ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Advanced Registration and Analysis of MALDI Imaging Mass Spectrometry Measurements through Autofluorescence Microscopy

  • Nathan Heath Patterson
    Nathan Heath Patterson
    Mass Spectrometry Research Center  and  Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, United States
  • Michael Tuck
    Michael Tuck
    Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232-8575, United States
    More by Michael Tuck
  • Raf Van de Plas
    Raf Van de Plas
    Mass Spectrometry Research Center  and  Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, United States
    Delft Center for Systems and Control (DCSC), Delft University of Technology, 2628 CD Delft, The Netherlands
  • , and 
  • Richard M. Caprioli*
    Richard M. Caprioli
    Mass Spectrometry Research Center,  Departments of Biochemistry,  Chemistry  and  Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232-8575, United States
    *E-mail: [email protected]
Cite this: Anal. Chem. 2018, 90, 21, 12395–12403
Publication Date (Web):October 1, 2018
https://doi.org/10.1021/acs.analchem.8b02884
Copyright © 2018 American Chemical Society

    Article Views

    2950

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (9 MB)
    Supporting Info (3)»

    Abstract

    Abstract Image

    The correlation of imaging mass spectrometry (IMS) with histopathology can help relate novel molecular findings obtained through IMS to the well-characterized and validated histopathology knowledge base. The quality of correlation between these two modalities is limited by the quality of the spatial mapping that is obtained by registration of the two image types. In this work, we develop novel workflows for MALDI IMS-to-microscopy data registration and analysis using nondestructive IMS-compatible wide field autofluorescence (AF) microscopy combined with computational image registration. First, a substantially automated procedure for high-accuracy registration between IMS and microscopy data of the same section is described that explicitly links the MALDI laser ablation pattern imaged by microscopy to its corresponding IMS pixel. Subsequent examination of the registered data allows for high-confidence colocalization of image features between the two modalities, down to single-cell scales within tissue. Building on this IMS-microscopy spatial mapping, we furthermore demonstrate the automated spatial correlation between IMS measurements from serial sections. This AF-registration-driven inter-section analysis, using a combination of nonlinear AF-to-AF and IMS-to-AF image registrations, can be applied to tissue sections that are prepared and imaged with different sample preparations (e.g., lipids vs proteins) and/or that are measured using different spatial resolutions. Importantly, all registrations, whether within a single section or across serial sections, are entirely independent of the IMS intensity signal content and thus unbiased by it.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.8b02884.

    • Supplemental methods, experimental walkthrough, accuracy evaluation scheme for Workflow I, and evaluation of fundamentals for Workflow II (PDF)

    • Low- (Video S1) and high-magnification (Video S2) videos of the sequence of microscopy layers explicitly linking IMS pixels to their microscopy location in the 30 μm rat kidney MALDI IMS data set (ZIP)

    • Source code for the MSRC Registration Toolbox to perform experiments (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 62 publications.

    1. Allison B. Esselman, Nathan Heath Patterson, Lukasz G. Migas, Martin Dufresne, Katerina V. Djambazova, Madeline E. Colley, Raf Van de Plas, Jeffrey M. Spraggins. Microscopy-Directed Imaging Mass Spectrometry for Rapid High Spatial Resolution Molecular Imaging of Glomeruli. Journal of the American Society for Mass Spectrometry 2023, 34 (7) , 1305-1314. https://doi.org/10.1021/jasms.3c00033
    2. Patrick M. Wehrli, Junyue Ge, Wojciech Michno, Srinivas Koutarapu, Ambra Dreos, Durga Jha, Henrik Zetterberg, Kaj Blennow, Jörg Hanrieder. Correlative Chemical Imaging and Spatial Chemometrics Delineate Alzheimer Plaque Heterogeneity at High Spatial Resolution. JACS Au 2023, 3 (3) , 762-774. https://doi.org/10.1021/jacsau.2c00492
    3. Bo-Jhang Lin, Tien-Chueh Kuo, Hsin-Hsiang Chung, Ying-Chen Huang, Ming-Yang Wang, Cheng-Chih Hsu, Po-Yang Yao, Yufeng Jane Tseng. MSIr: Automatic Registration Service for Mass Spectrometry Imaging and Histology. Analytical Chemistry 2023, 95 (6) , 3317-3324. https://doi.org/10.1021/acs.analchem.2c04360
    4. Xiangtang Li, Hang Hu, Ruichuan Yin, Yingju Li, Xiaofei Sun, Sudhansu K. Dey, Julia Laskin. High-Throughput Nano-DESI Mass Spectrometry Imaging of Biological Tissues Using an Integrated Microfluidic Probe. Analytical Chemistry 2022, 94 (27) , 9690-9696. https://doi.org/10.1021/acs.analchem.2c01093
    5. Stefania-Alexandra Iakab, Gerard Baquer, Marta Lafuente, Maria Pilar Pina, José Luis Ramírez, Pere Ràfols, Xavier Correig-Blanchar, María García-Altares. SALDI-MS and SERS Multimodal Imaging: One Nanostructured Substrate to Rule Them Both. Analytical Chemistry 2022, 94 (6) , 2785-2793. https://doi.org/10.1021/acs.analchem.1c04118
    6. Josiah C. McMillen, Danielle B. Gutierrez, Audra M. Judd, Jeffrey M. Spraggins, Richard M. Caprioli. Enhancement of Tryptic Peptide Signals from Tissue Sections Using MALDI IMS Postionization (MALDI-2). Journal of the American Society for Mass Spectrometry 2021, 32 (10) , 2583-2591. https://doi.org/10.1021/jasms.1c00213
    7. Michael J. Taylor, Jessica K. Lukowski, Christopher R. Anderton. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. Journal of the American Society for Mass Spectrometry 2021, 32 (4) , 872-894. https://doi.org/10.1021/jasms.0c00439
    8. Evgeny S. Zhvansky, Daniil G. Ivanov, Anatoly A. Sorokin, Anna E. Bugrova, Evgeny N. Nikolaev, Igor A. Popov. Interactive Estimation of Heterogeneity from Mass Spectrometry Imaging. Analytical Chemistry 2021, 93 (8) , 3706-3709. https://doi.org/10.1021/acs.analchem.1c00437
    9. Alan M. Race, Daniel Sutton, Gregory Hamm, Gareth Maglennon, Jennifer P. Morton, Nicole Strittmatter, Andrew Campbell, Owen J. Sansom, Yinhai Wang, Simon T. Barry, Zoltan Takáts, Richard J. A. Goodwin, Josephine Bunch. Deep Learning-Based Annotation Transfer between Molecular Imaging Modalities: An Automated Workflow for Multimodal Data Integration. Analytical Chemistry 2021, 93 (6) , 3061-3071. https://doi.org/10.1021/acs.analchem.0c02726
    10. Michael Tuck, Landry Blanc, Rita Touti, Nathan Heath Patterson, Sebastiaan Van Nuffel, Sandrine Villette, Jean-Christophe Taveau, Andreas Römpp, Alain Brunelle, Sophie Lecomte, Nicolas Desbenoit. Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. Analytical Chemistry 2021, 93 (1) , 445-477. https://doi.org/10.1021/acs.analchem.0c04595
    11. Naga Veera Yerra, Bharath Dyaga, S. Babu Dadinaboyina, Sukanya Pandeti, Jayathirtha Rao Vaidya, Jean-Claude Tabet, Jagadeshwar Reddy Thota. 2-Cyano-3-(2-thienyl)acrylic Acid as a New MALDI Matrix for the Analysis of a Broad Spectrum of Analytes. Journal of the American Society for Mass Spectrometry 2021, 32 (1) , 387-393. https://doi.org/10.1021/jasms.0c00398
    12. David M. G. Anderson, Jeffrey D. Messinger, Nathan H. Patterson, Emilio S. Rivera, Ankita Kotnala, Jeffrey M. Spraggins, Richard M. Caprioli, Christine A. Curcio, Kevin L. Schey. Lipid Landscape of the Human Retina and Supporting Tissues Revealed by High-Resolution Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2020, 31 (12) , 2426-2436. https://doi.org/10.1021/jasms.0c00119
    13. Elizabeth K. Neumann, Katerina V. Djambazova, Richard M. Caprioli, Jeffrey M. Spraggins. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. Journal of the American Society for Mass Spectrometry 2020, 31 (12) , 2401-2415. https://doi.org/10.1021/jasms.0c00232
    14. Yuxuan Richard Xie, Daniel C. Castro, Fan Lam, Jonathan V. Sweedler. Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach. Journal of the American Society for Mass Spectrometry 2020, 31 (11) , 2338-2347. https://doi.org/10.1021/jasms.0c00276
    15. Thomas Enzlein, Jonas Cordes, Bogdan Munteanu, Wojciech Michno, Lutgarde Serneels, Bart De Strooper, Jörg Hanrieder, Ivo Wolf, Lucía Chávez-Gutiérrez, Carsten Hopf. Computational Analysis of Alzheimer Amyloid Plaque Composition in 2D- and Elastically Reconstructed 3D-MALDI MS Images. Analytical Chemistry 2020, 92 (21) , 14484-14493. https://doi.org/10.1021/acs.analchem.0c02585
    16. Elizabeth K. Neumann, Lukasz G. Migas, Jamie L. Allen, Richard M. Caprioli, Raf Van de Plas, Jeffrey M. Spraggins. Spatial Metabolomics of the Human Kidney using MALDI Trapped Ion Mobility Imaging Mass Spectrometry. Analytical Chemistry 2020, 92 (19) , 13084-13091. https://doi.org/10.1021/acs.analchem.0c02051
    17. Andreas Dannhorn, Emine Kazanc, Stephanie Ling, Chelsea Nikula, Evdoxia Karali, Maria Paola Serra, Jean-Luc Vorng, Paolo Inglese, Gareth Maglennon, Gregory Hamm, John Swales, Nicole Strittmatter, Simon T. Barry, Owen J. Sansom, George Poulogiannis, Josephine Bunch, Richard JA Goodwin, Zoltan Takats. Universal Sample Preparation Unlocking Multimodal Molecular Tissue Imaging. Analytical Chemistry 2020, 92 (16) , 11080-11088. https://doi.org/10.1021/acs.analchem.0c00826
    18. Marissa A. Jones, Sung Hoon Cho, Nathan Heath Patterson, Raf Van de Plas, Jeffrey M. Spraggins, Mark R. Boothby, Richard M. Caprioli. Discovering New Lipidomic Features Using Cell Type Specific Fluorophore Expression to Provide Spatial and Biological Specificity in a Multimodal Workflow with MALDI Imaging Mass Spectrometry. Analytical Chemistry 2020, 92 (10) , 7079-7086. https://doi.org/10.1021/acs.analchem.0c00446
    19. Markéta Machálková, Barbora Pavlatovská, Jan Michálek, Adam Pruška, Karel Štěpka, Tereza Nečasová, Katarzyna Anna Radaszkiewicz, Michal Kozubek, Jan Šmarda, Jan Preisler, Jarmila Navrátilová. Drug Penetration Analysis in 3D Cell Cultures Using Fiducial-Based Semiautomatic Coregistration of MALDI MSI and Immunofluorescence Images. Analytical Chemistry 2019, 91 (21) , 13475-13484. https://doi.org/10.1021/acs.analchem.9b02462
    20. Daniel J. Ryan, Nathan Heath Patterson, Nicole E. Putnam, Aimee D. Wilde, Andy Weiss, William J. Perry, James E. Cassat, Eric P. Skaar, Richard M. Caprioli, Jeffrey M. Spraggins. MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction Surface Analysis for High Spatial Resolution Targeted Proteomic Studies. Analytical Chemistry 2019, 91 (12) , 7578-7585. https://doi.org/10.1021/acs.analchem.8b05889
    21. Jeremy L. Norris, Danielle B. Gutierrez, Nathan Heath Patterson, Richard M. Caprioli. Imaging mass spectrometry in clinical pathology. 2024, 669-685. https://doi.org/10.1016/B978-0-12-822824-1.00007-9
    22. Katerina V. Djambazova, Jacqueline M. Van Ardenne, Jeffrey M. Spraggins. Advances in imaging mass spectrometry for biomedical and clinical research. TrAC Trends in Analytical Chemistry 2023, 169 , 117344. https://doi.org/10.1016/j.trac.2023.117344
    23. David M. G. Anderson, Ankita Kotnala, Lukasz G. Migas, N. Heath Patterson, Léonore E. M. Tideman, Dongfeng Cao, Bibek Adhikari, Jeffrey D. Messinger, Thomas Ach, Sara Tortorella, Raf Van de Plas, Christine A. Curcio, Kevin L. Schey. Lysolipids are prominent in subretinal drusenoid deposits, a high-risk phenotype in age-related macular degeneration. Frontiers in Ophthalmology 2023, 3 https://doi.org/10.3389/fopht.2023.1258734
    24. Ethan Yang, Xinyi Elaine Shen, Hoku West‐Foyle, Tae‐Hun Hahm, Maxime A. Siegler, Dalton R. Brown, Cole C. Johnson, Jeong Hee Kim, LaToya Ann Roker, Caitlin M. Tressler, Ishan Barman, Scot C. Kuo, Kristine Glunde. FluoMALDI Microscopy: Matrix Co‐Crystallization Simultaneously Enhances Fluorescence and MALDI Imaging. Advanced Science 2023, 6 https://doi.org/10.1002/advs.202304343
    25. Jessica L. Moore, Nathan Heath Patterson, Jeremy L. Norris, Richard M. Caprioli. Prospective on Imaging Mass Spectrometry in Clinical Diagnostics. Molecular & Cellular Proteomics 2023, 22 (9) , 100576. https://doi.org/10.1016/j.mcpro.2023.100576
    26. Benjamin L. Oyler, Jeferson A. Valencia-Dávila, Eirini Moysi, Adam Molyvdas, Kalliopi Ioannidou, Kylie March, David Ambrozak, Laurence De Leval, Giulia Fabozzi, Amina S. Woods, Richard A. Koup, Constantinos Petrovas. Multilevel human secondary lymphoid immune system compartmentalization revealed by complementary imaging approaches. iScience 2023, 26 (8) , 107261. https://doi.org/10.1016/j.isci.2023.107261
    27. Xuanlin Meng, Ping Xu, Fei Tao. RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle. iScience 2023, 26 (7) , 107069. https://doi.org/10.1016/j.isci.2023.107069
    28. Benedikt Geier, Esther Gil-Mansilla, Zita Liutkevičiūtė, Roland Hellinger, Jozef Vanden Broeck, Janina Oetjen, Manuel Liebeke, Christian W Gruber, . Multiplexed neuropeptide mapping in ant brains integrating microtomography and three-dimensional mass spectrometry imaging. PNAS Nexus 2023, 2 (5) https://doi.org/10.1093/pnasnexus/pgad144
    29. Mark J. Lim, Gargey Yagnik, Corinna Henkel, Signe F. Frost, Tanja Bien, Kenneth J. Rothschild. MALDI HiPLEX-IHC: multiomic and multimodal imaging of targeted intact proteins in tissues. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1182404
    30. Brittney L. Gorman, Suzy V. Torti, Frank M. Torti, Christopher R. Anderton. Mass spectrometry imaging of metals in tissues and cells: Methods and biological applications. Biochimica et Biophysica Acta (BBA) - General Subjects 2023, 14 , 130329. https://doi.org/10.1016/j.bbagen.2023.130329
    31. David M. G. Anderson, Ankita Kotnala, Jeffrey D. Messinger, Nathan Heath Patterson, Jeffrey M. Spraggins, Christine A. Curcio, Richard M. Caprioli, Kevin L. Schey. High-Resolution Imaging Mass Spectrometry of Human Donor Eye: Photoreceptors Cells and Basal Laminar Deposit of Age-Related Macular Degeneration. 2023, 3-7. https://doi.org/10.1007/978-3-031-27681-1_1
    32. Hang Hu, Julia Laskin. Emerging Computational Methods in Mass Spectrometry Imaging. Advanced Science 2022, 9 (34) https://doi.org/10.1002/advs.202203339
    33. Gangqi Wang, Bram Heijs, Sarantos Kostidis, Ahmed Mahfouz, Rosalie G. J. Rietjens, Roel Bijkerk, Angela Koudijs, Loïs A. K. van der Pluijm, Cathelijne W. van den Berg, Sébastien J. Dumas, Peter Carmeliet, Martin Giera, Bernard M. van den Berg, Ton J. Rabelink. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nature Metabolism 2022, 4 (9) , 1109-1118. https://doi.org/10.1038/s42255-022-00615-8
    34. William J. Perry, Caroline M. Grunenwald, Raf Van de Plas, James C. Witten, Daniel R. Martin, Suneel S. Apte, James E. Cassat, Gösta B. Pettersson, Richard M. Caprioli, Eric P. Skaar, Jeffrey M. Spraggins. Visualizing Staphylococcus aureus pathogenic membrane modification within the host infection environment by multimodal imaging mass spectrometry. Cell Chemical Biology 2022, 29 (7) , 1209-1217.e4. https://doi.org/10.1016/j.chembiol.2022.05.004
    35. Michael Tuck, Florent Grélard, Landry Blanc, Nicolas Desbenoit. MALDI-MSI Towards Multimodal Imaging: Challenges and Perspectives. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.904688
    36. Kellen DeLaney, Ashley Phetsanthad, Lingjun Li. ADVANCES IN HIGH‐RESOLUTION MALDI MASS SPECTROMETRY FOR NEUROBIOLOGY. Mass Spectrometry Reviews 2022, 41 (2) , 194-214. https://doi.org/10.1002/mas.21661
    37. David C. Koomen, Jody C. May, John A. McLean. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry. Expert Review of Proteomics 2022, 19 (1) , 17-31. https://doi.org/10.1080/14789450.2022.2026218
    38. Catherine S. McCaughey, Michael A. Trebino, Fitnat H. Yildiz, Laura M. Sanchez. Utilizing imaging mass spectrometry to analyze microbial biofilm chemical responses to exogenous compounds. 2022, 281-304. https://doi.org/10.1016/bs.mie.2021.11.014
    39. Benjamin Balluff, Ron M.A. Heeren, Alan M. Race. An overview of image registration for aligning mass spectrometry imaging with clinically relevant imaging modalities. Journal of Mass Spectrometry and Advances in the Clinical Lab 2022, 23 , 26-38. https://doi.org/10.1016/j.jmsacl.2021.12.006
    40. Rami N. Al‐Rohil, Jessica L. Moore, Nathan Heath Patterson, Sarah Nicholson, Nico Verbeeck, Marc Claesen, Jameelah Z. Muhammad, Richard M. Caprioli, Jeremy L. Norris, Sara Kantrow, Margaret Compton, Jason Robbins, Ahmed K. Alomari. Diagnosis of melanoma by imaging mass spectrometry: Development and validation of a melanoma prediction model. Journal of Cutaneous Pathology 2021, 48 (12) , 1455-1462. https://doi.org/10.1111/cup.14083
    41. Florent Grélard, David Legland, Mathieu Fanuel, Bastien Arnaud, Loïc Foucat, Hélène Rogniaux. Esmraldi: efficient methods for the fusion of mass spectrometry and magnetic resonance images. BMC Bioinformatics 2021, 22 (1) https://doi.org/10.1186/s12859-020-03954-z
    42. Leonoor E.M. Tideman, Lukasz G. Migas, Katerina V. Djambazova, Nathan Heath Patterson, Richard M. Caprioli, Jeffrey M. Spraggins, Raf Van de Plas. Automated biomarker candidate discovery in imaging mass spectrometry data through spatially localized Shapley additive explanations. Analytica Chimica Acta 2021, 1177 , 338522. https://doi.org/10.1016/j.aca.2021.338522
    43. Elizabeth K. Neumann, Nathan Heath Patterson, Jamie L. Allen, Lukasz G. Migas, Haichun Yang, Maya Brewer, David M. Anderson, Jennifer Harvey, Danielle B. Gutierrez, Raymond C. Harris, Mark P. deCaestecker, Agnes B. Fogo, Raf Van de Plas, Richard M. Caprioli, Jeffrey M. Spraggins. Protocol for multimodal analysis of human kidney tissue by imaging mass spectrometry and CODEX multiplexed immunofluorescence. STAR Protocols 2021, 2 (3) , 100747. https://doi.org/10.1016/j.xpro.2021.100747
    44. Kristen N. Sikora, Laura J. Castellanos-García, Joseph M. Hardie, Yuanchang Liu, Michelle E. Farkas, Vincent M. Rotello, Richard W. Vachet. Nanodelivery vehicles induce remote biochemical changes in vivo. Nanoscale 2021, 13 (29) , 12623-12633. https://doi.org/10.1039/D1NR02563E
    45. Jonas Cordes, Thomas Enzlein, Christian Marsching, Marven Hinze, Sandy Engelhardt, Carsten Hopf, Ivo Wolf. M2aia—Interactive, fast, and memory-efficient analysis of 2D and 3D multi-modal mass spectrometry imaging data. GigaScience 2021, 10 (7) https://doi.org/10.1093/gigascience/giab049
    46. Brett D. Hollingshead, Lindsay Tomlinson, Jim Finley, Colleen Doshna, Casey Ritenour, Jason Barricklow, Stacey R. Oppenheimer, Shawn P. O'Neil, Jessica L. Moore, Nathan Heath Patterson, Sarah P. Nicholson, Jeremy L. Norris, Richard M. Caprioli, Kevin Beaumont, Amanda J. King-Ahmad, Saurabh Vispute, Jon C. Cook, Zaher Radi, Maik Schuler. An orthogonal methods assessment of topical drug concentrations in skin and the impact for risk assessment in the viable epidermis. Regulatory Toxicology and Pharmacology 2021, 123 , 104934. https://doi.org/10.1016/j.yrtph.2021.104934
    47. Luca Rappez, Mira Stadler, Sergio Triana, Rose Muthoni Gathungu, Katja Ovchinnikova, Prasad Phapale, Mathias Heikenwalder, Theodore Alexandrov. SpaceM reveals metabolic states of single cells. Nature Methods 2021, 18 (7) , 799-805. https://doi.org/10.1038/s41592-021-01198-0
    48. Peggi M. Angel, Denys Rujchanarong, Sarah Pippin, Laura Spruill, Richard Drake. Mass Spectrometry Imaging of Fibroblasts: Promise and Challenge. Expert Review of Proteomics 2021, 18 (6) , 423-436. https://doi.org/10.1080/14789450.2021.1941893
    49. Paul C. Hackley, Aaron M. Jubb, Ryan J. McAleer, Brett J. Valentine, Justin E. Birdwell. A review of spatially resolved techniques and applications of organic petrography in shale petroleum systems. International Journal of Coal Geology 2021, 241 , 103745. https://doi.org/10.1016/j.coal.2021.103745
    50. Ibrahim Kaya, Eva Jennische, Stefan Lange, Per Malmberg. Multimodal chemical imaging of a single brain tissue section using ToF-SIMS, MALDI-ToF and immuno/histochemical staining. The Analyst 2021, 146 (4) , 1169-1177. https://doi.org/10.1039/D0AN02172E
    51. Brian D. Ross, Thomas L. Chenevert, Charles R. Meyer. Retrospective Registration in Molecular Imaging. 2021, 1703-1725. https://doi.org/10.1016/B978-0-12-816386-3.00080-6
    52. Josiah C. McMillen, Jarod A. Fincher, Dustin R. Klein, Jeffrey M. Spraggins, Richard M. Caprioli. Effect of MALDI matrices on lipid analyses of biological tissues using MALDI‐2 postionization mass spectrometry. Journal of Mass Spectrometry 2020, 55 (12) https://doi.org/10.1002/jms.4663
    53. Andreas Blutke, Na Sun, Zhihao Xu, Achim Buck, Luke Harrison, Sonja C. Schriever, Paul T. Pfluger, David Wiles, Thomas Kunzke, Katharina Huber, Jürgen Schlegel, Michaela Aichler, Annette Feuchtinger, Kaspar Matiasek, Stefanie M. Hauck, Axel Walch. Light sheet fluorescence microscopy guided MALDI-imaging mass spectrometry of cleared tissue samples. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-71465-1
    54. Jarod A. Fincher, Andrew R. Korte, Sridevi Yadavilli, Nicholas J. Morris, Akos Vertes. Multimodal imaging of biological tissues using combined MALDI and NAPA-LDI mass spectrometry for enhanced molecular coverage. The Analyst 2020, 145 (21) , 6910-6918. https://doi.org/10.1039/D0AN00836B
    55. Nico Verbeeck, Richard M. Caprioli, Raf Van de Plas. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. Mass Spectrometry Reviews 2020, 39 (3) , 245-291. https://doi.org/10.1002/mas.21602
    56. William J. Perry, Andy Weiss, Raf Van de Plas, Jeffrey M. Spraggins, Richard M. Caprioli, Eric P. Skaar. Integrated molecular imaging technologies for investigation of metals in biological systems: A brief review. Current Opinion in Chemical Biology 2020, 55 , 127-135. https://doi.org/10.1016/j.cbpa.2020.01.008
    57. Juliana Maynard, Philippa Hart. The Opportunities and Use of Imaging to Measure Target Engagement. SLAS Discovery 2020, 25 (2) , 127-136. https://doi.org/10.1177/2472555219897270
    58. Josiah C. McMillen, William J. Perry, Kavya Sharman, Katerina V. Djambazova, Richard M. Caprioli. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry: Technology and Applications. 2020, 109-128. https://doi.org/10.1007/978-94-024-2041-8_7
    59. Matthias Holzlechner, Eliseo Eugenin, Brendan Prideaux. Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer. Cancer Reports 2019, 2 (6) https://doi.org/10.1002/cnr2.1229
    60. Melanie Christine Föll, Lennart Moritz, Thomas Wollmann, Maren Nicole Stillger, Niklas Vockert, Martin Werner, Peter Bronsert, Karl Rohr, Björn Andreas Grüning, Oliver Schilling. Accessible and reproducible mass spectrometry imaging data analysis in Galaxy. GigaScience 2019, 8 (12) https://doi.org/10.1093/gigascience/giz143
    61. Silvia Zorrilla, Andreia Mónico, Sofia Duarte, Germán Rivas, Dolores Pérez-Sala, María A. Pajares. Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radical Biology and Medicine 2019, 144 , 203-217. https://doi.org/10.1016/j.freeradbiomed.2019.04.011
    62. M. Niehaus, J. Soltwisch, M. E. Belov, K. Dreisewerd. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nature Methods 2019, 16 (9) , 925-931. https://doi.org/10.1038/s41592-019-0536-2

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect