ACS Publications. Most Trusted. Most Cited. Most Read
Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices
My Activity
    Methods/Protocols

    Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2020, 32, 12, 4954–4965
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.0c01907
    Published May 19, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    This Methods/Protocols article is intended for materials scientists interested in performing machine learning-centered research. We cover broad guidelines and best practices regarding the obtaining and treatment of data, feature engineering, model training, validation, evaluation and comparison, popular repositories for materials data and benchmarking data sets, model and architecture sharing, and finally publication. In addition, we include interactive Jupyter notebooks with example Python code to demonstrate some of the concepts, workflows, and best practices discussed. Overall, the data-driven methods and machine learning workflows and considerations are presented in a simple way, allowing interested readers to more intelligently guide their machine learning research using the suggested references, best practices, and their own materials domain expertise.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Online GitHub repository with the interactive Jupyter notebook files, Python source code, and example data are available at https://github.com/anthony-wang/BestPractices. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.0c01907.

    • Read-only versions of the Jupyter notebook files (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 269 publications.

    1. Jonathan S. Van Buskirk, Gordon G. C. Peterson, Daniel C. Fredrickson. Machine Learning-Based Investigation of Atomic Packing Effects: Chemical Pressures at the Extremes of Intermetallic Complexity. Journal of the American Chemical Society 2024, 146 (41) , 28459-28467. https://doi.org/10.1021/jacs.4c10479
    2. Matthew Hart, Kelvin Idanwekhai, Vinicius M. Alves, Alexander J. M. Miller, Jillian L. Dempsey, James F. Cahoon, Chun-Hsing Chen, David A. Winkler, Eugene N. Muratov, Alexander Tropsha. Trust Not Verify? The Critical Need for Data Curation Standards in Materials Informatics. Chemistry of Materials 2024, 36 (19) , 9046-9055. https://doi.org/10.1021/acs.chemmater.4c00981
    3. Hao Sun, Jing-yao Liu. Advancing CO2RR with O-Coordinated Single-Atom Nanozymes: A DFT and Machine Learning Exploration. ACS Catalysis 2024, 14 (18) , 14021-14030. https://doi.org/10.1021/acscatal.4c02799
    4. Danica G. Gressel, Kyana M. Sanders, Daniel C. Fredrickson. Interface Nucleus Complementarity: An Iterative Process for the Discovery of Modular Intermetallics Guided by Chemical Pressure. Journal of the American Chemical Society 2024, 146 (37) , 25439-25444. https://doi.org/10.1021/jacs.4c09131
    5. Harpriya Minhas, Milan Kumar Jena, Rahul Kumar Sharma, Biswarup Pathak. Machine Learning-Driven Inverse Design and Role of Dopant for Tuning Thermoelectric Efficiency. ACS Applied Electronic Materials 2024, 6 (8) , 5815-5826. https://doi.org/10.1021/acsaelm.4c00808
    6. Bryan Owens-Baird, Volodymyr Gvozdetskyi, Arka Sarkar, Balaranjan Selvaratnam, Arthur Mar, Kirill Kovnir. Discovery of Ternary Antimonides A–Al–Sb (A = Rb or Cs) with Desired Structural Motifs Guided by Machine Learning. Chemistry of Materials 2024, 36 (12) , 6180-6192. https://doi.org/10.1021/acs.chemmater.4c00937
    7. Kirill P. Larionov, Vasilii Yu. Evtushok. From Synthesis Conditions to UiO-66 Properties: Machine Learning Approach. Chemistry of Materials 2024, 36 (9) , 4291-4302. https://doi.org/10.1021/acs.chemmater.3c03180
    8. Tatiane Pretto, Fábio Baum, Rogério A. Gouvêa, Alexandre G. Brolo, Marcos J. Leite Santos. Optimizing the Synthesis Parameters of Double Perovskites with Machine Learning Using a Multioutput Regression Model. The Journal of Physical Chemistry C 2024, 128 (17) , 7041-7052. https://doi.org/10.1021/acs.jpcc.3c06801
    9. Surya Sekhar Manna, Biswarup Pathak. Machine Learning-Driven Ionic Liquids as Electrolytes for the Advancement of High-Voltage Dual-Ion Battery. Chemistry of Materials 2024, 36 (7) , 3191-3204. https://doi.org/10.1021/acs.chemmater.3c02905
    10. L. Susanne Coles née Huth, Terry L. Threlfall, David S. Hughes. Aspects of Isostructurality and Polymorphism in a Diverse Group of Monosubstituted Acetanilides. Crystal Growth & Design 2024, 24 (6) , 2552-2566. https://doi.org/10.1021/acs.cgd.4c00027
    11. Son Gyo Jung, Guwon Jung, Jacqueline M. Cole. Automatic Prediction of Peak Optical Absorption Wavelengths in Molecules Using Convolutional Neural Networks. Journal of Chemical Information and Modeling 2024, 64 (5) , 1486-1501. https://doi.org/10.1021/acs.jcim.3c01792
    12. Carlos Nieto-Draghi, Benoit Creton, Xavier Martin, Johan Chaniot, Maxime Moreaud. Potential Energy Surface-Based Descriptors for Nanoporous Materials and its Applications to Classification and CO2 Gas Adsorption into Zeolites. ACS Applied Engineering Materials 2024, 2 (2) , 478-491. https://doi.org/10.1021/acsaenm.3c00769
    13. Varad Daoo, Jayant K. Singh. Accelerating In Silico Discovery of Metal–Organic Frameworks for Ethane/Ethylene and Propane/Propylene Separation: A Synergistic Approach Integrating Molecular Simulation, Machine Learning, and Active Learning. ACS Applied Materials & Interfaces 2024, 16 (6) , 6971-6987. https://doi.org/10.1021/acsami.3c14505
    14. Yibo Sun, Xinming Wang, Cong hou, Jun Ni. Interpretable Machine Learning to Discover Perovskites with High Spontaneous Polarization. The Journal of Physical Chemistry C 2023, 127 (49) , 23897-23905. https://doi.org/10.1021/acs.jpcc.3c05742
    15. Lagnajit Pattanaik, Angiras Menon, Volker Settels, Kevin A. Spiekermann, Zipei Tan, Florence H. Vermeire, Frederik Sandfort, Philipp Eiden, William H. Green. ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents. The Journal of Physical Chemistry B 2023, 127 (47) , 10151-10170. https://doi.org/10.1021/acs.jpcb.3c05904
    16. Yi-Ming Xu, Kai Li, Zhi-Bin Jian, Jie Bie, Meng Wei, Shuang Chen. Accelerated Discovery of Targeted Environmentally Friendly A(II)B(I)X3-Type Three-Dimensional Hybrid Organic–Inorganic Perovskites for Potential Light Harvesting via Machine Learning. ACS Applied Materials & Interfaces 2023, 15 (45) , 52661-52672. https://doi.org/10.1021/acsami.3c13439
    17. Changwei Luo, Qilin Shuai, Guoqiang Zhao, Mengyang Zhang, Bin Wu, Xiaolan Fu, Yujian Sun, Yian Wang, Qingsong Hua. Insights into the Effects of Co-Regulated Factors on Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Preparation: Sources, Calcination Temperatures, and Sintering Temperatures. ACS Applied Materials & Interfaces 2023, 15 (41) , 48110-48121. https://doi.org/10.1021/acsami.3c09236
    18. Joshua Schrier, Alexander J. Norquist, Tonio Buonassisi, Jakoah Brgoch. In Pursuit of the Exceptional: Research Directions for Machine Learning in Chemical and Materials Science. Journal of the American Chemical Society 2023, 145 (40) , 21699-21716. https://doi.org/10.1021/jacs.3c04783
    19. Emily M. Williamson, Richard L. Brutchey. Using Data-Driven Learning to Predict and Control the Outcomes of Inorganic Materials Synthesis. Inorganic Chemistry 2023, 62 (40) , 16251-16262. https://doi.org/10.1021/acs.inorgchem.3c02697
    20. Sergei Manzhos, Manabu Ihara. Neural Network with Optimal Neuron Activation Functions Based on Additive Gaussian Process Regression. The Journal of Physical Chemistry A 2023, 127 (37) , 7823-7835. https://doi.org/10.1021/acs.jpca.3c02949
    21. Sayandeep Biswas, Yunsie Chung, Josephine Ramirez, Haoyang Wu, William H. Green. Predicting Critical Properties and Acentric Factors of Fluids Using Multitask Machine Learning. Journal of Chemical Information and Modeling 2023, 63 (15) , 4574-4588. https://doi.org/10.1021/acs.jcim.3c00546
    22. Balaranjan Selvaratnam, Anton O. Oliynyk, Arthur Mar. Interpretable Machine Learning in Solid-State Chemistry, with Applications to Perovskites, Spinels, and Rare-Earth Intermetallics: Finding Descriptors Using Decision Trees. Inorganic Chemistry 2023, 62 (28) , 10865-10875. https://doi.org/10.1021/acs.inorgchem.3c01153
    23. Xiaoyu Wu, Haiyuan Chen, Jianwei Wang, Xiaobin Niu. Machine Learning Accelerated Study of Defect Energy Levels in Perovskites. The Journal of Physical Chemistry C 2023, 127 (23) , 11387-11395. https://doi.org/10.1021/acs.jpcc.3c02493
    24. Tyler B. Martin, Debra J. Audus. Emerging Trends in Machine Learning: A Polymer Perspective. ACS Polymers Au 2023, 3 (3) , 239-258. https://doi.org/10.1021/acspolymersau.2c00053
    25. Sneha Mittal, Souvik Manna, Milan Kumar Jena, Biswarup Pathak. Decoding Both DNA and Methylated DNA Using a MXene-Based Nanochannel Device: Supervised Machine-Learning-Assisted Exploration. ACS Materials Letters 2023, 5 (6) , 1570-1580. https://doi.org/10.1021/acsmaterialslett.3c00117
    26. Keisuke Takahashi, Lauren Takahashi. Toward the Golden Age of Materials Informatics: Perspective and Opportunities. The Journal of Physical Chemistry Letters 2023, 14 (20) , 4726-4733. https://doi.org/10.1021/acs.jpclett.3c00648
    27. Michael Grossutti, Joseph D’Amico, Jonathan Quintal, Hugh MacFarlane, W. Callum Wareham, Amanda Quirk, John R. Dutcher. Deep Generative Modeling of Infrared Images Provides Signature of Cracking in Cross-Linked Polyethylene Pipe. ACS Applied Materials & Interfaces 2023, 15 (18) , 22532-22542. https://doi.org/10.1021/acsami.3c02564
    28. Jonathan S. Van Buskirk, Joseph D. Kraus, Daniel C. Fredrickson. The Intermetallic Reactivity Database: Compiling Chemical Pressure and Electronic Metrics toward Materials Design and Discovery. Chemistry of Materials 2023, 35 (9) , 3582-3591. https://doi.org/10.1021/acs.chemmater.3c00214
    29. Kevin Maik Jablonka, Andrew S. Rosen, Aditi S. Krishnapriyan, Berend Smit. An Ecosystem for Digital Reticular Chemistry. ACS Central Science 2023, 9 (4) , 563-581. https://doi.org/10.1021/acscentsci.2c01177
    30. Travis A. Meyer, Cesar Ramirez, Matthew J. Tamasi, Adam J. Gormley. A User’s Guide to Machine Learning for Polymeric Biomaterials. ACS Polymers Au 2023, 3 (2) , 141-157. https://doi.org/10.1021/acspolymersau.2c00037
    31. Mingying Lu, Haining Ji, Yong Zhao, Yongxing Chen, Jundong Tao, Yangyong Ou, Yi Wang, Yan Huang, Junlong Wang, Guolin Hao. Machine Learning-Assisted Synthesis of Two-Dimensional Materials. ACS Applied Materials & Interfaces 2023, 15 (1) , 1871-1878. https://doi.org/10.1021/acsami.2c18167
    32. Li Shao, Jinrong Ma, Jesse L. Prelesnik, Yicheng Zhou, Mary Nguyen, Mingfei Zhao, Samson A. Jenekhe, Sergei V. Kalinin, Andrew L. Ferguson, Jim Pfaendtner, Christopher J. Mundy, James J. De Yoreo, François Baneyx, Chun-Long Chen. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chemical Reviews 2022, 122 (24) , 17397-17478. https://doi.org/10.1021/acs.chemrev.2c00220
    33. Sneha Mittal, Souvik Manna, Biswarup Pathak. Machine Learning Prediction of the Transmission Function for Protein Sequencing with Graphene Nanoslit. ACS Applied Materials & Interfaces 2022, 14 (46) , 51645-51655. https://doi.org/10.1021/acsami.2c13405
    34. Austin M. Mroz, Victor Posligua, Andrew Tarzia, Emma H. Wolpert, Kim E. Jelfs. Into the Unknown: How Computation Can Help Explore Uncharted Material Space. Journal of the American Chemical Society 2022, 144 (41) , 18730-18743. https://doi.org/10.1021/jacs.2c06833
    35. Pengyan Xue, Dongdong Chu, Congwei Xie, Evgenii Tikhonov, Keith T. Butler. Design of New Ternary Nitrides for Photovoltaic Applications via High-Throughput Calculations. The Journal of Physical Chemistry C 2022, 126 (40) , 17398-17405. https://doi.org/10.1021/acs.jpcc.2c05458
    36. Piyush Karande, Brian Gallagher, Thomas Yong-Jin Han. A Strategic Approach to Machine Learning for Material Science: How to Tackle Real-World Challenges and Avoid Pitfalls. Chemistry of Materials 2022, 34 (17) , 7650-7665. https://doi.org/10.1021/acs.chemmater.2c01333
    37. Shinyoung Bae, Hwangho Lee, Junseop Shin, Hyun Sub Kim, Yeonsoo Kim, Do Heui Kim, Jong Min Lee. Data-Driven Inference of Synthesis Guidelines for High-Performance Zeolite-Based Selective Catalytic Reduction Catalysts at Low Temperatures. Chemistry of Materials 2022, 34 (17) , 7761-7773. https://doi.org/10.1021/acs.chemmater.2c01092
    38. Bin Xi, Kin Fai Tse, Tsz Fung Kok, Ho Ming Chan, Man Kit Chan, Ho Yin Chan, Kwan Yue Clinton Wong, Shing Hei Robin Yuen, Junyi Zhu. Machine-Learning-Assisted Acceleration on High-Symmetry Materials Search: Space Group Predictions from Band Structures. The Journal of Physical Chemistry C 2022, 126 (29) , 12264-12273. https://doi.org/10.1021/acs.jpcc.2c03156
    39. Kevin A. Spiekermann, Lagnajit Pattanaik, William H. Green. Fast Predictions of Reaction Barrier Heights: Toward Coupled-Cluster Accuracy. The Journal of Physical Chemistry A 2022, 126 (25) , 3976-3986. https://doi.org/10.1021/acs.jpca.2c02614
    40. Keisuke Takahashi Lauren Takahashi . Data in Materials and Catalysts Informatics. , 239-246. https://doi.org/10.1021/bk-2022-1416.ch010
    41. Wei-Chih Chen Da Yan Cheng-Chien Chen . Machine Learning and First-Principles Discovery of Ternary Superhard Materials. , 211-238. https://doi.org/10.1021/bk-2022-1416.ch009
    42. Ken Sakaushi, Aoi Watanabe, Tomoaki Kumeda, Yasushi Shibuta. Fast-Decoding Algorithm for Electrode Processes at Electrified Interfaces by Mean-Field Kinetic Model and Bayesian Data Assimilation: An Active-Data-Mining Approach for the Efficient Search and Discovery of Electrocatalysts. ACS Applied Materials & Interfaces 2022, 14 (20) , 22889-22902. https://doi.org/10.1021/acsami.1c21038
    43. Tarak K. Patra. Data-Driven Methods for Accelerating Polymer Design. ACS Polymers Au 2022, 2 (1) , 8-26. https://doi.org/10.1021/acspolymersau.1c00035
    44. Pablo Solís-Fernández, Hiroki Ago. Machine Learning Determination of the Twist Angle of Bilayer Graphene by Raman Spectroscopy: Implications for van der Waals Heterostructures. ACS Applied Nano Materials 2022, 5 (1) , 1356-1366. https://doi.org/10.1021/acsanm.1c03928
    45. Christopher W. Smith, Mustafa Salih Hizir, Nidhi Nandu, Mehmet V. Yigit. Algorithmically Guided Optical Nanosensor Selector (AGONS): Guiding Data Acquisition, Processing, and Discrimination for Biological Sampling. Analytical Chemistry 2022, 94 (2) , 1195-1202. https://doi.org/10.1021/acs.analchem.1c04379
    46. Carlos Toro, (Managing Editor)Sara E. Skrabalak (Editor-in-Chief). Ringing in the New Year with Gratitude and Editorial Team Updates. Chemistry of Materials 2022, 34 (1) , 1-4. https://doi.org/10.1021/acs.chemmater.1c04326
    47. Shifa Zhong, Kai Zhang, Majid Bagheri, Joel G. Burken, April Gu, Baikun Li, Xingmao Ma, Babetta L. Marrone, Zhiyong Jason Ren, Joshua Schrier, Wei Shi, Haoyue Tan, Tianbao Wang, Xu Wang, Bryan M. Wong, Xusheng Xiao, Xiong Yu, Jun-Jie Zhu, Huichun Zhang. Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environmental Science & Technology 2021, 55 (19) , 12741-12754. https://doi.org/10.1021/acs.est.1c01339
    48. Pavel N. Zolotarev. Relationships between Changes in Guest Ion Properties and in the Host Framework Topology in Ionic Coordination Polymers. Crystal Growth & Design 2021, 21 (9) , 4959-4970. https://doi.org/10.1021/acs.cgd.1c00405
    49. Meghna Srivastava, John M. Howard, Tao Gong, Mariama Rebello Sousa Dias, Marina S. Leite. Machine Learning Roadmap for Perovskite Photovoltaics. The Journal of Physical Chemistry Letters 2021, 12 (32) , 7866-7877. https://doi.org/10.1021/acs.jpclett.1c01961
    50. Onur Çaylak, Björn Baumeier. Machine Learning of Quasiparticle Energies in Molecules and Clusters. Journal of Chemical Theory and Computation 2021, 17 (8) , 4891-4900. https://doi.org/10.1021/acs.jctc.1c00520
    51. Jaehyun Kim, Donghoon Kang, Sangbum Kim, Ho Won Jang. Catalyze Materials Science with Machine Learning. ACS Materials Letters 2021, 3 (8) , 1151-1171. https://doi.org/10.1021/acsmaterialslett.1c00204
    52. Nicole S. Schauser, Gabrielle A. Kliegle, Piper Cooke, Rachel A. Segalman, Ram Seshadri. Database Creation, Visualization, and Statistical Learning for Polymer Li+-Electrolyte Design. Chemistry of Materials 2021, 33 (13) , 4863-4876. https://doi.org/10.1021/acs.chemmater.0c04767
    53. Emily C. Schueller, Yuzki M. Oey, Kyle D. Miller, Kira E. Wyckoff, Ruining Zhang, William Zhang, Stephen D. Wilson, James M. Rondinelli, Ram Seshadri. AB2X6 Compounds and the Stabilization of Trirutile Oxides. Inorganic Chemistry 2021, 60 (12) , 9224-9232. https://doi.org/10.1021/acs.inorgchem.1c01366
    54. Cigdem Altintas, Omer Faruk Altundal, Seda Keskin, Ramazan Yildirim. Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation. Journal of Chemical Information and Modeling 2021, 61 (5) , 2131-2146. https://doi.org/10.1021/acs.jcim.1c00191
    55. Felix Mayr, Alessio Gagliardi. Global Property Prediction: A Benchmark Study on Open-Source, Perovskite-like Datasets. ACS Omega 2021, 6 (19) , 12722-12732. https://doi.org/10.1021/acsomega.1c00991
    56. Juan R. Chamorro, Tyrel M. McQueen, Thao T. Tran. Chemistry of Quantum Spin Liquids. Chemical Reviews 2021, 121 (5) , 2898-2934. https://doi.org/10.1021/acs.chemrev.0c00641
    57. Yonglan Liu, Dong Zhang, Yijing Tang, Yanxian Zhang, Yung Chang, Jie Zheng. Machine Learning-Enabled Design and Prediction of Protein Resistance on Self-Assembled Monolayers and Beyond. ACS Applied Materials & Interfaces 2021, 13 (9) , 11306-11319. https://doi.org/10.1021/acsami.1c00642
    58. Carlos Toro, (Managing Editor)Sara E. Skrabalak (Editor-in-Chief). Methods & Protocols of 2020. Chemistry of Materials 2021, 33 (5) , 1509-1512. https://doi.org/10.1021/acs.chemmater.1c00551
    59. Sara E. Skrabalak (Editor-in-Chief). Our Most Downloaded Papers Published in 2020. Chemistry of Materials 2021, 33 (1) , 1-3. https://doi.org/10.1021/acs.chemmater.0c04607
    60. Seyed Mohamad Moosavi, Kevin Maik Jablonka, Berend Smit. The Role of Machine Learning in the Understanding and Design of Materials. Journal of the American Chemical Society 2020, 142 (48) , 20273-20287. https://doi.org/10.1021/jacs.0c09105
    61. Xiaohui Li, Yongxiang Mai, Chunfeng Lan, Fu Yang, Putao Zhang, Shengjun Li. Machine learning-assisted design of high-performance perovskite photodetectors: a review. Advanced Composites and Hybrid Materials 2025, 8 (1) https://doi.org/10.1007/s42114-024-01113-z
    62. M. Prabu, S. Sountharrajan, E. Suganya, Durga Prasad Bavirisetti. Contribution of Python to Improving Efficiency in Artificial Intelligence and Advancing Automation Capabilities. 2025, 201-218. https://doi.org/10.1007/978-981-97-7494-4_11
    63. Russlan Jaafreh, Surjeet Kumar, Kotiba Hamad, Jung-Gu Kim. Introducing Materials Fingerprint (MatPrint): A novel method in graphical material representation and features compression. Computational Materials Science 2025, 246 , 113444. https://doi.org/10.1016/j.commatsci.2024.113444
    64. Yuncheng Du, Cristina Sanchez, Dongping Du. Machine learning based insights for metal-organic frameworks synthesis: A comparative and explainable analysis of ZIF-8 morphology. Materials Today Communications 2025, 42 , 111177. https://doi.org/10.1016/j.mtcomm.2024.111177
    65. Rute A. S. Ferreira, Sandra F. H. Correia, Lianshe Fu, Petia Georgieva, Mario Antunes, Paulo S. André. Predicting the efficiency of luminescent solar concentrators for solar energy harvesting using machine learning. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-54657-x
    66. Lu Zhichao, Ma Dong, Liu Xiongjun, Zhaoping Lu. High-throughput and data-driven machine learning techniques for discovering high-entropy alloys. Communications Materials 2024, 5 (1) https://doi.org/10.1038/s43246-024-00487-3
    67. Zahoor Shah, Muhammad Asif Zahoor Raja, Muhammad Shoaib, Shumaila Javeed, Taseer Muhammad, Mehboob Ali, Waqar Azeem Khan, Raja Zaki Haider. Computing intelligence for the magnetised chemically reactive bidirectional radiative nanofluid flow through the Bayesian regularisation back-propagated neural network. Pramana 2024, 98 (4) https://doi.org/10.1007/s12043-024-02794-3
    68. Srujan Sapkal, Balasubramanian Kandasubramanian, Himanshu Sekhar Panda. Machine learning assisted innovative strategy for experimental validation of functional properties of lead-free ceramics. Materials Chemistry and Physics 2024, 328 , 129999. https://doi.org/10.1016/j.matchemphys.2024.129999
    69. Seokgyun Ham, Xin Wang, Hongwei Zhang, Brian Lattimer, Rui Qiao. A GNN-Based QSPR Model for Surfactant Properties. Colloids and Interfaces 2024, 8 (6) , 63. https://doi.org/10.3390/colloids8060063
    70. Chunghee Nam. Prediction of supercooled liquid region of Fe-based metallic glasses by deep learning. Applied Physics A 2024, 130 (12) https://doi.org/10.1007/s00339-024-08097-z
    71. Mariah Batool, Oluwafemi Sanumi, Jasna Jankovic. Application of artificial intelligence in the materials science, with a special focus on fuel cells and electrolyzers. Energy and AI 2024, 18 , 100424. https://doi.org/10.1016/j.egyai.2024.100424
    72. Anders Hellman. A brief overview of deep generative models and how they can be used to discover new electrode materials. Current Opinion in Electrochemistry 2024, 5 , 101629. https://doi.org/10.1016/j.coelec.2024.101629
    73. Anastasiia P. Dmitrieva, Anna S. Fomkina, Chantal T. Tracey, Elizaveta A. Romanenko, Ali Ayati, Pavel V. Krivoshapkin, Elena F. Krivoshapkina. AI and ML for selecting viable electrocatalysts: progress and perspectives. Journal of Materials Chemistry A 2024, 12 (45) , 31074-31102. https://doi.org/10.1039/D4TA04991H
    74. Subham Subba, Pratika Rai, Suman Chatterjee. Machine Learning Approaches in Advancing Perovskite Solar Cells Research. Advanced Theory and Simulations 2024, 1 https://doi.org/10.1002/adts.202400652
    75. Héctor Lobato, Carlos Cernuda, Kepa Zulueta, Aitor Arriaga, Jon M. Matxain, Aizeti Burgoa. Prediction of long-term creep modulus of thermoplastics using brief tests and interpretable machine learning. International Journal of Solids and Structures 2024, 304 , 113014. https://doi.org/10.1016/j.ijsolstr.2024.113014
    76. Ali Abdelrahman, Shinya Ohmagari, Tsuyoshi Yoshitake. Reverse characterization prediction of diamond Schottky barrier power devices using machine learning: Predicting breakdown voltage and Baliga figure of merit. Diamond and Related Materials 2024, 149 , 111645. https://doi.org/10.1016/j.diamond.2024.111645
    77. Yuncheng Du, Dongping Du. Machine learning approaches to analyze the effect of reaction parameters on ZIF-8 synthesis. Chemical Physics Letters 2024, 13 , 141790. https://doi.org/10.1016/j.cplett.2024.141790
    78. Eman Ahmed, Prajakatta Mulay, Cesar Ramirez, Gabriela Tirado-Mansilla, Eugene Cheong, Adam J. Gormley. Mapping Biomaterial Complexity by Machine Learning. Tissue Engineering Part A 2024, 30 (19-20) , 662-680. https://doi.org/10.1089/ten.tea.2024.0067
    79. Yitong Wu, Sifan Kong, Qingxin Yao, Muyun Li, Huayi Lai, Duoyu Sun, Qingyue Cai, Zelin Qiu, Honglong Ning, Yong Zhang. Machine Learning-Guided Cycle Life Prediction for Electrochromic Devices Based on Deuterium and Water Mixing Solvent. Micromachines 2024, 15 (9) , 1073. https://doi.org/10.3390/mi15091073
    80. Xincheng Zhou, Hikaru Matsumoto, Masanori Nagao, Shuji Hironaka, Yoshiko Miura. Development of Pd-immobilized porous polymer catalysts via Bayesian optimization. Polymer Journal 2024, 56 (9) , 865-872. https://doi.org/10.1038/s41428-024-00923-8
    81. Bokinala Moses Abraham, Mullapudi V. Jyothirmai, Priyanka Sinha, Francesc Viñes, Jayant K. Singh, Francesc Illas. Catalysis in the digital age: Unlocking the power of data with machine learning. WIREs Computational Molecular Science 2024, 14 (5) https://doi.org/10.1002/wcms.1730
    82. Joshua Berry, Katerina A. Christofidou. Supervised machine learning for multi-principal element alloy structural design. Materials Science and Technology 2024, 2 https://doi.org/10.1177/02670836241272086
    83. Eman Ahmed, Prajakatta Mulay, Cesar Ramirez, Gabriela Tirado-Mansilla, Eugene Cheong, Adam Gormley. Mapping Biomaterial Complexity by Machine Learning. Tissue Engineering Part A 2024, 21 https://doi.org/10.1089/ten.TEA.2024.0067
    84. Parham Mostofizadeh, Robert A. Dorey, Iman Mohagheghian. Elastic properties prediction of two- and three-dimensional multi-material lattices. Thin-Walled Structures 2024, 201 , 112015. https://doi.org/10.1016/j.tws.2024.112015
    85. Run-Lin Liu, Jian Wang, Zhong-Hui Shen, Yang Shen. AI for dielectric capacitors. Energy Storage Materials 2024, 71 , 103612. https://doi.org/10.1016/j.ensm.2024.103612
    86. Jinfei Fan, Jiazhen Xu, Xiaobo Wen, Li Sun, Yutao Xiu, Zongying Zhang, Ting Liu, Daijun Zhang, Pan Wang, Dongming Xing. The future of bone regeneration: Artificial intelligence in biomaterials discovery. Materials Today Communications 2024, 40 , 109982. https://doi.org/10.1016/j.mtcomm.2024.109982
    87. Vimukthi Dananjaya, Sathish Marimuthu, Richard (Chunhui) Yang, Andrews Nirmala Grace, Chamil Abeykoon. Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocomposites. Progress in Materials Science 2024, 144 , 101282. https://doi.org/10.1016/j.pmatsci.2024.101282
    88. Biju Theruvil Sayed, Arif Sari, Wade Ghribi, Ahmed AH Alkurdi, Shavan Askar, Karrar Hatif Mohmmed. Finite element method-enabled machine learning for analysing residual stress and plastic deformation in surface mechanical attrition-treated alloys. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 2024, 5 https://doi.org/10.1177/09544089241263455
    89. Yanqi Huang, Bart De Spiegeleer, Bogdan Parakhonskiy, Andre G. Skirtach. Machine learning insights into CaCO3 phase transitions: Synthesis and phase prediction. Ceramics International 2024, 50 (13) , 23284-23295. https://doi.org/10.1016/j.ceramint.2024.04.052
    90. Mohammed Yousef Abu Hussein, Akram Musa, Yousef Altaharwah, Safa’ Al-Kfouf. Integrating machine learning in architectural engineering sustainable design: a sub-hourly approach to energy and indoor climate management in buildings. Asian Journal of Civil Engineering 2024, 25 (5) , 4107-4119. https://doi.org/10.1007/s42107-024-01034-8
    91. Arun Mannodi-Kanakkithodi. A guide to discovering next-generation semiconductor materials using atomistic simulations and machine learning. Computational Materials Science 2024, 243 , 113108. https://doi.org/10.1016/j.commatsci.2024.113108
    92. Zahoor Shah, S. Bilal, Muhammad Asif Zahoor Raja, Waqar Azeem Khan, Raja Zaki Haider, Shumaila Javeed, Taseer Muhammad. Supervised Stochastic Approach for computational analysis of convectively heated magnetized nanofluid flow with bioconvection aspects. Alexandria Engineering Journal 2024, 98 , 130-146. https://doi.org/10.1016/j.aej.2024.04.039
    93. Kristen J. Hernandez, Erika I. Barcelos, Jayvic C. Jimenez, Arafath Nihar, Pawan K. Tripathi, Brian Giera, Roger H. French, Laura S. Bruckman. A data integration framework of additive manufacturing based on FAIR principles. MRS Advances 2024, 9 (10) , 844-851. https://doi.org/10.1557/s43580-024-00874-5
    94. Mohammad Hossein Mosallanejad, Hassan Gashmard, Mahdi Javanbakht, Behzad Niroumand, Abdollah Saboori. A novel feature engineering approach for predicting melt pool depth during LPBF by machine learning models. Additive Manufacturing Letters 2024, 10 , 100214. https://doi.org/10.1016/j.addlet.2024.100214
    95. Kangming Li, Brian DeCost, Kamal Choudhary, Jason Hattrick-Simpers. A reproducibility study of atomistic line graph neural networks for materials property prediction. Digital Discovery 2024, 3 (6) , 1123-1129. https://doi.org/10.1039/D4DD00064A
    96. Chenxi Sui, Ziyang Jiang, Genesis Higueros, David Carlson, Po-Chun Hsu. Designing electrodes and electrolytes for batteries by leveraging deep learning. Nano Research Energy 2024, 3 (2) , e9120102. https://doi.org/10.26599/NRE.2023.9120102
    97. Xiaozhao Liu, Volodymyr Koverga, Hoai T. Nguyen, Anh T. Ngo, Tao Li. Exploring solvation structure and transport behavior for rational design of advanced electrolytes for next generation of lithium batteries. Applied Physics Reviews 2024, 11 (2) https://doi.org/10.1063/5.0187154
    98. Wael Z Tawfik, Mohamed Sh Abdel-Wahab, June Key Lee, Abdullah M Al-Enizi, Rasha Y Youssef. Modeling specific capacitance of carbon nanotube-based supercapacitor electrodes by machine learning algorithms. Physica Scripta 2024, 99 (6) , 066011. https://doi.org/10.1088/1402-4896/ad4df3
    99. Xingyue Shi, Linming Zhou, Yuhui Huang, Yongjun Wu, Zijian Hong. A review on the applications of graph neural networks in materials science at the atomic scale. Materials Genome Engineering Advances 2024, 2 (2) https://doi.org/10.1002/mgea.50
    100. Bentley James Oakes, Michalis Famelis, Houari Sahraoui. Building Domain-Specific Machine Learning Workflows: A Conceptual Framework for the State of the Practice. ACM Transactions on Software Engineering and Methodology 2024, 33 (4) , 1-50. https://doi.org/10.1145/3638243
    Load more citations

    Chemistry of Materials

    Cite this: Chem. Mater. 2020, 32, 12, 4954–4965
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.0c01907
    Published May 19, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    22k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.