ACS Publications. Most Trusted. Most Cited. Most Read
Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties
My Activity
    Article

    Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties
    Click to copy article linkArticle link copied!

    View Author Information
    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
    § Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
    Solar and Photovoltaics Engineering Research Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology—KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2015, 27, 17, 5856–5867
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.5b02885
    Published August 4, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present a comprehensive investigation, via first-principles density functional theory (DFT) calculations, of various surface terminations of magnetite, Fe3O4 (111), a major iron oxide that also has a number of applications in electronics and spintronics. We compare the thermodynamic stability and electronic structure among the different surfaces terminations. Interestingly, we find that surfaces modified with point defects and adatoms are close in surface energy and that they can be more stable than bulk-like terminations in the oxygen-rich and -poor regimes. These surfaces show different surface chemistry and electronic structures as well as distinctive spin polarization features near the Fermi level with regard to those previously considered in the literature. Our studies provide an atomic level insight for magnetite surfaces, which is a necessary step to understanding their interfaces with organic layers in OLEDs and spintronic devices.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.5b02885.

    • Methodological details for the range-separated hybrid functionals (Section S1); convergence of electronic properties with respect to slab thickness (Section S2); analyses of the surface stabilities and work functions using various DFT methodologies and exchange-correlation functionals (Sections S3 and S6); tabulated data for the ionic relaxations (Section S4); PDOS for bulk magnetite and all seven terminations examined (Section S5); layer-resolved spin polarization variation within PBE and hybrid functionals (Section S7) (PDF).

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 103 publications.

    1. Min Wang, Lu-Cun Wang, Bin Liu, Yong Ding, Yingchao Yang, Dong Ding. Promotional Effect of ZnO and ZrO2 in K-Doped Fe Catalysts for CO2 Hydrogenation to Light Olefins. ACS Catalysis 2025, 15 (8) , 5954-5967. https://doi.org/10.1021/acscatal.4c07100
    2. Elena Allegritti, Cristiana Palumbo, Sara Battista, Franco D′Orazio, Massimiliano Aschi, Michele Mattera, Francesca Commito, Barbara Cravello, Luisa Giansanti. Exploring Solid Magnetic Liposomes for Organic Pollutant Removal from Wastewater: The Role of Lipid Composition. ACS Applied Materials & Interfaces 2025, 17 (2) , 3489-3502. https://doi.org/10.1021/acsami.4c20352
    3. Anita S. Katheras, Konstantinos Karalis, Matthias Krack, Andreas C. Scheinost, Sergey V. Churakov. Stability and Speciation of Hydrated Magnetite {111} Surfaces from Ab Initio Simulations with Relevance for Geochemical Redox Processes. Environmental Science & Technology 2024, 58 (1) , 935-946. https://doi.org/10.1021/acs.est.3c07202
    4. Emre Gürsoy, Gregor B. Vonbun-Feldbauer, Robert H. Meißner. Oxidation-State Dynamics and Emerging Patterns in Magnetite. The Journal of Physical Chemistry Letters 2023, 14 (30) , 6800-6807. https://doi.org/10.1021/acs.jpclett.3c01290
    5. Florian Kraushofer, Matthias Meier, Zdeněk Jakub, Johanna Hütner, Jan Balajka, Jan Hulva, Michael Schmid, Cesare Franchini, Ulrike Diebold, Gareth S. Parkinson. Oxygen-Terminated (1 × 1) Reconstruction of Reduced Magnetite Fe3O4(111). The Journal of Physical Chemistry Letters 2023, 14 (13) , 3258-3265. https://doi.org/10.1021/acs.jpclett.3c00281
    6. Shengsheng Liu, Linhan Liu, Zhiying Cheng, Jing Zhu, Rong Yu. Surface Structures of Mn3O4 and the Partition of Oxidation States of Mn. The Journal of Physical Chemistry Letters 2021, 12 (24) , 5675-5681. https://doi.org/10.1021/acs.jpclett.1c01422
    7. Marcus Creutzburg, Kai Sellschopp, Steffen Tober, Elin Grånäs, Vedran Vonk, Wernfried Mayr-Schmölzer, Stefan Müller, Heshmat Noei, Gregor B. Vonbun-Feldbauer, Andreas Stierle. Heterogeneous Adsorption and Local Ordering of Formate on a Magnetite Surface. The Journal of Physical Chemistry Letters 2021, 12 (15) , 3847-3852. https://doi.org/10.1021/acs.jpclett.1c00209
    8. Mine Konuk, Kai Sellschopp, Gregor B. Vonbun-Feldbauer, Robert H. Meißner. Modeling Charge Redistribution at Magnetite Interfaces in Empirical Force Fields. The Journal of Physical Chemistry C 2021, 125 (8) , 4794-4805. https://doi.org/10.1021/acs.jpcc.0c10338
    9. Joseph W. Bennett, Xu Huang, Yuan Fang, David M. Cwiertny, Vicki H. Grassian, Sara E. Mason. Methane Dissociation on α-Fe2O3(0001) and Fe3O4(111) Surfaces: First-Principles Insights into Chemical Looping Combustion. The Journal of Physical Chemistry C 2019, 123 (11) , 6450-6463. https://doi.org/10.1021/acs.jpcc.8b08675
    10. Nika Spiridis, Kinga Freindl, Joanna Wojas, Natalia Kwiatek, Ewa Madej, Dorota Wilgocka-Ślęzak, Piotr Dróżdż, Tomasz Ślęzak, Józef Korecki. Superstructures on Epitaxial Fe3O4(111) Films: Biphase Formation versus the Degree of Reduction. The Journal of Physical Chemistry C 2019, 123 (7) , 4204-4216. https://doi.org/10.1021/acs.jpcc.8b11400
    11. Liang Bian, Jianan Nie, Xiaoqiang Jiang, Mianxin Song, Faqin Dong, Weimin Li, Liping Shang, Hu Deng, Huichao He, Bing Xu, Bin Wang, Xiaobin Gu. Selective Removal of Uranyl from Aqueous Solutions Containing a Mix of Toxic Metal Ions Using Core–Shell MFe2O4–TiO2 Nanoparticles of Montmorillonite Edge Sites. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 16267-16278. https://doi.org/10.1021/acssuschemeng.8b03129
    12. Shipra Jain, Jyoti Shah, S. R. Dhakate, Govind Gupta, C. Sharma, R. K. Kotnala. Environment-Friendly Mesoporous Magnetite Nanoparticles-Based Hydroelectric Cell. The Journal of Physical Chemistry C 2018, 122 (11) , 5908-5916. https://doi.org/10.1021/acs.jpcc.7b12561
    13. Meifang Sun, Xiaocha Wang, and Wenbo Mi . Large Magnetoresistance in Fe3O4/4,4′-Bipyridine/Fe3O4 Organic Magnetic Tunnel Junctions. The Journal of Physical Chemistry C 2018, 122 (5) , 3115-3122. https://doi.org/10.1021/acs.jpcc.7b11583
    14. X. Li, J. Paier, J. Sauer, F. Mirabella, E. Zaki, F. Ivars-Barceló, S. Shaikhutdinov, and H.-J. Freund . Surface Termination of Fe3O4(111) Films Studied by CO Adsorption Revisited. The Journal of Physical Chemistry B 2018, 122 (2) , 527-533. https://doi.org/10.1021/acs.jpcb.7b04228
    15. Hongsheng Liu and Cristiana Di Valentin . Band Gap in Magnetite above Verwey Temperature Induced by Symmetry Breaking. The Journal of Physical Chemistry C 2017, 121 (46) , 25736-25742. https://doi.org/10.1021/acs.jpcc.7b09387
    16. Mikołaj Lewandowski, Irene M. N. Groot, Zhi-Hui Qin, Tomasz Ossowski, Tomasz Pabisiak, Adam Kiejna, Anastassia Pavlovska, Shamil Shaikhutdinov, Hans-Joachim Freund, and Ernst Bauer . Nanoscale Patterns on Polar Oxide Surfaces. Chemistry of Materials 2016, 28 (20) , 7433-7443. https://doi.org/10.1021/acs.chemmater.6b03040
    17. Xiaoke Li and Joachim Paier . Adsorption of Water on the Fe3O4(111) Surface: Structures, Stabilities, and Vibrational Properties Studied by Density Functional Theory. The Journal of Physical Chemistry C 2016, 120 (2) , 1056-1065. https://doi.org/10.1021/acs.jpcc.5b10560
    18. Xuyang Zhou, Baptiste Bienvenu, Yuxiang Wu, Alisson Kwiatkowski da Silva, Colin Ophus, Dierk Raabe. Complexions at the iron-magnetite interface. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-58022-y
    19. Anna Mandziak, José Emilio Prieto, Clara Gutiérrez-Cuesta, Miguel Ángel Niño, Michael Foerster, Juan de la Figuera, Paweł Nita. Structural and magnetic properties of the Fe$$_{3}$$O$$_{4}$$ (110) surface. Scientific Reports 2025, 15 (1) https://doi.org/10.1038/s41598-025-94599-6
    20. Lin Shi, Tao Huang, Kaixia Chen, Yiming Tan, Xinye Wang, Kun Li, Yunxiang Zhang, Zhongjie Wang, Boping Yang, Qinfang Zhang. Unveiling the charge transfer mechanism at Fe3O4(111)/ZnO(0001) interfaces based on density functional theory calculations. The European Physical Journal Special Topics 2025, 727 https://doi.org/10.1140/epjs/s11734-025-01647-3
    21. Jingjing Jin, Chengbing Wang, Dan Wei, Bo Wang, Xuli Lin, Wenhe Zhang, Chenyi Shi, Zexiang Zhao, Lu Wang, Fan Wang. An Extremely Salt‐Resistant Hydrogel‐Based Solar Evaporator for Stable Saturated Brine Desalination. Small 2025, 21 (15) https://doi.org/10.1002/smll.202411624
    22. Kaiyuan Wang, Hongtao He, Wenjie Shi. Geochemistry and mineralogy of ilmenite exsolutions in titanomagnetite and their implications for the ore-forming process at the Damiao deposit. Acta Geochimica 2025, 81 https://doi.org/10.1007/s11631-025-00766-x
    23. Kabir S. Suraj, Hossein Asnaashari Eivari, Gen Tatara, M. Hussein N. Assadi. Tripling magnetite's thermoelectric figure of merit with rare earth doping. Journal of Materials Chemistry C 2024, 12 (47) , 19212-19218. https://doi.org/10.1039/D4TC03153A
    24. Juan Manuel Arce-Ramos, Wen-Qing Li, San Hua Lim, Jie Chang, Takuya Hashimoto, Hiroyuki Kamata, Michael B. Sullivan, Armando Borgna, Luwei Chen, Chee Kok Poh, Jia Zhang. Investigating the deactivation and regeneration mechanism of Fe-based catalysts during CO2 reduction to chemicals. Applied Catalysis B: Environment and Energy 2024, 347 , 123794. https://doi.org/10.1016/j.apcatb.2024.123794
    25. Xiao-Lan Huang. Unveiling the role of inorganic nanoparticles in Earth’s biochemical evolution through electron transfer dynamics. iScience 2024, 27 (5) , 109555. https://doi.org/10.1016/j.isci.2024.109555
    26. Fatimah Ali M. Al-Zahrani, Reda M. El-Shishtawy. Green synthesis and characterisation of spherical structure Ag/Fe 2 O 3 /TiO 2 nanocomposite using acacia in the presence of neem and tulsi oils. Green Processing and Synthesis 2024, 13 (1) https://doi.org/10.1515/gps-2023-0218
    27. Xiao-Lan Huang, Jeffrey R. Harmer, Gerhard Schenk, Gordon Southam. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Frontiers in Chemistry 2024, 12 https://doi.org/10.3389/fchem.2024.1349020
    28. Xiaoyang Zhao, Guo Jin, Ding Guo, Xin Xiao, Junmin Nan, Chen Wu. Dissolution mechanism of Fe 3 O 4 scale by 1-hydroxyethane-1,1-diphosphonic acid: an ab initio molecular metadynamics study. Physical Chemistry Chemical Physics 2023, 25 (35) , 23901-23908. https://doi.org/10.1039/D3CP01736B
    29. Pilsun Yoo, Peilin Liao. Multiple redox mechanisms for water-gas shift reaction on Fe3O4 (1 1 1) surface: A density functional theory and mean-field microkinetic modeling study. Applied Surface Science 2023, 630 , 157501. https://doi.org/10.1016/j.apsusc.2023.157501
    30. Pin Zhou, Lei Wu, Zhenyuan Ji, Chen Fan, Xiaoping Shen, Guoxing Zhu, Liangliang Xu. Construction of NiFe(CN)5NO/Ni3S2 hierarchical submicro-rods on nickel foam as advanced oxygen evolution electrocatalysts. Journal of Colloid and Interface Science 2023, 646 , 98-106. https://doi.org/10.1016/j.jcis.2023.05.032
    31. Xiaolong Zhao, Yizhong Zhao, Zenglin Wang, Bin Chen, Shenwen Fang, Peng Li, Gang Chen, Xiaqing Li, Wei Liang, XueFeng Gao, QingCai Wei. Insight into the influence of morphology and structure of Fe 3 O 4 nanoparticles on demulsification efficiencies. Journal of Dispersion Science and Technology 2023, 44 (9) , 1562-1573. https://doi.org/10.1080/01932691.2022.2025822
    32. N. A Fominykh, V. V Stegaylov. Polarons and Charge Transfer in FeCr2O4 Chromite Treated by the DFT + U Method. Pisʹma v žurnal êksperimentalʹnoj i teoretičeskoj fiziki 2023, 117 (11-12 (6)) , 857-862. https://doi.org/10.31857/S1234567823110083
    33. N. A. Fominykh, V. V. Stegailov. Polarons and Charge Transfer in FeCr2O4 Chromite Treated by the DFT + U Method. JETP Letters 2023, 117 (11) , 849-853. https://doi.org/10.1134/S0021364023601288
    34. Chanchal Das, Narendra Nath Ghosh, Vandana Pulhani, Goutam Biswas, Pallavi Singhal. Bio-functionalized magnetic nanoparticles for cost-effective adsorption of U( vi ): experimental and theoretical investigation. RSC Advances 2023, 13 (22) , 15015-15023. https://doi.org/10.1039/D3RA00799E
    35. Mingyue Liu, Yuyuan Ye, Jiamin Ye, Ting Gao, Dehua Wang, Gang Chen, Zhenjun Song. Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications. Magnetochemistry 2023, 9 (4) , 110. https://doi.org/10.3390/magnetochemistry9040110
    36. Chenxi Gao, Na Yang, Cunpu Li, Xi Wang, Xun Yu, Ling Zhang, Zidong Wei. Seasoning Chinese cooking pans: The nanoscience behind the Kitchen God's blessing. Nano Materials Science 2023, 5 (1) , 86-90. https://doi.org/10.1016/j.nanoms.2020.06.001
    37. Yuxin Li, Guocheng Lv, Hao Liu, Xin Liu, Libing Liao. Improvement of magnetite adsorption performance for Pb (II) by introducing defects. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1137246
    38. Diana Fallah Jelodar, Mojtaba Rouhi, Reza Taheri-Ledari, Zoleikha Hajizadeh, Ali Maleki. A magnetic X-band frequency microwave nanoabsorbent made of iron oxide/halloysite nanostructures combined with polystyrene. RSC Advances 2023, 13 (10) , 6643-6655. https://doi.org/10.1039/D2RA08339F
    39. Jesús Roberto Vargas-Ortiz, Carmen Gonzalez, Karen Esquivel. Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes 2022, 10 (11) , 2282. https://doi.org/10.3390/pr10112282
    40. Xiaoke Li, Joachim Paier. Formation of carbonate and oxalate species on a Cobalt-modified Fe3O4(111) surface: Comparison of DFT+U, hybrid functionals, and the random phase approximation. Surface Science 2022, 721 , 122068. https://doi.org/10.1016/j.susc.2022.122068
    41. Zhifan Yang, Qi Chen, Decai Li, Qianqian Chen, Mingming Zhang, Xingyu Lu. Superhydrophilic Modification of Magnetic Fe3o4 Nanoparticles Assisted by Low-Temperature Atmosphere N2/H2 Plasma. Plasma Chemistry and Plasma Processing 2022, 42 (3) , 641-656. https://doi.org/10.1007/s11090-022-10232-8
    42. Florian Schwarz, Sascha Pomp, Peter Seidel, Xiaoke Li, Joachim Paier, Martin Sterrer. Hydrogen-bond-stabilized high density catechol monolayer on magnetite Fe3O4(111). Surface Science 2022, 719 , 122027. https://doi.org/10.1016/j.susc.2022.122027
    43. Marcus Creutzburg, Kai Sellschopp, Robert Gleißner, Björn Arndt, Gregor B Vonbun-Feldbauer, Vedran Vonk, Heshmat Noei, Andreas Stierle. Surface structure of magnetite (111) under oxidizing and reducing conditions. Journal of Physics: Condensed Matter 2022, 34 (16) , 164003. https://doi.org/10.1088/1361-648X/ac4d5a
    44. Taifeng Wang, Wei Huang, Cong Huy Pham, Satoshi Murata, Steven Herrera, Nathan D. Kirchhofer, Bassim Arkook, Dejan Stekovic, Mikhail E. Itkis, Nir Goldman, Luis Zepeda-Ruiz, Guillaume Freychet, Mikhail Zhernenkov, Michiko Nemoto, Atsushi Arakaki, David Kisailus. Mesocrystalline Ordering and Phase Transformation of Iron Oxide Biominerals in the Ultrahard Teeth of Cryptochiton stelleri. Small Structures 2022, 3 (4) https://doi.org/10.1002/sstr.202100202
    45. K. C. Verma, Navdeep Goyal. Hydroelectric Cell as Source of Green Electricity Generation: Metal (Multiferroic, Iron, Ferrite, Cerium-Graphene)-Oxides. 2022, 1-54. https://doi.org/10.1007/978-3-030-34007-0_50-1
    46. K. C. Verma, Navdeep Goyal. Hydroelectric Cell as Source of Green Electricity Generation: Metal (Multiferroic, Iron, Ferrite, Cerium-Graphene)-Oxides. 2022, 1007-1059. https://doi.org/10.1007/978-3-030-90948-2_50
    47. Katarzyna Dudzisz, Mario Walter, Ralf Krumholz, Boris Reznik, Agnes Kontny. Effect of cyclic loading at elevated temperatures on the magnetic susceptibility of a magnetite-bearing ore. Geophysical Journal International 2021, 228 (2) , 1346-1360. https://doi.org/10.1093/gji/ggab400
    48. A.S. Fedorov, E.A. Kovaleva, A.E. Sokolov, M.A. Visotin, C.R. Lin, S.G. Ovchinnikov. Trimetallic magnetite-Ti-Au nanoparticle formation: A theoretical approach. Materials Chemistry and Physics 2021, 271 , 124847. https://doi.org/10.1016/j.matchemphys.2021.124847
    49. A. E. Sokolov, O. S. Ivanova, A. S. Fedorov, E. A. Kovaleva, M. A. Vysotin, C.-R. Lin, S. G. Ovchinnikov. Why the Magnetite–Gold Core–Shell Nanoparticles Are Not Quite Good and How to Improve Them. Physics of the Solid State 2021, 63 (10) , 1536-1540. https://doi.org/10.1134/S1063783421090365
    50. Manoj Silva, John Baltrus, Clinton Williams, Allan Knopf, Lihua Zhang, Jonas Baltrusaitis. Mesoporous Fe-doped MgO nanoparticles as a heterogeneous photo-Fenton-like catalyst for degradation of salicylic acid in wastewater. Journal of Environmental Chemical Engineering 2021, 9 (4) , 105589. https://doi.org/10.1016/j.jece.2021.105589
    51. Yutao Hu, Hongwei Chu, Daozhi Li, Ying Li, Shengzhi Zhao, Li Dong, Dechun Li. Enhanced Q-switching performance of magnetite nanoparticle via compositional engineering with Ti3C2 MXene in the near infrared region. Journal of Materials Science & Technology 2021, 81 , 51-57. https://doi.org/10.1016/j.jmst.2020.11.064
    52. Javier Castells-Gil, Samy Ould-Chikh, Adrian Ramírez, Rafia Ahmad, Gonzalo Prieto, Alberto Rodríguez Gómez, Luis Garzón-Tovar, Selvedin Telalovic, Lingmei Liu, Alessandro Genovese, Natalia M. Padial, Antonio Aguilar-Tapia, Pierre Bordet, Luigi Cavallo, Carlos Martí-Gastaldo, Jorge Gascon. Unlocking mixed oxides with unprecedented stoichiometries from heterometallic metal-organic frameworks for the catalytic hydrogenation of CO2. Chem Catalysis 2021, 1 (2) , 364-382. https://doi.org/10.1016/j.checat.2021.03.010
    53. Mahnaz Mohammadi, Fatematossadat Pourseyed Aghaei. Magnetite Fe 3 O 4 surface as an effective drug delivery system for cancer treatment drugs: density functional theory study. Journal of Biomolecular Structure and Dynamics 2021, 39 (8) , 2798-2805. https://doi.org/10.1080/07391102.2020.1754915
    54. Ozgen Yalcin, Israel E. Wachs, Isik Onal. Role of chromium in Cr–Fe oxide catalysts for high temperature water-gas shift reaction – A DFT study. International Journal of Hydrogen Energy 2021, 46 (33) , 17154-17162. https://doi.org/10.1016/j.ijhydene.2021.02.143
    55. N. V. Kusyak, А. P. Kusyak, K. P. Svyrydiuk, A. L. Petranovska, P. P. Gorbyk. Evaluation of the acid–base surface properties of nanoscale Fe 3 O 4 and Fe 3 O 4 /SiO 2 by potentiometric method. Molecular Crystals and Liquid Crystals 2021, 719 (1) , 140-152. https://doi.org/10.1080/15421406.2021.1878744
    56. Xurong Shi, Shen Wang, Xingliang Su, Yujun Shi, Baojun Shi, Haitao Zhou, Hujun Jiao. Interfacial oxidation for spin transport in Fe3O4/sulfonic acid molecule nanoparticles. Solid-State Electronics 2021, 177 , 107962. https://doi.org/10.1016/j.sse.2021.107962
    57. Mujan N. Seif, Matthew J. Beck. Surface excess free energies and equilibrium Wulff shapes in variable chemical environments at finite temperatures. Applied Surface Science 2021, 540 , 148383. https://doi.org/10.1016/j.apsusc.2020.148383
    58. Jianmei Han, Qiang Fu, Baojuan Xi, Xuyan Ni, Chenglin Yan, Jinkui Feng, Shenglin Xiong. Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium–sulfur batteries. Journal of Energy Chemistry 2021, 52 , 1-11. https://doi.org/10.1016/j.jechem.2020.04.002
    59. Aarti Shukla, N.K. Gaur, Prasenjit Ghosh. First principles investigations of structure, stability and electronic properties of polar Ca2Fe2O5(0 1 0) surfaces. Applied Surface Science 2020, 527 , 146703. https://doi.org/10.1016/j.apsusc.2020.146703
    60. Yiang Fan, Ying Zhou, Yong Feng, Pei Wang, Xiaoyan Li, Kaimin Shih. Fabrication of reactive flat-sheet ceramic membranes for oxidative degradation of ofloxacin by peroxymonosulfate. Journal of Membrane Science 2020, 611 , 118302. https://doi.org/10.1016/j.memsci.2020.118302
    61. D. Kumar, A. Moharana, A. Kumar. Current trends in spinel based modified polymer composite materials for electromagnetic shielding. Materials Today Chemistry 2020, 17 , 100346. https://doi.org/10.1016/j.mtchem.2020.100346
    62. Jiamin Chen, Wenxin Zhu, Xiong Chang, Ding Ding, Tingting Zhang, Changsong Zhou, Hao Wu, Hongmin Yang, Lushi Sun. DFT insights to mercury species mechanism on pure and Mn doped Fe3O4(1 1 1) surfaces. Applied Surface Science 2020, 514 , 145876. https://doi.org/10.1016/j.apsusc.2020.145876
    63. Xiaoke Li, Joachim Paier. Vibrational properties of CO2 adsorbed on the Fe3O4 (111) surface: Insights gained from DFT. The Journal of Chemical Physics 2020, 152 (10) https://doi.org/10.1063/1.5136323
    64. Fang Xu, Wei Chen, Constantin A. Walenta, Christopher R. O'Connor, Cynthia M. Friend. Dual Lewis site creation for activation of methanol on Fe 3 O 4 (111) thin films. Chemical Science 2020, 11 (9) , 2448-2454. https://doi.org/10.1039/C9SC06149E
    65. Joanna Wojas, Natalia Kwiatek, Dorota Wilgocka-Ślęzak, Ewa Madej, Józef Korecki, Nika Spiridis. CO adsorption on Fe3O4(1 1 1) with regular and biphase terminations. Applied Surface Science 2020, 507 , 145069. https://doi.org/10.1016/j.apsusc.2019.145069
    66. Wen Xiao, Wendong Song, Yuan Ping Feng, Daqiang Gao, Yao Zhu, Jun Ding. Electrode-controlled confinement of conductive filaments in a nanocolumn embedded symmetric–asymmetric RRAM structure. Journal of Materials Chemistry C 2020, 8 (5) , 1577-1582. https://doi.org/10.1039/C9TC06552K
    67. Souvik Bhattacharjee, Anibrata Banerjee, Nilesh Mazumder, Kausik Chanda, Saikat Sarkar, Kalyan Kumar Chattopadhyay. Negative capacitance switching in size-modulated Fe 3 O 4 nanoparticles with spontaneous non-stoichiometry: confronting its generalized origin in non-ferroelectric materials. Nanoscale 2020, 12 (3) , 1528-1540. https://doi.org/10.1039/C9NR07902E
    68. Jae Uk Hur, Jae Seok Choi, Sung-Churl Choi, Gye Seok An. Highly dispersible Fe3O4 nanoparticles via anionic surface modification. Journal of the Korean Ceramic Society 2020, 57 (1) , 80-84. https://doi.org/10.1007/s43207-019-00001-3
    69. G. Bárcena-González, M. P. Guerrero-Lebrero, E. Guerrero, A. Yañez, B. Nuñez-Moraleda, D. Kepaptsoglou, V. K. Lazarov, P. L. Galindo. HAADF-STEM Image Resolution Enhancement Using High-Quality Image Reconstruction Techniques: Case of the Fe 3 O 4 (111) Surface. Microscopy and Microanalysis 2019, 25 (6) , 1297-1303. https://doi.org/10.1017/S1431927619014788
    70. Stefan Andersson, Stefan Radl, Ingeborg-Helene Svenum, Stephen A. Shevlin, Z. Xiao Guo, Shahriar Amini. Towards rigorous multiscale flow models of nanoparticle reactivity in chemical looping applications. Catalysis Today 2019, 338 , 152-163. https://doi.org/10.1016/j.cattod.2019.06.024
    71. Wei Jian, Shi-Ping Wang, Hong-Xing Zhang, Fu-Quan Bai. Disentangling the role of oxygen vacancies on the surface of Fe 3 O 4 and γ-Fe 2 O 3. Inorganic Chemistry Frontiers 2019, 6 (10) , 2660-2666. https://doi.org/10.1039/C9QI00351G
    72. Ludger Schöttner, Alexei Nefedov, Chengwu Yang, Stefan Heissler, Yuemin Wang, Christof Wöll. Structural Evolution of α-Fe2O3(0001) Surfaces Under Reduction Conditions Monitored by Infrared Spectroscopy. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00451
    73. Yu Meng, Xing-Wu Liu, Miaomiao Bai, Wen-Ping Guo, Dong-Bo Cao, Yong Yang, Yong-Wang Li, Xiao-Dong Wen. Prediction on morphologies and phase equilibrium diagram of iron oxides nanoparticles. Applied Surface Science 2019, 480 , 478-486. https://doi.org/10.1016/j.apsusc.2019.03.005
    74. Safeia Elgaroshi, Gordon M. Miskelly, Peter J. Swedlund. H4SiO4 sorption and polymerization at the magnetite - aqueous interface: The influence of interfacial redox state. Applied Geochemistry 2019, 104 , 146-157. https://doi.org/10.1016/j.apgeochem.2019.03.010
    75. Maria Sarno, Mariagrazia Iuliano. Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato. Applied Surface Science 2019, 474 , 135-146. https://doi.org/10.1016/j.apsusc.2018.04.060
    76. Erika Di Iorio, Claudio Colombo, Zhongqi Cheng, Giancarlo Capitani, Daniela Mele, Gennaro Ventruti, Ruggero Angelico. Characterization of magnetite nanoparticles synthetized from Fe(II)/nitrate solutions for arsenic removal from water. Journal of Environmental Chemical Engineering 2019, 7 (2) , 102986. https://doi.org/10.1016/j.jece.2019.102986
    77. M.A. Lahmer. First-principles study of the structural and electronic properties of the clean and O-deficient ZnAl2O4(111) surfaces. Surface Science 2019, 682 , 75-83. https://doi.org/10.1016/j.susc.2019.01.007
    78. Quentin Arnoux, Camille Blouzon, Dongzhe Li, Yannick J. Dappe, Alexander Smogunov, Pierre Bonville, Ludovic Tortech, Jean-Baptiste Moussy. Controlling the magnetic exchange coupling in hybrid heterojunctions via spacer layers of π -conjugated molecules. Physical Review B 2019, 99 (14) https://doi.org/10.1103/PhysRevB.99.144405
    79. Liangliang Xu, Nan Zhao, Ming-Chieh Lin, Tsan-Chuen Leung. Local work functions of magnetite under electric fields based on first principle calculations. 2019, 1-2. https://doi.org/10.1109/IVEC.2019.8745152
    80. Liang Bian, Jianan Nie, Xiaoqiang Jiang, Mianxin Song, Faqin Dong, Liping Shang, Hu Deng, Huichao He, Nelson Belzile, Yuwei Chen, Bing Xu, Xiaonan Liu. Selective adsorption of uranyl and potentially toxic metal ions at the core-shell MFe2O4-TiO2 (M=Mn, Fe, Zn, Co, or Ni) nanoparticles. Journal of Hazardous Materials 2019, 365 , 835-845. https://doi.org/10.1016/j.jhazmat.2018.11.076
    81. Kanta Asakawa, Yoshio Miura, Naoki Nagatsuka, Kotaro Takeyasu, Masuaki Matsumoto, Katsuyuki Fukutani. Electronic and spin structure of O- and H-adsorbed Fe 3 O 4 (111) surfaces. Physical Review B 2019, 99 (8) https://doi.org/10.1103/PhysRevB.99.085442
    82. Matin Naghizadeh, Mohammad Ali Taher, Leila Zeidabadi Nejad, Firouzeh Hassani Moghaddam. Fabrication, characterization and theoretical investigation of novel Fe3O4@egg-shell membrane as a green nanosorbent for simultaneous preconcentration of Cu (II) and Tl (I) prior to ETAAS determination. Environmental Nanotechnology, Monitoring & Management 2018, 10 , 171-178. https://doi.org/10.1016/j.enmm.2018.06.001
    83. Patrick Mountapmbeme Kouotou, Achraf El Kasmi, Ling-Nan Wu, Muhammad Waqas, Zhen-Yu Tian. Particle size-band gap energy-catalytic properties relationship of PSE-CVD-derived Fe3O4 thin films. Journal of the Taiwan Institute of Chemical Engineers 2018, 93 , 427-435. https://doi.org/10.1016/j.jtice.2018.08.014
    84. Seyedeh Maryamdokht Taimoory, Abbas Rahdar, Mousa Aliahmad, Fardin Sadeghfar, Mohammad Reza Hajinezhad, Mohammad Jahantigh, Parisa Shahbazi, John F. Trant. The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. Journal of Molecular Liquids 2018, 265 , 96-104. https://doi.org/10.1016/j.molliq.2018.05.105
    85. Zhaoming Fu, Bowen Yang, Ying Zhang, Na Zhang, Zongxian Yang. Dopant segregation and CO adsorption on doped Fe3O4 (1 1 1) surfaces: A first-principle study. Journal of Catalysis 2018, 364 , 291-296. https://doi.org/10.1016/j.jcat.2018.05.027
    86. Richard B Wang, Anders Hellman. Surface terminations of hematite ( α -Fe 2 O 3 ) exposed to oxygen, hydrogen, or water: dependence on the density functional theory methodology. Journal of Physics: Condensed Matter 2018, 30 (27) , 275002. https://doi.org/10.1088/1361-648X/aac743
    87. I. M. Kupchak, N. F. Serpak, A. Shkrebtii, R. Hayn. Interface magnetism and electronic structure: ZnO(0001)/ Co 3 O 4 (111). Physical Review B 2018, 97 (12) https://doi.org/10.1103/PhysRevB.97.125304
    88. M Gerosa, C E Bottani, C Di Valentin, G Onida, G Pacchioni. Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments. Journal of Physics: Condensed Matter 2018, 30 (4) , 044003. https://doi.org/10.1088/1361-648X/aa9725
    89. Francesca Mirabella, Eman Zaki, Francisco Ivars‐Barceló, Xiaoke Li, Joachim Paier, Joachim Sauer, Shamil Shaikhutdinov, Hans‐Joachim Freund. Kooperative Bildung einer langreichweitig geordneten Wasserschicht auf der Fe 3 O 4 (111)‐Oberfläche. Angewandte Chemie 2018, 130 (5) , 1423-1428. https://doi.org/10.1002/ange.201711890
    90. Francesca Mirabella, Eman Zaki, Francisco Ivars‐Barceló, Xiaoke Li, Joachim Paier, Joachim Sauer, Shamil Shaikhutdinov, Hans‐Joachim Freund. Cooperative Formation of Long‐Range Ordering in Water Ad‐layers on Fe 3 O 4 (111) Surfaces. Angewandte Chemie International Edition 2018, 57 (5) , 1409-1413. https://doi.org/10.1002/anie.201711890
    91. C. Leostean, O. Pana, M. Stefan, A. Popa, D. Toloman, M. Senila, S. Gutoiu, S. Macavei. New properties of Fe3O4@SnO2 core shell nanoparticles following interface charge/spin transfer. Applied Surface Science 2018, 427 , 192-201. https://doi.org/10.1016/j.apsusc.2017.07.267
    92. Khian-Hooi Chew, Riichi Kuwahara, Kaoru Ohno. First-principles study on the atomistic corrosion processes of iron. Physical Chemistry Chemical Physics 2018, 20 (3) , 1653-1663. https://doi.org/10.1039/C7CP04022A
    93. Eman Zaki, Francesca Mirabella, Francisco Ivars-Barceló, Jan Seifert, Spencer Carey, Shamil Shaikhutdinov, Hans-Joachim Freund, Xiaoke Li, Joachim Paier, Joachim Sauer. Water adsorption on the Fe 3 O 4 (111) surface: dissociation and network formation. Physical Chemistry Chemical Physics 2018, 20 (23) , 15764-15774. https://doi.org/10.1039/C8CP02333F
    94. Hongsheng Liu, Cristiana Di Valentin. Bulk-terminated or reconstructed Fe 3 O 4 (001) surface: water makes a difference. Nanoscale 2018, 10 (23) , 11021-11027. https://doi.org/10.1039/C8NR02279H
    95. Rohith Vinod K., Saravanan P., Suresh Kumar T.R., Radha R., Balasubramaniam M., Balakumar S.. Enhanced shielding effectiveness in nanohybrids of graphene derivatives with Fe 3 O 4 and ε-Fe 3 N in the X-band microwave region. Nanoscale 2018, 10 (25) , 12018-12034. https://doi.org/10.1039/C8NR03397H
    96. Shuai Liu, Dong Xiang, Ying Xu, Zhe Sun, Yan Cao. Relationship between electronic properties of Fe3O4 substituted by Ca and Ba and their reactivity in chemical looping process: A first-principles study. Applied Energy 2017, 202 , 550-557. https://doi.org/10.1016/j.apenergy.2017.05.178
    97. , I. Kupchak, N. Serpak, . Electronic and Magnetic Properties of Spinel Co3O4 (111) Surface in GGA + U Approximation. Ukrainian Journal of Physics 2017, 62 (7) , 615-624. https://doi.org/10.15407/ujpe62.07.0615
    98. Sunaryono, H Hifdziyah, A Taufiq, M Diantoro, N Mufti. Optimalization of Freezing-Thawing Process in Enhancing Magnetic Properties of Fe 3 O 4 /PAA/PVA Magnetic Hydrogel Composites. IOP Conference Series: Materials Science and Engineering 2017, 202 , 012007. https://doi.org/10.1088/1757-899X/202/1/012007
    99. Seyedeh Maryamdokht Taimoory, John F. Trant, Abbas Rahdar, Mousa Aliahmad, Fardin Sadeghfar, Mahmoud Hashemzaei. Importance of the Inter-Electrode Distance for the Electrochemical Synthesis of Magnetite Nanoparticles: Synthesis, Characterization, Computational Modelling, and Cytotoxicity. e-Journal of Surface Science and Nanotechnology 2017, 15 (0) , 31-39. https://doi.org/10.1380/ejssnt.2017.31
    100. B. Walls, O. Lübben, K. Palotás, K. Fleischer, K. Walshe, I. V. Shvets. Oxygen vacancy induced surface stabilization: (110) terminated magnetite. Physical Review B 2016, 94 (16) https://doi.org/10.1103/PhysRevB.94.165424
    Load all citations

    Chemistry of Materials

    Cite this: Chem. Mater. 2015, 27, 17, 5856–5867
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.5b02885
    Published August 4, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    5055

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.