proteome Research 2024, 23 (8) , 3025-3040. https://doi.org/10.1021/acs.jproteome.3c00706
    4. Thomai Mouskeftara, Olga Deda, Theodoros Liapikos, Eleftherios Panteris, Efstratios Karagiannidis, Andreas S. Papazoglou, Helen Gika. Lipidomic-Based Algorithms Can Enhance Prediction of Obstructive Coronary Artery Disease. Journal of Proteome Research 2024, 23 (8) , 3598-3611. https://doi.org/10.1021/acs.jproteome.4c00249
    5. Raobo Xu, Huan Liu, Fang Yuan, Seongho Kim, Irina Kirpich, Craig J. McClain, Xiang Zhang. Lipid Wizard: Analysis Software for Comprehensive Two-Dimensional Liquid Chromatography–Mass Spectrometry-Based Lipid Profiling. Analytical Chemistry 2024, 96 (14) , 5375-5383. https://doi.org/10.1021/acs.analchem.3c04419
    6. Laura Goracci, Paolo Tiberi, Stefano Di Bona, Stefano Bonciarelli, Giovanna Ilaria Passeri, Marta Piroddi, Simone Moretti, Claudia Volpi, Ismael Zamora, Gabriele Cruciani. MARS: A Multipurpose Software for Untargeted LC–MS-Based Metabolomics and Exposomics. Analytical Chemistry 2024, 96 (4) , 1468-1477. https://doi.org/10.1021/acs.analchem.3c03620
    7. Wei Jia, Xixuan Wu, Lin Shi. Spatiotemporal Variation of Residual Cortisol Obstructs Nutrient Acquisition in Animal-Derived Foods by Perturbing Glycerophospholipid Metabolism. Journal of Agricultural and Food Chemistry 2023, 71 (23) , 9097-9109. https://doi.org/10.1021/acs.jafc.3c02397
    8. David S. Gertner, Jake P. Violi, David P. Bishop, Matthew P. Padula. Lipid Spectrum Generator: A Simple Script for the Generation of Accurate In Silico Lipid Fragmentation Spectra. Analytical Chemistry 2023, 95 (5) , 2909-2916. https://doi.org/10.1021/acs.analchem.2c04518
    9. Elias Iturrospe, Katyeny Manuela da Silva, Rani Robeyns, Maria van de Lavoir, Joost Boeckmans, Tamara Vanhaecke, Alexander L.N. van Nuijs, Adrian Covaci. Metabolic Signature of Ethanol-Induced Hepatotoxicity in HepaRG Cells by Liquid Chromatography–Mass Spectrometry-Based Untargeted Metabolomics. Journal of Proteome Research 2022, 21 (4) , 1153-1166. https://doi.org/10.1021/acs.jproteome.2c00029
    10. Jeremy P. Koelmel, Juan J. Aristizabal-Henao, Zhixu Ni, Maria Fedorova, Shunji Kato, Yurika Otoki, Kiyotaka Nakagawa, Elizabeth Z. Lin, Krystal J. Godri Pollitt, Vasilis Vasiliou, Joy D. Guingab, Timothy J. Garrett, Traycie L. Williams, John A. Bowden, Meera Penumetcha. A Novel Technique for Redox Lipidomics Using Mass Spectrometry: Application on Vegetable Oils Used to Fry Potatoes. Journal of the American Society for Mass Spectrometry 2021, 32 (7) , 1798-1809. https://doi.org/10.1021/jasms.1c00150
    11. Jürgen Hartler, Aaron M. Armando, Martin Trötzmüller, Edward A. Dennis, Harald C. Köfeler, Oswald Quehenberger. Automated Annotation of Sphingolipids Including Accurate Identification of Hydroxylation Sites Using MSn Data. Analytical Chemistry 2020, 92 (20) , 14054-14062. https://doi.org/10.1021/acs.analchem.0c03016
    12. Angela Criscuolo, Martin Zeller, Maria Fedorova. Evaluation of Lipid In-Source Fragmentation on Different Orbitrap-based Mass Spectrometers. Journal of the American Society for Mass Spectrometry 2020, 31 (2) , 463-466. https://doi.org/10.1021/jasms.9b00061
    13. Ansgar Korf, Viola Jeck, Robin Schmid, Patrick O. Helmer, Heiko Hayen. Lipid Species Annotation at Double Bond Position Level with Custom Databases by Extension of the MZmine 2 Open-Source Software Package. Analytical Chemistry 2019, 91 (8) , 5098-5105. https://doi.org/10.1021/acs.analchem.8b05493
    14. David Chamoso-Sanchez, Martina Panini, Clarissa Caroli, Matilde Marani, Lorenzo Corsi, Francisco J Rupérez, Antonia Garcia, Federica Pellati. Unveiling cellular changes in leukaemia cell lines after cannabidiol treatment through lipidomics. Scientific Reports 2025, 15 (1) https://doi.org/10.1038/s41598-025-86044-5
    15. Belén Fernández Requena, Sajid Nadeem, Vineel P. Reddy, Vanessa Naidoo, Joel N. Glasgow, Adrie J. C. Steyn, Coral Barbas, Carolina Gonzalez-Riano. LiLA: lipid lung-based ATLAS built through a comprehensive workflow designed for an accurate lipid annotation. Communications Biology 2024, 7 (1) https://doi.org/10.1038/s42003-023-05680-7
    16. Sara Martínez, Miguel Fernández-García, Sara Londoño-Osorio, Coral Barbas, Ana Gradillas. Highly reliable LC-MS lipidomics database for efficient human plasma profiling based on NIST SRM 1950. Journal of Lipid Research 2024, 65 (11) , 100671. https://doi.org/10.1016/j.jlr.2024.100671
    17. Madeline Isom, Heather Desaire. Skin Surface Sebum Analysis by ESI-MS. Biomolecules 2024, 14 (7) , 790. https://doi.org/10.3390/biom14070790
    18. Hiroshi Tsugawa, Tomoaki Ishihara, Kota Ogasa, Seigo Iwanami, Aya Hori, Mikiko Takahashi, Yutaka Yamada, Naoko Satoh-Takayama, Hiroshi Ohno, Aki Minoda, Makoto Arita. A lipidome landscape of aging in mice. Nature Aging 2024, 4 (5) , 709-726. https://doi.org/10.1038/s43587-024-00610-6
    19. Rani Robeyns, Angela Sisto, Elias Iturrospe, Katyeny Manuela da Silva, Maria van de Lavoir, Vincent Timmerman, Adrian Covaci, Sigrid Stroobants, Alexander L. N. van Nuijs. The Metabolic and Lipidomic Fingerprint of Torin1 Exposure in Mouse Embryonic Fibroblasts Using Untargeted Metabolomics. Metabolites 2024, 14 (5) , 248. https://doi.org/10.3390/metabo14050248
    20. Belen Fernandez Requena, Carolina Gonzalez-Riano, Coral Barbas. Addressing the untargeted lipidomics challenge in urine samples: Comparative study of extraction methods by UHPLC-ESI-QTOF-MS. Analytica Chimica Acta 2024, 1299 , 342433. https://doi.org/10.1016/j.aca.2024.342433
    21. Jingnan Lei, Yuan He, Shuang Zhu, Jiachen Shi, Chin-Ping Tan, Yuanfa Liu, Yong-Jiang Xu. SpecLipIDA: a pseudotargeted lipidomics approach for polyunsaturated fatty acids in milk. The Analyst 2024, 149 (3) , 751-760. https://doi.org/10.1039/D3AN01536J
    22. Justin Wei, Li Chin Wong, Sebastian Boland. Lipids as Emerging Biomarkers in Neurodegenerative Diseases. International Journal of Molecular Sciences 2024, 25 (1) , 131. https://doi.org/10.3390/ijms25010131
    23. David Chamoso-Sanchez, Francisco Rabadán Pérez, Jesús Argente, Coral Barbas, Gabriel A. Martos-Moreno, Francisco J. Rupérez. Identifying subgroups of childhood obesity by using multiplatform metabotyping. Frontiers in Molecular Biosciences 2023, 10 https://doi.org/10.3389/fmolb.2023.1301996
    24. Vera Plekhova, Kimberly De Windt, Margot De Spiegeleer, Marilyn De Graeve, Lynn Vanhaecke. Recent advances in high-throughput biofluid metabotyping by direct infusion and ambient ionization mass spectrometry. TrAC Trends in Analytical Chemistry 2023, 168 , 117287. https://doi.org/10.1016/j.trac.2023.117287
    25. Tomas Cajka, Jiri Hricko, Lucie Rudl Kulhava, Michaela Paucova, Michaela Novakova, Oliver Fiehn, Ondrej Kuda. Exploring the Impact of Organic Solvent Quality and Unusual Adduct Formation during LC-MS-Based Lipidomic Profiling. Metabolites 2023, 13 (9) , 966. https://doi.org/10.3390/metabo13090966
    26. Elias Iturrospe, Rani Robeyns, Katyeny Manuela da Silva, Maria van de Lavoir, Joost Boeckmans, Tamara Vanhaecke, Alexander L. N. van Nuijs, Adrian Covaci. Metabolic signature of HepaRG cells exposed to ethanol and tumor necrosis factor alpha to study alcoholic steatohepatitis by LC–MS-based untargeted metabolomics. Archives of Toxicology 2023, 97 (5) , 1335-1353. https://doi.org/10.1007/s00204-023-03470-y
    27. Wm. Craig Byrdwell. Mass Spectrometry for Analysis of Glycerolipids. 2023, 351-394. https://doi.org/10.1002/9783527836512.ch13
    28. Zhixu Ni, Michele Wölk, Geoff Jukes, Karla Mendivelso Espinosa, Robert Ahrends, Lucila Aimo, Jorge Alvarez-Jarreta, Simon Andrews, Robert Andrews, Alan Bridge, Geremy C. Clair, Matthew J. Conroy, Eoin Fahy, Caroline Gaud, Laura Goracci, Jürgen Hartler, Nils Hoffmann, Dominik Kopczyinki, Ansgar Korf, Andrea F. Lopez-Clavijo, Adnan Malik, Jacobo Miranda Ackerman, Martijn R. Molenaar, Claire O’Donovan, Tomáš Pluskal, Andrej Shevchenko, Denise Slenter, Gary Siuzdak, Martina Kutmon, Hiroshi Tsugawa, Egon L. Willighagen, Jianguo Xia, Valerie B. O’Donnell, Maria Fedorova. Guiding the choice of informatics software and tools for lipidomics research applications. Nature Methods 2023, 20 (2) , 193-204. https://doi.org/10.1038/s41592-022-01710-0
    29. Robert C. Murphy, Alfred H. Merrill. Lipidomics. 2023, 202-218. https://doi.org/10.1016/B978-0-12-821618-7.00070-5
    30. Haruki Uchino, Hiroshi Tsugawa, Hidenori Takahashi, Makoto Arita. Computational mass spectrometry accelerates C = C position-resolved untargeted lipidomics using oxygen attachment dissociation. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-022-00778-1
    31. Michele Wölk, Sanja Milkovska-Stamenova, Maria Fedorova, Ralf Hoffmann. Variations in the milk lipidomes of two dairy cow herds fed hay- or silage-based diets over a full year. Food Chemistry 2022, 390 , 133091. https://doi.org/10.1016/j.foodchem.2022.133091
    32. Katyeny Manuela da Silva, Elias Iturrospe, Rik van den Boom, Maria van de Lavoir, Rani Robeyns, Lucia Vergauwen, Dries Knapen, Matthias Cuykx, Adrian Covaci, Alexander L. N. van Nuijs. Lipidomics profiling of zebrafish liver through untargeted liquid chromatography‐high resolution mass spectrometry. Journal of Separation Science 2022, 45 (15) , 2935-2945. https://doi.org/10.1002/jssc.202200214
    33. Nils Hoffmann, Gerhard Mayer, Canan Has, Dominik Kopczynski, Fadi Al Machot, Dominik Schwudke, Robert Ahrends, Katrin Marcus, Martin Eisenacher, Michael Turewicz. A Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics. Metabolites 2022, 12 (7) , 584. https://doi.org/10.3390/metabo12070584
    34. Sonia Abreu, Sylvie Héron, Audrey Solgadi, Bastien Prost, Jessica Dalloux-Chioccioli, Alice Kermarrec, Anne Meynier, Justine Bertrand-Michel, Alain Tchapla, Pierre Chaminade. Rapid assessment of fatty acyls chains of phospholipids and plasmalogens by atmospheric pressure chemical ionization in positive mode and high-resolution mass spectrometry using in-source generated monoacylglycerol like fragments intensities. Journal of Chromatography A 2022, 1673 , 463093. https://doi.org/10.1016/j.chroma.2022.463093
    35. Michaela Sochorová, Kateřina Vávrová, Maria Fedorova, Zhixu Ni, Denise Slenter, Martina Kutmon, Egon L. Willighagen, Sophia Letsiou, Daniel Töröcsik, Martina Marchetti-Deschmann, Samuele Zoratto, Christopher Kremslehner, Florian Gruber. Research Techniques Made Simple: Lipidomic Analysis in Skin Research. Journal of Investigative Dermatology 2022, 142 (1) , 4-11.e1. https://doi.org/10.1016/j.jid.2021.09.017
    36. Harald C. Köfeler, Thomas O. Eichmann, Robert Ahrends, John A. Bowden, Niklas Danne-Rasche, Edward A. Dennis, Maria Fedorova, William J. Griffiths, Xianlin Han, Jürgen Hartler, Michal Holčapek, Robert Jirásko, Jeremy P. Koelmel, Christer S. Ejsing, Gerhard Liebisch, Zhixu Ni, Valerie B. O’Donnell, Oswald Quehenberger, Dominik Schwudke, Andrej Shevchenko, Michael J. O. Wakelam, Markus R. Wenk, Denise Wolrab, Kim Ekroos. Quality control requirements for the correct annotation of lipidomics data. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24984-y
    37. Marcel A. Vieira-Lara, Marleen B. Dommerholt, Wenxuan Zhang, Maaike Blankestijn, Justina C. Wolters, Fentaw Abegaz, Albert Gerding, Ydwine T. van der Veen, Rachel Thomas, Ronald P. van Os, Dirk-Jan Reijngoud, Johan W. Jonker, Janine K. Kruit, Barbara M. Bakker. Age-related susceptibility to insulin resistance arises from a combination of CPT1B decline and lipid overload. BMC Biology 2021, 19 (1) https://doi.org/10.1186/s12915-021-01082-5
    38. Dmitrii Smirnov, Pavel Mazin, Maria Osetrova, Elena Stekolshchikova, Ekaterina Khrameeva. The Hitchhiker’s Guide to Untargeted Lipidomics Analysis: Practical Guidelines. Metabolites 2021, 11 (11) , 713. https://doi.org/10.3390/metabo11110713
    39. Mike Lange, Georgia Angelidou, Zhixu Ni, Angela Criscuolo, Jürgen Schiller, Matthias Blüher, Maria Fedorova. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Reports Medicine 2021, 2 (10) , 100407. https://doi.org/10.1016/j.xcrm.2021.100407
    40. Anna Tkachev, Elena Stekolshchikova, Daniil M. Bobrovskiy, Nickolay Anikanov, Polina Ogurtsova, Dong Ik Park, Anja K. E. Horn, Daria Petrova, Ekaterina Khrameeva, Mari S. Golub, Christoph W. Turck, Philipp Khaitovich. Long-Term Fluoxetine Administration Causes Substantial Lipidome Alteration of the Juvenile Macaque Brain. International Journal of Molecular Sciences 2021, 22 (15) , 8089. https://doi.org/10.3390/ijms22158089
    41. Silvia Radrezza, Gilda Aiello, Giovanna Baron, Giancarlo Aldini, Marina Carini, Alfonsina D’Amato. Integratomics of Human Dermal Fibroblasts Treated with Low Molecular Weight Hyaluronic Acid. Molecules 2021, 26 (16) , 5096. https://doi.org/10.3390/molecules26165096
    42. Wen-Jen Lin, Pei-Chun Shen, Hsiu-Cheng Liu, Yi-Chun Cho, Min-Kung Hsu, I-Chen Lin, Fang-Hsin Chen, Juan-Cheng Yang, Wen-Lung Ma, Wei-Chung Cheng. LipidSig: a web-based tool for lipidomic data analysis. Nucleic Acids Research 2021, 49 (W1) , W336-W345. https://doi.org/10.1093/nar/gkab419
    43. Jennifer E. Kyle, Lucila Aimo, Alan J. Bridge, Geremy Clair, Maria Fedorova, J. Bernd Helms, Martijn R. Molenaar, Zhixu Ni, Matej Orešič, Denise Slenter, Egon Willighagen, Bobbie-Jo M. Webb-Robertson. Interpreting the lipidome: bioinformatic approaches to embrace the complexity. Metabolomics 2021, 17 (6) https://doi.org/10.1007/s11306-021-01802-6
    44. Manuel Kösters, Johannes Leufken, Sebastian A. Leidel. SMITER—A Python Library for the Simulation of LC-MS/MS Experiments. Genes 2021, 12 (3) , 396. https://doi.org/10.3390/genes12030396
    45. Caroline Gaud, Bebiana C. Sousa, An Nguyen, Maria Fedorova, Zhixu Ni, Valerie B. O’Donnell, Michael J.O. Wakelam, Simon Andrews, Andrea F. Lopez-Clavijo. BioPAN: a web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS. F1000Research 2021, 10 , 4. https://doi.org/10.12688/f1000research.28022.1
    46. Caroline Gaud, Bebiana C. Sousa, An Nguyen, Maria Fedorova, Zhixu Ni, Valerie B. O’Donnell, Michael J.O. Wakelam, Simon Andrews, Andrea F. Lopez-Clavijo. BioPAN: a web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS. F1000Research 2021, 10 , 4. https://doi.org/10.12688/f1000research.28022.2
    47. Hiroshi Tsugawa, Kazutaka Ikeda, Mikiko Takahashi, Aya Satoh, Yoshifumi Mori, Haruki Uchino, Nobuyuki Okahashi, Yutaka Yamada, Ipputa Tada, Paolo Bonini, Yasuhiro Higashi, Yozo Okazaki, Zhiwei Zhou, Zheng-Jiang Zhu, Jeremy Koelmel, Tomas Cajka, Oliver Fiehn, Kazuki Saito, Masanori Arita, Makoto Arita. A lipidome atlas in MS-DIAL 4. Nature Biotechnology 2020, 38 (10) , 1159-1163. https://doi.org/10.1038/s41587-020-0531-2
    48. Patrick O. Helmer, Ansgar Korf, Heiko Hayen. Analysis of artificially oxidized cardiolipins and monolyso‐cardiolipins via liquid chromatography/high‐resolution mass spectrometry and Kendrick mass defect plots after hydrophilic interaction liquid chromatography based sample preparation. Rapid Communications in Mass Spectrometry 2020, 34 (1) https://doi.org/10.1002/rcm.8566
    49. Johanna Striesow, Jan-Wilm Lackmann, Zhixu Ni, Sebastian Wenske, Klaus-Dieter Weltmann, Maria Fedorova, Thomas von Woedtke, Kristian Wende. Oxidative modification of skin lipids by cold atmospheric plasma (CAP): A standardizable approach using RP-LC/MS2 and DI-ESI/MS2. Chemistry and Physics of Lipids 2020, 226 , 104786. https://doi.org/10.1016/j.chemphyslip.2019.104786
    50. Zhixu Ni, Laura Goracci, Gabriele Cruciani, Maria Fedorova. Computational solutions in redox lipidomics – Current strategies and future perspectives. Free Radical Biology and Medicine 2019, 144 , 110-123. https://doi.org/10.1016/j.freeradbiomed.2019.04.027
    51. Kai P. Law, Chuanlun L. Zhang. Current progress and future trends in mass spectrometry-based archaeal lipidomics. Organic Geochemistry 2019, 134 , 45-61. https://doi.org/10.1016/j.orggeochem.2019.04.001
    52. Angela Criscuolo, Martin Zeller, Ken Cook, Georgia Angelidou, Maria Fedorova. Rational selection of reverse phase columns for high throughput LC–MS lipidomics. Chemistry and Physics of Lipids 2019, 221 , 120-127. https://doi.org/10.1016/j.chemphyslip.2019.03.006
    53. Marie-Sophie Narzt, Ionela-Mariana Nagelreiter, Olga Oskolkova, Valery N. Bochkov, Julie Latreille, Maria Fedorova, Zhixu Ni, Fernando J. Sialana, Gert Lubec, Manuel Filzwieser, Maria Laggner, Martin Bilban, Michael Mildner, Erwin Tschachler, Johannes Grillari, Florian Gruber. A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids. Redox Biology 2019, 20 , 467-482. https://doi.org/10.1016/j.redox.2018.11.006
    54. Biswapriya B. Misra. New tools and resources in metabolomics: 2016–2017. ELECTROPHORESIS 2018, 39 (7) , 909-923. https://doi.org/10.1002/elps.201700441
    55. Zhixu Ni, Georgia Angelidou, Ralf Hoffmann, Maria Fedorova. LPPtiger software for lipidome-specific prediction and identification of oxidized phospholipids from LC-MS datasets. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-15363-z

    Analytical Chemistry

    Cite this: Anal. Chem. 2017, 89, 17, 8800–8807
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.7b01126
    Published July 28, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    2234

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.