ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis and Electrical Properties of Covalent Organic Frameworks with Heavy Chalcogens

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Cite this: Chem. Mater. 2015, 27, 16, 5487–5490
Publication Date (Web):July 30, 2015
https://doi.org/10.1021/acs.chemmater.5b02358
Copyright © 2015 American Chemical Society

    Article Views

    6538

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.5b02358.

    • Experimental details, NMR, PXRD, IR, TGA, UV–Vis, adsorption isotherms, IV curves (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 91 publications.

    1. Chitvan Jain, Rinku Kushwaha, Deepak Rase, Pragalbh Shekhar, Ankita Shelke, Disha Sonwani, Thalasseril G. Ajithkumar, Chathakudath Prabhakaran Vinod, Ramanathan Vaidhyanathan. Tailoring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. Journal of the American Chemical Society 2024, 146 (1) , 487-499. https://doi.org/10.1021/jacs.3c09937
    2. David W. Burke, Raghunath R. Dasari, Vinod K. Sangwan, Alexander K. Oanta, Zoheb Hirani, Chloe E. Pelkowski, Yongjian Tang, Ruofan Li, Daniel C. Ralph, Mark C. Hersam, Stephen Barlow, Seth R. Marder, William R. Dichtel. Synthesis, Hole Doping, and Electrical Properties of a Semiconducting Azatriangulene-Based Covalent Organic Framework. Journal of the American Chemical Society 2023, 145 (22) , 11969-11977. https://doi.org/10.1021/jacs.2c12371
    3. Jin-Ling Zhang, Li-Ying Yao, Yang Yang, Wen-Bin Liang, Ruo Yuan, Dong-Rong Xiao. Conductive Covalent Organic Frameworks with Conductivity- and Pre-Reduction-Enhanced Electrochemiluminescence for Ultrasensitive Biosensor Construction. Analytical Chemistry 2022, 94 (8) , 3685-3692. https://doi.org/10.1021/acs.analchem.1c05436
    4. Ajay Jha, Kaustubh R. Mote, Suman Chandra, Perunthiruthy K. Madhu, Jyotishman Dasgupta. Photoactive Anthraquinone-Based Host–Guest Assembly for Long-Lived Charge Separation. The Journal of Physical Chemistry C 2021, 125 (20) , 10891-10900. https://doi.org/10.1021/acs.jpcc.1c02497
    5. Halleh B. Balch, Austin M. Evans, Raghunath R. Dasari, Hong Li, Ruofan Li, Simil Thomas, Danqing Wang, Ryan P. Bisbey, Kaitlin Slicker, Ioannina Castano, Sangni Xun, Lili Jiang, Chenhui Zhu, Nathan Gianneschi, Daniel C. Ralph, Jean-Luc Brédas, Seth R. Marder, William R. Dichtel, Feng Wang. Electronically Coupled 2D Polymer/MoS2 Heterostructures. Journal of the American Chemical Society 2020, 142 (50) , 21131-21139. https://doi.org/10.1021/jacs.0c10151
    6. Robert M. Stolz, Akbar Mahdavi-Shakib, Brian G. Frederick, Katherine A. Mirica. Host–Guest Interactions and Redox Activity in Layered Conductive Metal–Organic Frameworks. Chemistry of Materials 2020, 32 (18) , 7639-7652. https://doi.org/10.1021/acs.chemmater.0c01007
    7. Keyu Geng, Ting He, Ruoyang Liu, Sasanka Dalapati, Ke Tian Tan, Zhongping Li, Shanshan Tao, Yifan Gong, Qiuhong Jiang, Donglin Jiang. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews 2020, 120 (16) , 8814-8933. https://doi.org/10.1021/acs.chemrev.9b00550
    8. Xiaowei Wu, You-lee Hong, Bingqing Xu, Yusuke Nishiyama, Wei Jiang, Junwu Zhu, Gen Zhang, Susumu Kitagawa, Satoshi Horike. Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for Anhydrous Proton Conduction. Journal of the American Chemical Society 2020, 142 (33) , 14357-14364. https://doi.org/10.1021/jacs.0c06474
    9. W. Karl Haug, Eric R. Wolfson, Blake T. Morman, Christine M. Thomas, Psaras L. McGrier. A Nickel-Doped Dehydrobenzoannulene-Based Two-Dimensional Covalent Organic Framework for the Reductive Cleavage of Inert Aryl C–S Bonds. Journal of the American Chemical Society 2020, 142 (12) , 5521-5525. https://doi.org/10.1021/jacs.0c01026
    10. Garvin M. Peters, Girishma Grover, Ruth L. Maust, Curtis E. Colwell, Haley Bates, William A. Edgell, Ramesh Jasti, Miklos Kertesz, John D. Tovar. Linear and Radial Conjugation in Extended π-Electron Systems. Journal of the American Chemical Society 2020, 142 (5) , 2293-2300. https://doi.org/10.1021/jacs.9b10785
    11. Haoyuan Li, Austin M. Evans, Ioannina Castano, Michael J. Strauss, William R. Dichtel, Jean-Luc Bredas. Nucleation–Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society 2020, 142 (3) , 1367-1374. https://doi.org/10.1021/jacs.9b10869
    12. Laura Ascherl, Emrys W. Evans, Jeffrey Gorman, Sarah Orsborne, Derya Bessinger, Thomas Bein, Richard H. Friend, Florian Auras. Perylene-Based Covalent Organic Frameworks for Acid Vapor Sensing. Journal of the American Chemical Society 2019, 141 (39) , 15693-15699. https://doi.org/10.1021/jacs.9b08079
    13. Haoyuan Li, Jean-Luc Brédas. Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials 2019, 31 (9) , 3265-3273. https://doi.org/10.1021/acs.chemmater.9b00186
    14. Sabrina Rager, Andreas C. Jakowetz, Bappaditya Gole, Florian Beuerle, Dana D. Medina, Thomas Bein. Scaffold-Induced Diketopyrrolopyrrole Molecular Stacks in a Covalent Organic Framework. Chemistry of Materials 2019, 31 (8) , 2707-2712. https://doi.org/10.1021/acs.chemmater.8b02882
    15. Xiaowei Wu, Xing Han, Yuhao Liu, Yan Liu, Yong Cui. Control Interlayer Stacking and Chemical Stability of Two-Dimensional Covalent Organic Frameworks via Steric Tuning. Journal of the American Chemical Society 2018, 140 (47) , 16124-16133. https://doi.org/10.1021/jacs.8b08452
    16. Sattwick Haldar, Debanjan Chakraborty, Bibhisan Roy, Gangadhar Banappanavar, Kushwaha Rinku, Dinesh Mullangi, Partha Hazra, Dinesh Kabra, Ramanathan Vaidhyanathan. Anthracene-Resorcinol Derived Covalent Organic Framework as Flexible White Light Emitter. Journal of the American Chemical Society 2018, 140 (41) , 13367-13374. https://doi.org/10.1021/jacs.8b08312
    17. Joseph G. Manion, Shuyang Ye, Andrew H. Proppe, Arnaud W. Laramée, George R. McKeown, Emily L. Kynaston, Shana O. Kelley, Edward H. Sargent, Dwight S. Seferos. Examining Structure–Property–Function Relationships in Thiophene, Selenophene, and Tellurophene Homopolymers. ACS Applied Energy Materials 2018, 1 (9) , 5033-5042. https://doi.org/10.1021/acsaem.8b01023
    18. Renhao Dong, Tao Zhang, Xinliang Feng. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews 2018, 118 (13) , 6189-6235. https://doi.org/10.1021/acs.chemrev.8b00056
    19. Jianyi Wang, Liping Si, Qin Wei, Xujia Hong, Songliang Cai, Yuepeng Cai. Covalent Organic Frameworks as the Coating Layer of Ceramic Separator for High-Efficiency Lithium–Sulfur Batteries. ACS Applied Nano Materials 2018, 1 (1) , 132-138. https://doi.org/10.1021/acsanm.7b00057
    20. Derya Bessinger, Laura Ascherl, Florian Auras, Thomas Bein. Spectrally Switchable Photodetection with Near-Infrared-Absorbing Covalent Organic Frameworks. Journal of the American Chemical Society 2017, 139 (34) , 12035-12042. https://doi.org/10.1021/jacs.7b06599
    21. Ahmed B. Soliman, Rana R. Haikal, Arwa A. Abugable, Mohamed H. Hassan, Stavros G. Karakalos, Perry J. Pellechia, Hamdy H. Hassan, Magdi H. Yacoub, and Mohamed H. Alkordi . Tailoring the Oxygen Reduction Activity of Hemoglobin through Immobilization within Microporous Organic Polymer–Graphene Composite. ACS Applied Materials & Interfaces 2017, 9 (33) , 27918-27926. https://doi.org/10.1021/acsami.7b06146
    22. Dana D. Medina, Michiel L. Petrus, Askhat N. Jumabekov, Johannes T. Margraf, Simon Weinberger, Julian M. Rotter, Timothy Clark, Thomas Bein. Directional Charge-Carrier Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films. ACS Nano 2017, 11 (3) , 2706-2713. https://doi.org/10.1021/acsnano.6b07692
    23. Mérina K. Corpinot, Rui Guo, Derek A. Tocher, Asma B. M. Buanz, Simon Gaisford, Sarah L. Price, and Dejan-Krešimir Bučar . Are Oxygen and Sulfur Atoms Structurally Equivalent in Organic Crystals?. Crystal Growth & Design 2017, 17 (2) , 827-833. https://doi.org/10.1021/acs.cgd.6b01669
    24. Jonathan W. Crowe, Luke A. Baldwin, and Psaras L. McGrier . Luminescent Covalent Organic Frameworks Containing a Homogeneous and Heterogeneous Distribution of Dehydrobenzoannulene Vertex Units. Journal of the American Chemical Society 2016, 138 (32) , 10120-10123. https://doi.org/10.1021/jacs.6b06546
    25. Yongwu Peng, Wai Kuan Wong, Zhigang Hu, Youdong Cheng, Daqiang Yuan, Saif A. Khan, and Dan Zhao . Room Temperature Batch and Continuous Flow Synthesis of Water-Stable Covalent Organic Frameworks (COFs). Chemistry of Materials 2016, 28 (14) , 5095-5101. https://doi.org/10.1021/acs.chemmater.6b01954
    26. Yongwu Peng, Guodong Xu, Zhigang Hu, Youdong Cheng, Chenglong Chi, Daqiang Yuan, Hansong Cheng, and Dan Zhao . Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity. ACS Applied Materials & Interfaces 2016, 8 (28) , 18505-18512. https://doi.org/10.1021/acsami.6b06189
    27. Bing Sun, Jing Li, Wei-Long Dong, Mei-Ling Wu, and Dong Wang . Selective Growth of Covalent Organic Framework Ultrathin Films on Hexagonal Boron Nitride. The Journal of Physical Chemistry C 2016, 120 (27) , 14706-14711. https://doi.org/10.1021/acs.jpcc.6b04410
    28. Ha L. Nguyen, Felipe Gándara, Hiroyasu Furukawa, Tan L. H. Doan, Kyle E. Cordova, and Omar M. Yaghi . A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks. Journal of the American Chemical Society 2016, 138 (13) , 4330-4333. https://doi.org/10.1021/jacs.6b01233
    29. Juncong Jiang, Yingbo Zhao, and Omar M. Yaghi . Covalent Chemistry beyond Molecules. Journal of the American Chemical Society 2016, 138 (10) , 3255-3265. https://doi.org/10.1021/jacs.5b10666
    30. Guiqing Lin, Huimin Ding, Daqiang Yuan, Baoshan Wang, and Cheng Wang . A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society 2016, 138 (10) , 3302-3305. https://doi.org/10.1021/jacs.6b00652
    31. Lujing Wang, Shuyue Li, Chunzhong Wang, Shiyu Yao, Gang Chen, Fei Du. Recent advance and design strategies of chalcogenides for high-performance aqueous zinc-ion batteries. Journal of Physics D: Applied Physics 2024, 57 (25) , 253001. https://doi.org/10.1088/1361-6463/ad2f80
    32. Qingsong Zhang, Zhiheng Zhu, Liping Liu, Haojie Huang, Xianjie Chen, Yangshuang Bian, Mingchao Shao, Xiaofang Wei, Chengyu Wang, Dong Wang, Jichen Dong, Yunlong Guo, Yongfa Zhu, Yunqi Liu. The Transfer Dehydrogenation Method Enables a Family of High Crystalline Benzimidazole‐linked Cu (II)‐phthalocyanine‐based Covalent Organic Frameworks Films. Angewandte Chemie 2024, 136 (19) https://doi.org/10.1002/ange.202319027
    33. Qingsong Zhang, Zhiheng Zhu, Liping Liu, Haojie Huang, Xianjie Chen, Yangshuang Bian, Mingchao Shao, Xiaofang Wei, Chengyu Wang, Dong Wang, Jichen Dong, Yunlong Guo, Yongfa Zhu, Yunqi Liu. The Transfer Dehydrogenation Method Enables a Family of High Crystalline Benzimidazole‐linked Cu (II)‐phthalocyanine‐based Covalent Organic Frameworks Films. Angewandte Chemie International Edition 2024, 63 (19) https://doi.org/10.1002/anie.202319027
    34. Mozhgan Shahmirzaee, Atsushi Nagai. An Appraisal for Providing Charge Transfer (CT) Through Synthetic Porous Frameworks for their Semiconductor Applications. Small 2024, 132 https://doi.org/10.1002/smll.202307828
    35. Zhangjie Gu, Zhen Shan, Yulan Wang, Jinjian Wang, Tongtong Liu, Xiaoming Li, Zhiyang Yu, Jian Su, Gen Zhang. Tuning the exciton binding energy of covalent organic frameworks for efficient photocatalysis. Chinese Chemical Letters 2024, 35 (2) , 108356. https://doi.org/10.1016/j.cclet.2023.108356
    36. Yongchun Li, Wenchang Wu, Yimei Wang, Enmin Huang, Sang Young Jeong, Han Young Woo, Xugang Guo, Kui Feng. Multi‐Selenophene Incorporated Thiazole Imide‐Based n‐Type Polymers for High‐Performance Organic Thermoelectrics. Angewandte Chemie International Edition 2024, 63 (3) https://doi.org/10.1002/anie.202316214
    37. Yongchun Li, Wenchang Wu, Yimei Wang, Enmin Huang, Sang Young Jeong, Han Young Woo, Xugang Guo, Kui Feng. Multi‐Selenophene Incorporated Thiazole Imide‐Based n‐Type Polymers for High‐Performance Organic Thermoelectrics. Angewandte Chemie 2024, 136 (3) https://doi.org/10.1002/ange.202316214
    38. Syed Shoaib Ahmad Shah, Muhammad Sufyan Javed, Tayyaba Najam, Muhammad Altaf Nazir, Aziz ur Rehman, Abdul Rauf, Manzar Sohail, Francis Verpoort, Shu-Juan Bao. Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship. Materials Today 2023, 67 , 229-255. https://doi.org/10.1016/j.mattod.2023.05.023
    39. Xiyu Chen, Min Zeng, Jianhua Yang, Nantao Hu, Xiaoyong Duan, Wei Cai, Yanjie Su, Zhi Yang. Two-Dimensional Bimetallic Phthalocyanine Covalent-Organic-Framework-Based Chemiresistive Gas Sensor for ppb-Level NO2 Detection. Nanomaterials 2023, 13 (10) , 1660. https://doi.org/10.3390/nano13101660
    40. Elham Nikkhoo, Shadpour Mallakpour, Chaudhery Mustansar Hussain. Design, synthesis, and application of covalent organic frameworks as catalysts. New Journal of Chemistry 2023, 47 (14) , 6765-6788. https://doi.org/10.1039/D2NJ04509E
    41. Edgars Paegle, Pavel Arsenyan. Simple Access to 2‐Arylbenzo[ b ]tellurophenes. European Journal of Organic Chemistry 2023, 26 (7) https://doi.org/10.1002/ejoc.202201367
    42. Noemí Contreras-Pereda, Salvador Pané, Josep Puigmartí-Luis, Daniel Ruiz-Molina. Conductive properties of triphenylene MOFs and COFs. Coordination Chemistry Reviews 2022, 460 , 214459. https://doi.org/10.1016/j.ccr.2022.214459
    43. Yuhao Zhu, Shuyi Jiang, Xuechun Jing, Xiao Feng. Electrically conductive 2D covalent organic frameworks. Trends in Chemistry 2022, 4 (2) , 128-141. https://doi.org/10.1016/j.trechm.2021.11.006
    44. Yizhou Yang, Karl Börjesson. Electroactive covalent organic frameworks: a new choice for organic electronics. Trends in Chemistry 2022, 4 (1) , 60-75. https://doi.org/10.1016/j.trechm.2021.10.007
    45. Vasanthakumar Arumugam, Yanan Gao. Synthesis and Applications of Organic Framework-Based Cellulosic Nanocomposites. 2022, 441-472. https://doi.org/10.1007/978-3-030-89621-8_26
    46. Vamsi Krishna Karapala, Chien-Chung Han. Tellurophenes. 2022, 675-710. https://doi.org/10.1016/B978-0-12-409547-2.14777-8
    47. Yizhou Yang, Suman Mallick, Fernando Izquierdo‐Ruiz, Clara Schäfer, Xing Xing, Martin Rahm, Karl Börjesson. A Highly Conductive All‐Carbon Linked 3D Covalent Organic Framework Film. Small 2021, 17 (40) https://doi.org/10.1002/smll.202103152
    48. Ali Behrad Vakylabad, Esmaeel Darezereshki, Ahmad Hassanzadeh. Selective Recovery of Cobalt and Fabrication of Nano-Co3S4 from Pregnant Leach Solution of Spent Lithium-Ion Batteries. Journal of Sustainable Metallurgy 2021, 7 (3) , 1027-1044. https://doi.org/10.1007/s40831-021-00393-9
    49. Manuel Souto, Dmitrii F. Perepichka. Electrically conductive covalent organic frameworks: bridging the fields of organic metals and 2D materials. Journal of Materials Chemistry C 2021, 9 (33) , 10668-10676. https://doi.org/10.1039/D1TC00750E
    50. Laura Frey, Jenni J. Jarju, Laura M. Salonen, Dana D. Medina. Boronic-acid-derived covalent organic frameworks: from synthesis to applications. New Journal of Chemistry 2021, 45 (33) , 14879-14907. https://doi.org/10.1039/D1NJ01269J
    51. Gang Bian, Jun Yin, Jian Zhu. Recent Advances on Conductive 2D Covalent Organic Frameworks. Small 2021, 17 (22) , 2006043. https://doi.org/10.1002/smll.202006043
    52. Patrick W. Fritz, Ali Coskun. The Prospect of Dimensionality in Porous Semiconductors. Chemistry – A European Journal 2021, 27 (27) , 7489-7501. https://doi.org/10.1002/chem.202005167
    53. Vikram Singh, Jaewook Kim, Bora Kang, Joonhee Moon, Sujung Kim, Woo Youn Kim, Hye Ryung Byon. Thiazole‐Linked Covalent Organic Framework Promoting Fast Two‐Electron Transfer for Lithium‐Organic Batteries. Advanced Energy Materials 2021, 11 (17) , 2003735. https://doi.org/10.1002/aenm.202003735
    54. De-Li Ma, Cheng Qian, Qiao-Yan Qi, Zhong-Ri Zhong, Guo-Fang Jiang, Xin Zhao. Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Research 2021, 14 (2) , 381-386. https://doi.org/10.1007/s12274-020-2723-y
    55. Ruoyang Liu, Ke Tian Tan, Yifan Gong, Yongzhi Chen, Zhuoer Li, Shuailei Xie, Ting He, Zhen Lu, Hao Yang, Donglin Jiang. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chemical Society Reviews 2021, 50 (1) , 120-242. https://doi.org/10.1039/D0CS00620C
    56. Vasanthakumar Arumugam, Yanan Gao. Synthesis and Applications of Organic Framework-Based Cellulosic Nanocomposites. 2021, 1-33. https://doi.org/10.1007/978-3-030-62976-2_26-1
    57. Yusran Yusran, Qianrong Fang, Valentin Valtchev. Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials 2020, 32 (44) https://doi.org/10.1002/adma.202002038
    58. Manuel Souto, Karol Strutyński, Manuel Melle‐Franco, João Rocha. Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry – A European Journal 2020, 26 (48) , 10912-10935. https://doi.org/10.1002/chem.202001211
    59. Kejun Liu, Lihuan Wang, Renhao Dong. Two-dimensional conjugated polymer films via liquid-interface-assisted synthesis toward organic electronic devices. Journal of Materials Chemistry C 2020, 8 (31) , 10696-10718. https://doi.org/10.1039/D0TC01586E
    60. Yusran Yusran, Hui Li, Xinyu Guan, Qianrong Fang, Shilun Qiu. Covalent Organic Frameworks for Catalysis. EnergyChem 2020, 2 (3) , 100035. https://doi.org/10.1016/j.enchem.2020.100035
    61. Jianyi Wang, Weiwei Qin, Xixi Zhu, Yongqiang Teng. Covalent organic frameworks (COF)/CNT nanocomposite for high performance and wide operating temperature lithium–sulfur batteries. Energy 2020, 199 , 117372. https://doi.org/10.1016/j.energy.2020.117372
    62. Gabrielle A. Leith, Allison M. Rice, Brandon J. Yarbrough, Anna A. Berseneva, Richard T. Ly, Charles N. Buck, Denis Chusov, Amy J. Brandt, Donna A. Chen, Benjamin W. Lamm, Morgan Stefik, Kenneth S. Stephenson, Mark D. Smith, Aaron K. Vannucci, Perry J. Pellechia, Sophya Garashchuk, Natalia B. Shustova. A Dual Threat: Redox‐Activity and Electronic Structures of Well‐Defined Donor–Acceptor Fulleretic Covalent‐Organic Materials. Angewandte Chemie 2020, 132 (15) , 6056-6062. https://doi.org/10.1002/ange.201914233
    63. Gabrielle A. Leith, Allison M. Rice, Brandon J. Yarbrough, Anna A. Berseneva, Richard T. Ly, Charles N. Buck, Denis Chusov, Amy J. Brandt, Donna A. Chen, Benjamin W. Lamm, Morgan Stefik, Kenneth S. Stephenson, Mark D. Smith, Aaron K. Vannucci, Perry J. Pellechia, Sophya Garashchuk, Natalia B. Shustova. A Dual Threat: Redox‐Activity and Electronic Structures of Well‐Defined Donor–Acceptor Fulleretic Covalent‐Organic Materials. Angewandte Chemie International Edition 2020, 59 (15) , 6000-6006. https://doi.org/10.1002/anie.201914233
    64. Franklin D. R. Maharaj, Michael P. Marshak. Titanium-Anthraquinone Material as a New Design Approach for Electrodes in Aqueous Rechargeable Batteries. Energies 2020, 13 (7) , 1722. https://doi.org/10.3390/en13071722
    65. Sampath B. Alahakoon, Shashini D. Diwakara, Christina M. Thompson, Ronald A. Smaldone. Supramolecular design in 2D covalent organic frameworks. Chemical Society Reviews 2020, 49 (5) , 1344-1356. https://doi.org/10.1039/C9CS00884E
    66. Rana R. Haikal, Mohamed H. Hassan, Mohamed H. Alkordi. Microporous Solids En Route to Heterogeneous Electrocatalysis: The Oxygen Reduction Reaction. Energy Technology 2020, 8 (3) https://doi.org/10.1002/ente.201900964
    67. Wei Zong, Ruqian Lian, Guanjie He, Hele Guo, Yue Ouyang, Jing Wang, Feili Lai, Yue-E. Miao, Dewei Rao, Dan Brett, Tianxi Liu. Vacancy engineering of group VI anions in NiCo2A4 (A = O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. Electrochimica Acta 2020, 333 , 135515. https://doi.org/10.1016/j.electacta.2019.135515
    68. Yusran Yusran, Hui Li, Xinyu Guan, Daohao Li, Lingxue Tang, Ming Xue, Zhongbin Zhuang, Yushan Yan, Valentin Valtchev, Shilun Qiu, Qianrong Fang. Exfoliated Mesoporous 2D Covalent Organic Frameworks for High‐Rate Electrochemical Double‐Layer Capacitors. Advanced Materials 2020, 32 (8) https://doi.org/10.1002/adma.201907289
    69. Naoki Shida, Hiroki Nishiyama, Feng Zheng, Shuyang Ye, Dwight S. Seferos, Ikuyoshi Tomita, Shinsuke Inagi. Redox chemistry of π-extended tellurophenes. Communications Chemistry 2019, 2 (1) https://doi.org/10.1038/s42004-019-0228-y
    70. Soyoung Kim, Hee Cheul Choi. Light-promoted synthesis of highly-conjugated crystalline covalent organic framework. Communications Chemistry 2019, 2 (1) https://doi.org/10.1038/s42004-019-0162-z
    71. Shumaila Ashraf, Yiming Zuo, Shuai Li, Caixia Liu, Hang Wang, Xiao Feng, Pengfei Li, Bo Wang. Crystalline Anionic Germanate Covalent Organic Framework for High CO 2 Selectivity and Fast Li Ion Conduction. Chemistry – A European Journal 2019, 25 (59) , 13479-13483. https://doi.org/10.1002/chem.201903011
    72. Danyon M. Fischbach, Grace Rhoades, Charlie Espy, Fallon Goldberg, Brian J. Smith. Controlling the crystalline structure of imine-linked 3D covalent organic frameworks. Chemical Communications 2019, 55 (25) , 3594-3597. https://doi.org/10.1039/C8CC09571J
    73. Hongmei Qu, Xin Zhang, Xu Chen, Hui Zhang, Yican Men, Junqiu Li. Zirconium-Mediated Synthesis of Multi-substituted Dibenzosilole and Benzonaphthosilole Derivatives. Transactions of Tianjin University 2018, 24 (6) , 538-546. https://doi.org/10.1007/s12209-018-0154-6
    74. Maria S. Lohse, Thomas Bein. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Advanced Functional Materials 2018, 28 (33) https://doi.org/10.1002/adfm.201705553
    75. Peng Ge, Chenyang Zhang, Hongshuai Hou, Buke Wu, Liang Zhou, Sijie Li, Tianjing Wu, Jiugang Hu, Liqiang Mai, Xiaobo Ji. Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy 2018, 48 , 617-629. https://doi.org/10.1016/j.nanoen.2018.04.018
    76. Tanay Kesharwani, Cory Kornman, Amanda Tonnaer, Amanda Hayes, Seoyoung Kim, Nikesh Dahal, Ralf Romero, Andrew Royappa. Sodium halides as the source of electrophilic halogens in green synthesis of 3-halo- and 3, n -dihalobenzo[ b ]thiophenes. Tetrahedron 2018, 74 (24) , 2973-2984. https://doi.org/10.1016/j.tet.2018.04.080
    77. Ya-ping Wang, Wei-xiao Ji, Chang-wen Zhang, Ping Li, Pei-ji Wang, Biao Kong, Sheng-shi Li, Shi-shen Yan, Kang Liang. Discovery of intrinsic quantum anomalous Hall effect in organic Mn-DCA lattice. Applied Physics Letters 2017, 110 (23) https://doi.org/10.1063/1.4985144
    78. Rana R. Haikal, Ahmed B. Soliman, Muhamed Amin, Stavros G. Karakalos, Youssef S. Hassan, Ahmed M. Elmansi, Inas H. Hafez, Mohamed R. Berber, Abdou Hassanien, Mohamed H. Alkordi. Synergism of carbon nanotubes and porous-organic polymers (POPs) in CO2 fixation: One-pot approach for bottom-up assembly of tunable heterogeneous catalyst. Applied Catalysis B: Environmental 2017, 207 , 347-357. https://doi.org/10.1016/j.apcatb.2017.02.009
    79. Amal Kumar Mandal, Javeed Mahmood, Jong‐Beom Baek. Two‐Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. ChemNanoMat 2017, 3 (6) , 373-391. https://doi.org/10.1002/cnma.201700048
    80. Sampath B. Alahakoon, Christina M. Thompson, Gino Occhialini, Ronald A. Smaldone. Design Principles for Covalent Organic Frameworks in Energy Storage Applications. ChemSusChem 2017, 10 (10) , 2116-2129. https://doi.org/10.1002/cssc.201700120
    81. Sampath B. Alahakoon, Gregory T. McCandless, Arosha A. K. Karunathilake, Christina M. Thompson, Ronald A. Smaldone. Enhanced Structural Organization in Covalent Organic Frameworks Through Fluorination. Chemistry – A European Journal 2017, 23 (18) , 4255-4259. https://doi.org/10.1002/chem.201700412
    82. Lina Xu, Jia Xu, Baotian Shan, Xiulin Wang, Congjie Gao. TpPa-2-incorporated mixed matrix membranes for efficient water purification. Journal of Membrane Science 2017, 526 , 355-366. https://doi.org/10.1016/j.memsci.2016.12.039
    83. F. Haase, K. Gottschling, L. Stegbauer, L. S. Germann, R. Gutzler, V. Duppel, V. S. Vyas, K. Kern, R. E. Dinnebier, B. V. Lotsch. Tuning the stacking behaviour of a 2D covalent organic framework through non-covalent interactions. Materials Chemistry Frontiers 2017, 1 (7) , 1354-1361. https://doi.org/10.1039/C6QM00378H
    84. Dinesh Mullangi, Sorout Shalini, Shyamapada Nandi, Bhavin Choksi, Ramanathan Vaidhyanathan. Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hydrophobic paper and textile composites. Journal of Materials Chemistry A 2017, 5 (18) , 8376-8384. https://doi.org/10.1039/C7TA01302G
    85. Yongfeng Zhi, Ziping Li, Xiao Feng, Hong Xia, Yumin Zhang, Zhan Shi, Ying Mu, Xiaoming Liu. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. Journal of Materials Chemistry A 2017, 5 (44) , 22933-22938. https://doi.org/10.1039/C7TA07691F
    86. Guoxian Zhang, Julian M. W. Chan. Reversibly thermochromic bismuth-organic materials with tunable optical gaps. Journal of Materials Chemistry C 2017, 5 (38) , 10007-10015. https://doi.org/10.1039/C7TC03277C
    87. Ning Huang, Ping Wang, Donglin Jiang. Covalent organic frameworks: a materials platform for structural and functional designs. Nature Reviews Materials 2016, 1 (10) https://doi.org/10.1038/natrevmats.2016.68
    88. Sampath B. Alahakoon, Christina M. Thompson, Amy X. Nguyen, Gino Occhialini, Gregory T. McCandless, Ronald A. Smaldone. An azine-linked hexaphenylbenzene based covalent organic framework. Chemical Communications 2016, 52 (13) , 2843-2845. https://doi.org/10.1039/C5CC10408D
    89. Bhaskar Nath, Wen-Hua Li, Jia-Hong Huang, Guan-E. Wang, Zhi-hua Fu, Ming-Shui Yao, Gang Xu. A new azodioxy-linked porphyrin-based semiconductive covalent organic framework with I 2 doping-enhanced photoconductivity. CrystEngComm 2016, 18 (23) , 4259-4263. https://doi.org/10.1039/C6CE00168H
    90. Maria S. Lohse, Julian M. Rotter, Johannes T. Margraf, Veronika Werner, Matthias Becker, Simon Herbert, Paul Knochel, Timothy Clark, Thomas Bein, Dana D. Medina. From benzodithiophene to diethoxy-benzodithiophene covalent organic frameworks – structural investigations. CrystEngComm 2016, 18 (23) , 4295-4302. https://doi.org/10.1039/C6CE00193A
    91. Huaping Liao, Hongmin Wang, Huimin Ding, Xiangshi Meng, Hai Xu, Baoshan Wang, Xinping Ai, Cheng Wang. A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries. Journal of Materials Chemistry A 2016, 4 (19) , 7416-7421. https://doi.org/10.1039/C6TA00483K

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect