ACS Publications. Most Trusted. Most Cited. Most Read
Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic-Enhanced PDMS-Based Microfluidics
My Activity
    Article

    Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic-Enhanced PDMS-Based Microfluidics
    Click to copy article linkArticle link copied!

    • Sergio Ayala-Mar
      Sergio Ayala-Mar
      Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
    • Victor H. Perez-Gonzalez
      Victor H. Perez-Gonzalez
      Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
    • Marco A. Mata-Gómez
      Marco A. Mata-Gómez
      Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
    • Roberto C. Gallo-Villanueva*
      Roberto C. Gallo-Villanueva
      Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
      *E-mail: [email protected]. Tel.: +52(81)83582000.
    • José González-Valdez*
      José González-Valdez
      Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
      *E-mail: [email protected]. Tel.: +52(81)83582000.
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2019, 91, 23, 14975–14982
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.9b03448
    Published November 18, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Exosomes are a specific subpopulation of extracellular vesicles that have gained interest because of their many potential biomedical applications. However, exosome isolation and characterization are the first steps toward designing novel applications. This work presents a direct current–insulator-based dielectrophoretic (DC-iDEP) approach to simultaneously capture and separate exosomes by size. To do so, a microdevice consisting of a channel with two electrically insulating post sections was designed. Each section was tailored to generate different nonuniform spatial distributions of the electric field and, therefore, different dielectrophoretic forces acting on exosomes suspended in solution. Side channels were placed adjacent to each section to allow sample recovery. By applying an electric potential difference of 2000 V across the length of the main channel, dielectrophoretic size-based separation of exosomes was observed in the device. Analysis of particle size in each recovered fraction served to assess exosome separation efficiency. These findings show that iDEP can represent a first step toward designing a high-throughput, fast, and robust microdevice capable of capturing and discriminating different subpopulations of exosomes based on their size.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.analchem.9b03448.

    • Theory of electrokinetics; partial experimental methods used in this work; schematic representation of the microfluidic device; and numerical simulations showing the distribution and magnitude of ∇(E⃗ · E⃗) in both sections, obtained by applying DC voltages of 1500 and 2000 V (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 102 publications.

    1. Yang Bu, Jinhui Wang, Sheng Ni, Zechen Lu, Yusong Guo, Levent Yobas. High-Performance Gel-Free and Label-Free Size Fractionation of Extracellular Vesicles with Two-Dimensional Electrophoresis in a Microfluidic Artificial Sieve. Analytical Chemistry 2024, 96 (8) , 3508-3516. https://doi.org/10.1021/acs.analchem.3c05290
    2. Cong Minh Nguyen, Mohamed Sallam, Md Sajedul Islam, Kimberley Clack, Narshone Soda, Nam-Trung Nguyen, Muhammad J. A. Shiddiky. Placental Exosomes as Biomarkers for Maternal Diseases: Current Advances in Isolation, Characterization, and Detection. ACS Sensors 2023, 8 (7) , 2493-2513. https://doi.org/10.1021/acssensors.3c00689
    3. Lu Zheng, Hua Wang, Peng Zuo, Yueling Liu, Huiying Xu, Bang-Ce Ye. Rapid On-Chip Isolation of Cancer-Associated Exosomes and Combined Analysis of Exosomes and Exosomal Proteins. Analytical Chemistry 2022, 94 (21) , 7703-7712. https://doi.org/10.1021/acs.analchem.2c01187
    4. Qiang Zhang, Zehua Guo, Fang Luo, Hua Xiao, Weiwen Liu, Liuyin Fan, Chengxi Cao. Model, Simulation, and Experiments on Moving Exchange Boundary via Ligand and Quantum Dots in Chip Electrophoresis. Analytical Chemistry 2021, 93 (13) , 5360-5364. https://doi.org/10.1021/acs.analchem.1c00242
    5. Axel Broman, Andreas Lenshof, Mikael Evander, Lotta Happonen, Anson Ku, Johan Malmström, Thomas Laurell. Multinodal Acoustic Trapping Enables High Capacity and High Throughput Enrichment of Extracellular Vesicles and Microparticles in miRNA and MS Proteomics Studies. Analytical Chemistry 2021, 93 (8) , 3929-3937. https://doi.org/10.1021/acs.analchem.0c04772
    6. Sofia Antunez-Vela, Victor H. Perez-Gonzalez, Adriana Coll De Peña, Cody J. Lentz, Blanca H. Lapizco-Encinas. Simultaneous Determination of Linear and Nonlinear Electrophoretic Mobilities of Cells and Microparticles. Analytical Chemistry 2020, 92 (22) , 14885-14891. https://doi.org/10.1021/acs.analchem.0c03525
    7. Xianxian Zhao, Leili Zeng, Qiang Mei, Yang Luo. Allosteric Probe-Initiated Wash-Free Method for Sensitive Extracellular Vesicle Detection through Dual Cycle-Assisted CRISPR-Cas12a. ACS Sensors 2020, 5 (7) , 2239-2246. https://doi.org/10.1021/acssensors.0c00944
    8. Jie Hong, Chenyue Hou, Zuqiang Xu, Muyi He, Wei Xu. Liquid-Phase Ion Trap for Ion Trapping, Transfer, and Sequential Ejection in Solutions. Analytical Chemistry 2020, 92 (13) , 9065-9071. https://doi.org/10.1021/acs.analchem.0c01261
    9. Andrés Martínez-Santillán, José González-Valdez. Physical characterization of PEGylated exosome constructs: Size, charge, and morphology changes in non-specific alkylating N-terminal reactions. Journal of Biomaterials Applications 2025, 39 (10) , 1202-1210. https://doi.org/10.1177/08853282251323198
    10. Ernesto Guzman‐Saleh, Victor H. Perez‐Gonzalez, Rodrigo Martinez‐Duarte. Comparing Different Light Models for Virtual Electrodes in Optoelectronic Tweezers. ELECTROPHORESIS 2025, 33 https://doi.org/10.1002/elps.8131
    11. Xiaoxiao Ma, Lanwei Peng, Xiaohui Zhu, Tianqi Chu, Changcheng Yang, Bohao Zhou, Xiangwei Sun, Tianya Gao, Mengqi Zhang, Ping Chen, Haiyan Chen. Isolation, identification, and challenges of extracellular vesicles: emerging players in clinical applications. Apoptosis 2025, 30 (1-2) , 422-445. https://doi.org/10.1007/s10495-024-02036-2
    12. Mengren Wu, Zijian Liu, Yuan Gao. Design and Fabrication of Microelectrodes for Dielectrophoresis and Electroosmosis in Microsystems for Bio-Applications. Micromachines 2025, 16 (2) , 190. https://doi.org/10.3390/mi16020190
    13. Adem Ozcelik, Gulen Melike Demirbolat, Omer Erdogan, Bensu Kozan, Fatih Akkoyun, Evrim Cevik, Erkan Gumus, Irem Bahar Gul, Levent Trabzon, Ozge Cevik. Lab-on-a-chip system for small extracellular vesicle isolation and drug loading for small extracellular vesicle-mediated drug delivery for treatment of cancer patients. Emergent Materials 2025, 8 (2) , 1153-1169. https://doi.org/10.1007/s42247-024-00666-5
    14. Huichao Chai, Liang Huang, Junwen Zhu, Jialu Tian, Wenhui Wang. Liquid metal electrodes enabled cascaded on-chip dielectrophoretic separation of large-size-range particles. Lab on a Chip 2025, 25 (3) , 308-318. https://doi.org/10.1039/D4LC00942H
    15. Zhenwei Lan, Rui Chen, Da Zou, Chun‐Xia Zhao. Microfluidic Nanoparticle Separation for Precision Medicine. Advanced Science 2025, 12 (4) https://doi.org/10.1002/advs.202411278
    16. Li Zhang, Chi Yan Wong, Huilin Shao. Integrated technologies for molecular profiling of genetic and modified biomarkers in extracellular vesicles. Lab on a Chip 2025, 2 https://doi.org/10.1039/D5LC00053J
    17. Amirsasan Gorgzadeh, Ahmad Nazari, Adnan Ali Ehsan Ismaeel, Diba Safarzadeh, Jawad A. K. Hassan, Saman Mohammadzadehsaliani, Hadis Kheradjoo, Pooneh Yasamineh, Saman Yasamineh. A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection. Virology Journal 2024, 21 (1) https://doi.org/10.1186/s12985-024-02301-5
    18. Yoshinori Seki, Shigeru Tada. Experimental and Numerical Studies of the Temperature Field in a Dielectrophoretic Cell Separation Device Subject to Joule Heating. Sensors 2024, 24 (21) , 7098. https://doi.org/10.3390/s24217098
    19. Yoshinori Seki, Aoi Nagasaka, Tsukushi Gondo, Shigeru Tada. Proposal and performance evaluation of a new parallel plate continuous cell separation device using dielectrophoresis. ELECTROPHORESIS 2024, 45 (19-20) , 1673-1683. https://doi.org/10.1002/elps.202400027
    20. Jason Ware, Delaney Shea, Jeong Youn Lim, Anna Malakian, Randall Armstrong, Ronald Pethig, Stuart Ibsen. Collection of serum albumin aggregate nanoparticles from human plasma by dielectrophoresis. ELECTROPHORESIS 2024, 45 (19-20) , 1748-1763. https://doi.org/10.1002/elps.202400046
    21. Mei Lan, Ze Ren, Cheng Cheng, Guiying Li, Fang Yang. Small extracellular vesicles detection using dielectrophoresis-based microfluidic chip for diagnosis of breast cancer. Biosensors and Bioelectronics 2024, 259 , 116382. https://doi.org/10.1016/j.bios.2024.116382
    22. Junzhu Yao, Kai Zhao, Jia Lou, Kaihuan Zhang. Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells. Biosensors 2024, 14 (9) , 417. https://doi.org/10.3390/bios14090417
    23. Sheng Hu, Yangcheng Wang, Yanzhe Wang, Xiaoming Chen, Ruijie Tong. Dielectrophoretic separation and purification: From colloid and biological particles to droplets. Journal of Chromatography A 2024, 1731 , 465155. https://doi.org/10.1016/j.chroma.2024.465155
    24. J. Martin de los Santos-Ramirez, Carlos A. Mendiola-Escobedo, Jose M. Cotera-Sarabia, Roberto C. Gallo-Villanueva, Rodrigo Martinez-Duarte, Victor H. Perez-Gonzalez. Enabling the characterization of the nonlinear electrokinetic properties of particles using low voltage. The Analyst 2024, 149 (14) , 3839-3849. https://doi.org/10.1039/D4AN00538D
    25. Chao Wang, Jiaoyan Qiu, Mengqi Liu, Yihe Wang, Yang Yu, Hong Liu, Yu Zhang, Lin Han. Microfluidic Biochips for Single‐Cell Isolation and Single‐Cell Analysis of Multiomics and Exosomes. Advanced Science 2024, 11 (28) https://doi.org/10.1002/advs.202401263
    26. Mei Lan, Fang Yang. Applications of dielectrophoresis in microfluidic-based exosome separation and detection. Chemical Engineering Journal 2024, 491 , 152067. https://doi.org/10.1016/j.cej.2024.152067
    27. Mahdi Khatibi, Sumit Kumar Mehta, Seyed Nezameddin Ashrafizadeh, Pranab Kumar Mondal. Surface charge-dependent slip length modulates electroosmotic mixing in a wavy micromixer. Physics of Fluids 2024, 36 (7) https://doi.org/10.1063/5.0218566
    28. Heng Zhao, Yanyan Zhang, Dengxin Hua. A Review of Research Progress in Microfluidic Bioseparation and Bioassay. Micromachines 2024, 15 (7) , 893. https://doi.org/10.3390/mi15070893
    29. Huichao Chai, Junwen Zhu, Yongxiang Feng, Fei Liang, Qiyan Wu, Zhongjian Ju, Liang Huang, Wenhui Wang. Capillarity Enabled Large‐Array Liquid Metal Electrodes for Compact and High‐Throughput Dielectrophoretic Microfluidics. Advanced Materials 2024, 36 (21) https://doi.org/10.1002/adma.202310212
    30. Jiaoyan Qiu, Qindong Guo, Yujin Chu, Chunhua Wang, Hao Xue, Yu Zhang, Hong Liu, Gang Li, Lin Han. Efficient EVs separation and detection by an alumina-nanochannel-array-membrane integrated microfluidic chip and an antibody barcode biochip. Analytica Chimica Acta 2024, 1304 , 342576. https://doi.org/10.1016/j.aca.2024.342576
    31. Mridula Bhadra, Manisha Sachan. An overview of challenges associated with exosomal miRNA isolation toward liquid biopsy-based ovarian cancer detection. Heliyon 2024, 10 (9) , e30328. https://doi.org/10.1016/j.heliyon.2024.e30328
    32. Saijie Wang, Quanchen Xu, Yanwei Cai, Qian Wang, Ying Liu, Dou Wang. Biological particle separation techniques based on microfluidics. Interdisciplinary Medicine 2024, 2 (2) https://doi.org/10.1002/INMD.20240003
    33. Zihao Gao, Long Ma, Zhe Liu, Jun Huang, Hanlian Liu, Chuanzhen Huang, Yinghua Qiu. Improved theoretical prediction of nanoparticle sizes with the resistive-pulse technique. Physics of Fluids 2024, 36 (3) https://doi.org/10.1063/5.0191456
    34. Ryu Nakabayashi, Rie Koyama, Masafumi Inaba, Michihiko Nakano, Junya Suehiro. Quantitative evaluation of dielectrophoretic separation efficiency of cancer exosomes based on fluorescence imaging. Japanese Journal of Applied Physics 2024, 63 (3) , 03SP68. https://doi.org/10.35848/1347-4065/ad2657
    35. Yonghyun Choi, Kubra Akyildiz, Jihyun Seong, Yangwoo Lee, Eunseo Jeong, Jin‐seok Park, Don Haeng Lee, Kyobum Kim, Hyung‐Jun Koo, Jonghoon Choi. Dielectrophoretic Capture of Cancer‐Derived Small‐Extracellular‐Vesicle‐Bound Janus Nanoparticles via Lectin–Glycan Interaction. Advanced Healthcare Materials 2024, 13 (5) https://doi.org/10.1002/adhm.202302313
    36. Yingnan Shen, Hogyeong Gwak, Bumsoo Han. Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics. The Analyst 2024, 149 (3) , 614-637. https://doi.org/10.1039/D3AN01739G
    37. Xinyi Ma, Zhenhua Chen, Wei Chen, Ziyuan Chen, Xiaodan Meng. Exosome subpopulations: The isolation and the functions in diseases. Gene 2024, 893 , 147905. https://doi.org/10.1016/j.gene.2023.147905
    38. Guihua Zhang, Yaohui Wang, Weihang Zhou, Yanmei Lei, Jinsong Lu, Wenjin Yin, Zhi Zhu, Chaoyong Yang, Peng Zhang. A Magnetically Driven Tandem Chip Enables Rapid Isolation and Multiplexed Profiling of Extracellular Vesicles. Angewandte Chemie 2023, 135 (51) https://doi.org/10.1002/ange.202315113
    39. Guihua Zhang, Yaohui Wang, Weihang Zhou, Yanmei Lei, Jinsong Lu, Wenjin Yin, Zhi Zhu, Chaoyong Yang, Peng Zhang. A Magnetically Driven Tandem Chip Enables Rapid Isolation and Multiplexed Profiling of Extracellular Vesicles. Angewandte Chemie International Edition 2023, 62 (51) https://doi.org/10.1002/anie.202315113
    40. Durga Prasad Mishra, Biswajeet Acharya, Swarnajeet Tripathy, Binapani Barik, Prafulla Kumar Sahu. An overview of the biosensing potential of organometallic compounds. Chemical Physics Impact 2023, 7 , 100326. https://doi.org/10.1016/j.chphi.2023.100326
    41. Manju Sharma, Maulee Sheth, Holly M. Poling, Damaris Kuhnell, Scott M. Langevin, Leyla Esfandiari. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-45409-4
    42. Xinyuan He, Wei Wei, Xuexin Duan. Nanostructure enabled extracellular vesicles separation and detection. Nanotechnology and Precision Engineering 2023, 6 (4) https://doi.org/10.1063/10.0020885
    43. Valentina Marassi, Stefano Giordani, Anna Placci, Angela Punzo, Cristiana Caliceti, Andrea Zattoni, Pierluigi Reschiglian, Barbara Roda, Aldo Roda. Emerging Microfluidic Tools for Simultaneous Exosomes and Cargo Biosensing in Liquid Biopsy: New Integrated Miniaturized FFF-Assisted Approach for Colon Cancer Diagnosis. Sensors 2023, 23 (23) , 9432. https://doi.org/10.3390/s23239432
    44. Kazuma Yoda, Yoshiyasu Ichikawa, Masahiro Motosuke. Continuous-flow electrorotation (cROT): improved throughput characterization for dielectric properties of cancer cells. Lab on a Chip 2023, 23 (23) , 4986-4996. https://doi.org/10.1039/D3LC00301A
    45. Yi-Ke Wang, Yi-Ru Bao, Ying-Xue Liang, Yi-Jing Chen, Wei-Hua Huang, Min Xie. Current progress and prospect of microfluidic-based exosome investigation. TrAC Trends in Analytical Chemistry 2023, 168 , 117310. https://doi.org/10.1016/j.trac.2023.117310
    46. Saijie Wang, Quanchen Xu, Zhihan Zhang, Shengbo Chen, Yizhou Jiang, Zhuowei Feng, Dou Wang, Xingyu Jiang. Reverse flow enhanced inertia pinched flow fractionation. Lab on a Chip 2023, 23 (19) , 4324-4333. https://doi.org/10.1039/D3LC00473B
    47. Ramona Luna, Daniel Heineck, Juan Pablo Hinestrosa, Irina Dobrovolskaia, Sean Hamilton, Anna Malakian, Kyle T. Gustafson, Katherine T. Huynh, Sejung Kim, Jason Ware, Ella Stimson, Christian Ross, Carolyn E. Schutt, Stuart D. Ibsen. Enhancement of dielectrophoresis‐based particle collection from high conducting fluids due to partial electrode insulation. ELECTROPHORESIS 2023, 44 (15-16) , 1234-1246. https://doi.org/10.1002/elps.202200295
    48. Sharat Chandra Barman, Dana Al Sulaiman, Xingchao Wang, Zhenglong Sun, Husam N. Alshareef, Chen-zhong Li. Biomechanical and bioelectrical properties of extracellular vesicles – Outlook and electrochemical biosensing. Current Opinion in Electrochemistry 2023, 40 , 101311. https://doi.org/10.1016/j.coelec.2023.101311
    49. Kuangjun Li, Jing Wu. Recent advances in microfluidic platforms for single particle analysis. TrAC Trends in Analytical Chemistry 2023, 165 , 117139. https://doi.org/10.1016/j.trac.2023.117139
    50. Zhuyang Zhao, Sha Yang, Liu Feng, Ligai Zhang, Jue Wang, Kai Chang, Ming Chen. Acoustofluidics: A Versatile Tool for Micro/Nano Separation at the Cellular, Subcellular, and Biomolecular Levels. Advanced Materials Technologies 2023, 8 (14) https://doi.org/10.1002/admt.202202201
    51. Auginia Natalia, Li Zhang, Noah R. Sundah, Yan Zhang, Huilin Shao. Analytical device miniaturization for the detection of circulating biomarkers. Nature Reviews Bioengineering 2023, 1 (7) , 481-498. https://doi.org/10.1038/s44222-023-00050-8
    52. Sushruta Surappa, Priyanka Multani, Ugur Parlatan, Prima Dewi Sinawang, Jussuf Kaifi, Demir Akin, Utkan Demirci. Integrated “lab-on-a-chip” microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers. Lab on a Chip 2023, 23 (13) , 2942-2958. https://doi.org/10.1039/D2LC01076C
    53. Long Ngo, Le Que Anh Pham, Anastasiia Tukova, Amin Hassanzadeh-Barforoushi, Wei Zhang, Yuling Wang. Emerging integrated SERS-microfluidic devices for analysis of cancer-derived small extracellular vesicles. Lab on a Chip 2023, 23 (13) , 2899-2921. https://doi.org/10.1039/D3LC00156C
    54. Yang Bu, Jinhui Wang, Sheng Ni, Yusong Guo, Levent Yobas. Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device. Lab on a Chip 2023, 23 (10) , 2421-2433. https://doi.org/10.1039/D2LC01193J
    55. Weiping Zeng, Zhengbo Wen, Honglin Chen, Yuyou Duan. Exosomes as Carriers for Drug Delivery in Cancer Therapy. Pharmaceutical Research 2023, 40 (4) , 873-887. https://doi.org/10.1007/s11095-022-03224-y
    56. Megan Havers, Axel Broman, Andreas Lenshof, Thomas Laurell. Advancement and obstacles in microfluidics-based isolation of extracellular vesicles. Analytical and Bioanalytical Chemistry 2023, 415 (7) , 1265-1285. https://doi.org/10.1007/s00216-022-04362-3
    57. Samith Hettiarachchi, Haotian Cha, Lingxi Ouyang, Amith Mudugamuwa, Hongjie An, Gregor Kijanka, Navid Kashaninejad, Nam-Trung Nguyen, Jun Zhang. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. Lab on a Chip 2023, 23 (5) , 982-1010. https://doi.org/10.1039/D2LC00793B
    58. Parisa Vosough, Seyyed Hossein Khatami, Ali Hashemloo, Amir Tajbakhsh, Farzaneh Karimi-Fard, Sina Taghvimi, Mortaza Taheri-Anganeh, Elahe Soltani Fard, Amir Savardashtaki, Ahmad Movahedpour. Exosomal lncRNAs in gastrointestinal cancer. Clinica Chimica Acta 2023, 540 , 117216. https://doi.org/10.1016/j.cca.2022.117216
    59. Krishan Kumar, Eunsu Kim, Munirah Alhammadi, Umapathi Reddicherla, Sheik Aliya, Jitendra N. Tiwari, Hyun Sung Park, Jung Hyun Choi, Chae Yeon Son, A.T. Ezhil Vilian, Young-Kyu Han, Jiyoon Bu, Yun Suk Huh. Recent advances in microfluidic approaches for the isolation and detection of exosomes. TrAC Trends in Analytical Chemistry 2023, 159 , 116912. https://doi.org/10.1016/j.trac.2022.116912
    60. Guangyao Wu, Yating Zhao, Xiaojun Li, Muhammad Mujahid Ali, Shengnan Jia, Yujuan Ren, Lianghai Hu. Single-cell extracellular vesicle analysis by microfluidics and beyond. TrAC Trends in Analytical Chemistry 2023, 159 , 116930. https://doi.org/10.1016/j.trac.2023.116930
    61. Jiahui Gao, Ang Li, Jie Hu, Linxiang Feng, Liu Liu, Zuojun Shen. Recent developments in isolating methods for exosomes. Frontiers in Bioengineering and Biotechnology 2023, 10 https://doi.org/10.3389/fbioe.2022.1100892
    62. Pratik Tawade, Nimisha Tondapurkar. Microfluidics and Cancer Treatment: Emerging Concept of Biomedical Engineering. 2023, 523-562. https://doi.org/10.1007/978-981-19-9786-0_15
    63. Junjie Bai, Xing Wei, Xuan Zhang, Chengxin Wu, Zejun Wang, Mingli Chen, Jianhua Wang. Microfluidic strategies for the isolation and profiling of exosomes. TrAC Trends in Analytical Chemistry 2023, 158 , 116834. https://doi.org/10.1016/j.trac.2022.116834
    64. Huiying Xu, Bang-Ce Ye. Integrated microfluidic platforms for tumor-derived exosome analysis. TrAC Trends in Analytical Chemistry 2023, 158 , 116860. https://doi.org/10.1016/j.trac.2022.116860
    65. ADEM OZCELIK, OZGE CEVIK. Microfluidic methods used in exosome isolation. BIOCELL 2023, 47 (5) , 959-964. https://doi.org/10.32604/biocell.2023.028371
    66. Shaohua Zhang, Jinqi Deng, Jianbin Li, Fei Tian, Chao Liu, Luo Fang, Jiashu Sun. Advanced microfluidic technologies for isolating extracellular vesicles. TrAC Trends in Analytical Chemistry 2022, 157 , 116817. https://doi.org/10.1016/j.trac.2022.116817
    67. Jakub Rech, Agnieszka Getinger-Panek, Sabina Gałka, Ilona Bednarek. Origin and Composition of Exosomes as Crucial Factors in Designing Drug Delivery Systems. Applied Sciences 2022, 12 (23) , 12259. https://doi.org/10.3390/app122312259
    68. Patricia Khashayar, Sallam Al-Madhagi, Mostafa Azimzadeh, Viviana Scognamiglio, Fabiana Arduini. New frontiers in microfluidics devices for miRNA analysis. TrAC Trends in Analytical Chemistry 2022, 156 , 116706. https://doi.org/10.1016/j.trac.2022.116706
    69. Ghazaleh Gharib, İsmail Bütün, Zülâl Muganlı, Gül Kozalak, İlayda Namlı, Seyedali Seyedmirzaei Sarraf, Vahid Ebrahimpour Ahmadi, Erçil Toyran, Andre J. van Wijnen, Ali Koşar. Biomedical Applications of Microfluidic Devices: A Review. Biosensors 2022, 12 (11) , 1023. https://doi.org/10.3390/bios12111023
    70. Wen-zhao Liu, Zhan-jun Ma, Xue-wen Kang. Current status and outlook of advances in exosome isolation. Analytical and Bioanalytical Chemistry 2022, 414 (24) , 7123-7141. https://doi.org/10.1007/s00216-022-04253-7
    71. Liang Zhao, Hong Wang, Jun Fu, Xia Wu, Xiao-ye Liang, Xue-yu Liu, Xue Wu, Liang-liang Cao, Zhen-yu Xu, Ming Dong. Microfluidic-based exosome isolation and highly sensitive aptamer exosome membrane protein detection for lung cancer diagnosis. Biosensors and Bioelectronics 2022, 214 , 114487. https://doi.org/10.1016/j.bios.2022.114487
    72. Shijie Li, Qiang Ma. Electrochemical nano-sensing interface for exosomes analysis and cancer diagnosis. Biosensors and Bioelectronics 2022, 214 , 114554. https://doi.org/10.1016/j.bios.2022.114554
    73. Islam Seder, Hyomin Moon, Su Jin Kang, Sehyun Shin, Won Jong Rhee, Sung-Jin Kim. Size-selective filtration of extracellular vesicles with a movable-layer device. Lab on a Chip 2022, 22 (19) , 3699-3707. https://doi.org/10.1039/D2LC00441K
    74. Abril Torres-Bautista, Mario A. Torres-Acosta, José González-Valdez, . Characterization and optimization of polymer-polymer aqueous two-phase systems for the isolation and purification of CaCo2 cell-derived exosomes. PLOS ONE 2022, 17 (9) , e0273243. https://doi.org/10.1371/journal.pone.0273243
    75. Jin Cheng, Yixin Sun, Yong Ma, Yingfang Ao, Xiaoqing Hu, Qingyang Meng. Engineering of MSC-Derived Exosomes: A Promising Cell-Free Therapy for Osteoarthritis. Membranes 2022, 12 (8) , 739. https://doi.org/10.3390/membranes12080739
    76. Hao Chen, Tsubasa Yamakawa, Masafumi Inaba, Michihiko Nakano, Junya Suehiro. Characterization of Extra-Cellular Vesicle Dielectrophoresis and Estimation of Its Electric Properties. Sensors 2022, 22 (9) , 3279. https://doi.org/10.3390/s22093279
    77. Gergely Buglyó, Jakub Styk, Ondrej Pös, Ádám Csók, Vanda Repiska, Beáta Soltész, Tomas Szemes, Bálint Nagy. Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. International Journal of Molecular Sciences 2022, 23 (8) , 4284. https://doi.org/10.3390/ijms23084284
    78. Jiaci Chen, Peilong Li, Taiyi Zhang, Zhipeng Xu, Xiaowen Huang, Ruiming Wang, Lutao Du. Review on Strategies and Technologies for Exosome Isolation and Purification. Frontiers in Bioengineering and Biotechnology 2022, 9 https://doi.org/10.3389/fbioe.2021.811971
    79. Max Piffoux, Amanda K. A. Silva, Florence Gazeau, Hugo Salmon. Potential of on‐chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. VIEW 2022, 3 (1) https://doi.org/10.1002/VIW.20200175
    80. Gladys G. Diaz‐Armas, Ana P. Cervantes‐Gonzalez, Rodrigo Martinez‐Duarte, Victor H. Perez‐Gonzalez. Electrically driven microfluidic platforms for exosome manipulation and characterization. ELECTROPHORESIS 2022, 43 (1-2) , 327-339. https://doi.org/10.1002/elps.202100202
    81. Leilei Shi, Leyla Esfandiari. Emerging on‐chip electrokinetic based technologies for purification of circulating cancer biomarkers towards liquid biopsy: A review. ELECTROPHORESIS 2022, 43 (1-2) , 288-308. https://doi.org/10.1002/elps.202100234
    82. Blanca H. Lapizco-Encinas. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. Analytical and Bioanalytical Chemistry 2022, 414 (2) , 885-905. https://doi.org/10.1007/s00216-021-03687-9
    83. Saeedreza Zeibi Shirejini, Fatih Inci. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnology Advances 2022, 54 , 107814. https://doi.org/10.1016/j.biotechadv.2021.107814
    84. Sumit Kumar Mehta, Sukumar Pati, Pranab Kumar Mondal. Numerical study of the vortex‐induced electroosmotic mixing of non‐Newtonian biofluids in a nonuniformly charged wavy microchannel: Effect of finite ion size. ELECTROPHORESIS 2021, 42 (23) , 2498-2510. https://doi.org/10.1002/elps.202000225
    85. Nicole Hill, Adriana Coll De Peña, Abbi Miller, Blanca H. Lapizco‐Encinas. On the potential of microscale electrokinetic cascade devices. ELECTROPHORESIS 2021, 42 (23) , 2474-2482. https://doi.org/10.1002/elps.202100069
    86. Victor H. Perez‐Gonzalez. Particle trapping in electrically driven insulator‐based microfluidics: Dielectrophoresis and induced‐charge electrokinetics. ELECTROPHORESIS 2021, 42 (23) , 2445-2464. https://doi.org/10.1002/elps.202100123
    87. Sergio Ayala-Mar, Belén Rodríguez-Morales, Pedro Chacón-Ponce, José González-Valdez. Potential Applications and Functional Roles of Exosomes in Cardiometabolic Disease. Pharmaceutics 2021, 13 (12) , 2056. https://doi.org/10.3390/pharmaceutics13122056
    88. Komal Abhange, Amy Makler, Yi Wen, Natasha Ramnauth, Wenjun Mao, Waseem Asghar, Yuan Wan. Small extracellular vesicles in cancer. Bioactive Materials 2021, 6 (11) , 3705-3743. https://doi.org/10.1016/j.bioactmat.2021.03.015
    89. Li Min, Binshuai Wang, Han Bao, Xinran Li, Libo Zhao, Jingxin Meng, Shutao Wang. Advanced Nanotechnologies for Extracellular Vesicle‐Based Liquid Biopsy. Advanced Science 2021, 8 (20) https://doi.org/10.1002/advs.202102789
    90. Hanieh Hadady, Fereshteh Karamali, Fatemeh Ejeian, Shaghayegh Haghjooy Javanmard, Laleh Rafiee, Mohammad Hossein Nasr Esfahani. AC electrokinetic isolation and detection of extracellular vesicles from dental pulp stem cells: Theoretical simulation incorporating fluid mechanics. ELECTROPHORESIS 2021, 42 (20) , 2018-2026. https://doi.org/10.1002/elps.202000376
    91. Yuwen Lu, Wei Tan, Xin Shi, Mingwei Liu, Guorui Zhu. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture. Talanta 2021, 233 , 122550. https://doi.org/10.1016/j.talanta.2021.122550
    92. Lihua Ding, Xiaonan Yang, Zibo Gao, Clement Yaw Effah, Xiaoju Zhang, Yongjun Wu, Lingbo Qu. A Holistic Review of the State‐of‐the‐Art Microfluidics for Exosome Separation: An Overview of the Current Status, Existing Obstacles, and Future Outlook. Small 2021, 17 (29) https://doi.org/10.1002/smll.202007174
    93. Jie Wang, Peng Ma, Daniel H. Kim, Bi-Feng Liu, Utkan Demirci. Towards microfluidic-based exosome isolation and detection for tumor therapy. Nano Today 2021, 37 , 101066. https://doi.org/10.1016/j.nantod.2020.101066
    94. Yalin Li, Yan Wang, Keming Wan, Mingxue Wu, Lei Guo, Xiaomin Liu, Gang Wei. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. Nanoscale 2021, 13 (8) , 4330-4358. https://doi.org/10.1039/D0NR08892G
    95. Bingqian Lin, Yanmei Lei, Junxia Wang, Lin Zhu, Yuqi Wu, Huimin Zhang, Lingling Wu, Peng Zhang, Chaoyong Yang. Microfluidic‐Based Exosome Analysis for Liquid Biopsy. Small Methods 2021, 5 (3) https://doi.org/10.1002/smtd.202001131
    96. Blanca H. Lapizco-Encinas. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Microchimica Acta 2021, 188 (3) https://doi.org/10.1007/s00604-021-04748-7
    97. Gian-Luca Roth, Julian Haubner, Stefan Kefer, Cemal Esen, Ralf Hellmann. Fs-laser based hybrid micromachining for polymer micro-opto electrical systems. Optics and Lasers in Engineering 2021, 137 , 106362. https://doi.org/10.1016/j.optlaseng.2020.106362
    98. Marco Morani, Thanh Duc Mai, Zuzana Krupova, Guillaume van Niel, Pierre Defrenaix, Myriam Taverna. Recent electrokinetic strategies for isolation, enrichment and separation of extracellular vesicles. TrAC Trends in Analytical Chemistry 2021, 135 , 116179. https://doi.org/10.1016/j.trac.2021.116179
    99. Thanaporn Liangsupree, Evgen Multia, Marja-Liisa Riekkola. Modern isolation and separation techniques for extracellular vesicles. Journal of Chromatography A 2021, 1636 , 461773. https://doi.org/10.1016/j.chroma.2020.461773
    100. Leilei Shi, Leyla Esfandiari. An Electrokinetically-Driven Microchip for Rapid Entrapment and Detection of Nanovesicles. Micromachines 2021, 12 (1) , 11. https://doi.org/10.3390/mi12010011
    Load all citations

    Analytical Chemistry

    Cite this: Anal. Chem. 2019, 91, 23, 14975–14982
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.analchem.9b03448
    Published November 18, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    3161

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.