Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Supercritical-Fluid Chromatography On-Chip with Two-Photon-Excited-Fluorescence Detection for High-Speed Chiral Separations

  • Josef J. Heiland
    Josef J. Heiland
    Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
  • David Geissler
    David Geissler
    Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
  • Sebastian K. Piendl
    Sebastian K. Piendl
    Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
  • Rico Warias
    Rico Warias
    Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
    More by Rico Warias
  • , and 
  • Detlev Belder*
    Detlev Belder
    Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
    *E-mail: [email protected]
Cite this: Anal. Chem. 2019, 91, 9, 6134–6140
Publication Date (Web):April 15, 2019
https://doi.org/10.1021/acs.analchem.9b00726
Copyright © 2019 American Chemical Society

    Article Views

    1394

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Herein, we present the first example of microchip-based supercritical-fluid chromatography (SFC). A microfluidic-glass-chip platform with pressure and temperature control for fast and efficient on-column injection is described. This enabled fast and efficient separation of chiral and achiral compounds within seconds and also employed two-photon-excitated-fluorescence detection. Peak shapes were highly regular and symmetric even for linear flow rates over the packed microchip column in a range of up to 20 mm·s–1.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.9b00726.

    • Detailed instrumentation and microfluidic setup, chip-column fabrication, general procedures, and effects of column-pressure drop and column temperature on retention times (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 26 publications.

    1. Toshinobu Hondo, Chihiro Ota, Yumi Miyake, Hiroshi Furutani, Michisato Toyoda. Analysis of Nonvolatile Molecules in Supercritical Carbon Dioxide Using Proton-Transfer-Reaction Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry 2021, 93 (17) , 6589-6593. https://doi.org/10.1021/acs.analchem.1c00898
    2. Alexander S. Kaplitz, Glenn A. Kresge, Benjamin Selover, Leah Horvat, Edward G. Franklin, Justin M. Godinho, Kaitlin M. Grinias, Samuel W. Foster, Joshua J. Davis, James P. Grinias. High-Throughput and Ultrafast Liquid Chromatography. Analytical Chemistry 2020, 92 (1) , 67-84. https://doi.org/10.1021/acs.analchem.9b04713
    3. Jacob B. Nielsen, Robert L. Hanson, Haifa M. Almughamsi, Chao Pang, Taylor R. Fish, Adam T. Woolley. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Analytical Chemistry 2020, 92 (1) , 150-168. https://doi.org/10.1021/acs.analchem.9b04986
    4. Dmitry Gorbunov, Maria Nenasheva, Grigory Shashkin, Viktor Shapovalov, Petr Shvets, Evgeny Naranov, Anton Maximov, Alexander Guda, Alexander Soldatov. Transferring hydroformylation reaction into high-pressure gas–liquid microfluidic systems: Key achievements and perspectives. Journal of Industrial and Engineering Chemistry 2024, 136 , 46-72. https://doi.org/10.1016/j.jiec.2024.02.029
    5. Ilgım Göktürk, Kıvılcım Çaktü Güler, Fatma Yılmaz, Ceren Oktar, Gaye Ezgi Yılmaz, Adil Denizli. Molecularly Imprinted Polymeric Biomaterials in Diagnosis and Medical Practice. Biomedical Materials & Devices 2024, 48 https://doi.org/10.1007/s44174-024-00192-2
    6. Xing Kang, Liuhao Mao, Jinwen Shi, Yanbing Liu, Binjiang Zhai, Jun Xu, Yuzhou Jiang, Eric Lichtfouse, Hui Jin, Liejin Guo. Supercritical carbon dioxide systems for sustainable and efficient dissolution of solutes: a review. Environmental Chemistry Letters 2024, 22 (2) , 815-839. https://doi.org/10.1007/s10311-023-01681-4
    7. Hannes Westphal, Simon Schmidt, Sanjay Lama, Matthias Polack, Chris Weise, Toni Oestereich, Rico Warias, Tanja Gulder, Detlev Belder. Development of an automated platform for monitoring microfluidic reactors through multi-reactor integration and online (chip-)LC/MS-detection. Reaction Chemistry & Engineering 2024, 15 https://doi.org/10.1039/D4RE00004H
    8. Lucía Abad-Gil, María Luisa Marina. Enantioselective analysis of pesticides in food, biological, and environmental samples by chromatographic techniques and capillary electrophoresis. Journal of Chromatography Open 2023, 4 , 100099. https://doi.org/10.1016/j.jcoa.2023.100099
    9. Dan Li, Kui Luo, Lianming Zhang, Jingxia Gao, Jinlu Liang, Jianping Li, Hongcheng Pan. Research and Application of Highly Selective Molecular Imprinting Technology in Chiral Separation Analysis. Critical Reviews in Analytical Chemistry 2023, 53 (5) , 1066-1079. https://doi.org/10.1080/10408347.2021.2002680
    10. Karolina Svensson, Chris Weise, Hannes Westphal, Simon Södergren, Detlev Belder, Klas Hjort. Coupling microchip pressure regulators with chipHPLC as a step toward fully portable analysis system. Sensors and Actuators B: Chemical 2023, 385 , 133732. https://doi.org/10.1016/j.snb.2023.133732
    11. Barbara Gieroba, Joanna Matys, Krzysztof Jóźwiak. Hyphenated liquid chromatography techniques in analysis of neurotransmitters and their metabolites. 2023, 223-255. https://doi.org/10.1016/B978-0-323-99969-4.00007-3
    12. Jessy Pavón-Pérez, Alejandro Vallejos-Almirall, Cristian Agurto-Muñoz, Oscar Galarce-Bustos. Sustainable approaches for the study of alkaloids from plants using supercritical fluid-based processes. Green Chemistry 2022, 24 (24) , 9450-9474. https://doi.org/10.1039/D2GC01916G
    13. Xiaokang An, Xinglu Pan, Runan Li, Duoduo Jiang, Fengshou Dong, Wentao Zhu, Jun Xu, Xingang Liu, Xiaohu Wu, Yongquan Zheng. Enantioselective monitoring chiral fungicide mefentrifluconazole in tomato, cucumber, pepper and its pickled products by supercritical fluid chromatography tandem mass spectrometry. Food Chemistry 2022, 376 , 131883. https://doi.org/10.1016/j.foodchem.2021.131883
    14. Guilherme Botelho Meireles de Souza, Mariana Bisinotto Pereira, Lucas Clementino Mourão, Mirian Paula dos Santos, José Augusto de Oliveira, Ivan Aritz Aldaya Garde, Christian Gonçalves Alonso, Veeriah Jegatheesan, Lúcio Cardozo-Filho. Supercritical water technology: an emerging treatment process for contaminated wastewaters and sludge. Reviews in Environmental Science and Bio/Technology 2022, 21 (1) , 75-104. https://doi.org/10.1007/s11157-021-09601-0
    15. Sadat Hasan, Maximilian E. Blaha, Sebastian K. Piendl, Anish Das, David Geissler, Detlev Belder. Two-photon fluorescence lifetime for label-free microfluidic droplet sorting. Analytical and Bioanalytical Chemistry 2022, 414 (1) , 721-730. https://doi.org/10.1007/s00216-021-03745-2
    16. Ken Broeckhoven. Advances in the limits of separation power in supercritical fluid chromatography. TrAC Trends in Analytical Chemistry 2022, 146 , 116489. https://doi.org/10.1016/j.trac.2021.116489
    17. Kazuhiro Yamamoto, Koichi Machida, Akira Kotani, Hideki Hakamata. Emerging Separation Techniques in Supercritical Fluid Chromatography. Chemical and Pharmaceutical Bulletin 2021, 69 (10) , 970-975. https://doi.org/10.1248/cpb.c21-00306
    18. M. Farooq Wahab, Daipayan Roy, Daniel W. Armstrong. The theory and practice of ultrafast liquid chromatography: A tutorial. Analytica Chimica Acta 2021, 1151 , 238170. https://doi.org/10.1016/j.aca.2020.12.045
    19. Martin Vogel, Werner Engewald, Katja Dettmer‐Wilde, Oliver J. Schmitz, Michael Sperling, Christian G Huber, Christof Regl, Thomas Berger, Sebastian Piendl, Detlev Belder, Frank‐Michael Matysik. Trendbericht Analytische Chemie II: Trenntechniken und Elektroanalytik. Nachrichten aus der Chemie 2020, 68 (10) , 48-53. https://doi.org/10.1002/nadc.20204102051
    20. Zhentao Li, Zhenkun Mao, Wei Zhou, Zilin Chen. γ-Cyclodextrin metal-organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Talanta 2020, 218 , 121160. https://doi.org/10.1016/j.talanta.2020.121160
    21. Linbo Liu, Guangming Li, Nan Xiang, Xing Huang, Kota Shiba. Microfluidic Production of Autofluorescent BSA Hydrogel Microspheres and Their Sequential Trapping for Fluorescence-Based On-Chip Permanganate Sensing. Sensors 2020, 20 (20) , 5886. https://doi.org/10.3390/s20205886
    22. Salome Pantsulaia, Khatia Targamadze, Nana Khundadze, Qetevan Kharaishvili, Alessandro Volonterio, Michael Chitty, Tivadar Farkas, Bezhan Chankvetadze. Potential and current limitations of superficially porous silica as a carrier for polysaccharide-based chiral selectors in separation of enantiomers in high-performance liquid chromatography. Journal of Chromatography A 2020, 1625 , 461297. https://doi.org/10.1016/j.chroma.2020.461297
    23. Ke Li, Wangyan Hu, Yingyan Zhou, Xiangnan Dou, Xiayan Wang, Bo Zhang, Guangsheng Guo. Single-particle-frit-based packed columns for microchip chromatographic analysis of neurotransmitters. Talanta 2020, 215 , 120896. https://doi.org/10.1016/j.talanta.2020.120896
    24. Huiting Lian, Shaozhen Huang, Xiaofeng Wei, Jialei Guo, Xiangying Sun, Bin Liu. Gold nanodendrite-based differential potential ratiometric sensing strategy for enantioselective recognition of DOPA. Talanta 2020, 210 , 120654. https://doi.org/10.1016/j.talanta.2019.120654
    25. Daniel Blascke Carrão, Icaro Salgado Perovani, Nayara Cristina Perez de Albuquerque, Anderson Rodrigo Moraes de Oliveira. Enantioseparation of pesticides: A critical review. TrAC Trends in Analytical Chemistry 2020, 122 , 115719. https://doi.org/10.1016/j.trac.2019.115719
    26. Steven Ray Wilson, Christine Olsen, Elsa Lundanes. Nano liquid chromatography columns. The Analyst 2019, 144 (24) , 7090-7104. https://doi.org/10.1039/C9AN01473J