ACS Publications. Most Trusted. Most Cited. Most Read
Rechargeable Ca-Ion Batteries: A New Energy Storage System
My Activity
    Article

    Rechargeable Ca-Ion Batteries: A New Energy Storage System
    Click to copy article linkArticle link copied!

    View Author Information
    † § Chemical Sciences and Engineering Division, X-ray Sciences Division, and §Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2015, 27, 24, 8442–8447
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.5b04027
    Published November 24, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    As new uses for larger scale energy storage systems are realized, new chemistries that are less expensive or have higher energy density are needed. While lithium-ion systems have been well studied, the availability of new energy storage chemistries opens up the possibilities for more diverse strategies and uses. One potential path to achieving this goal is to explore chemistries where a multivalent ion such as Ca2+ or Mg2+ is the active species. Herein, we demonstrate this concept for a Ca-ion system utilizing manganese hexacyanoferrate (MFCN) as the cathode to intercalate Ca reversibly in a dry nonaqueous electrolyte. Through characterization via X-ray absorption near-edge spectroscopy, it is determined that only the manganese changes oxidation state during cycling with Ca. X-ray diffraction indicates the MFCN maintains its crystallinity during cycling, with only minor structural changes associated with expansion and contraction. Furthermore, we have demonstrated the first rechargeable Ca-ion battery utilizing MFCN as the cathode and elemental tin as the anode.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.5b04027.

    • SEM of as-synthesized MFCN, ferrocene calibration, Sn CV vs Ca, and EDX of MFCN after cycling vs Sn anode (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 305 publications.

    1. Subhadeep Banerjee, Sharma S. R. K. C. Yamijala. Formation and Evolution of the Solid Electrolyte Interphase at Calcium Surfaces. ACS Applied Energy Materials 2025, Article ASAP.
    2. Glenn R. Pastel, Travis P. Pollard, Oleg Borodin, Marshall A. Schroeder. From Ab Initio to Instrumentation: A Field Guide to Characterizing Multivalent Liquid Electrolytes. Chemical Reviews 2025, 125 (6) , 3059-3164. https://doi.org/10.1021/acs.chemrev.4c00380
    3. Alejandro Ramo-Irurre, Carlos Frontera, Ashley P. Black, M.Rosa Palacin. Ca2+ Electrochemical Intercalation in Fe[Fe(CN)6]1–y Berlin Green. ACS Applied Energy Materials 2025, 8 (1) , 31-35. https://doi.org/10.1021/acsaem.4c02623
    4. Shuhan Jin, Ruohan Yu, Junjun Wang, Lianmeng Cui, Meng Huang, Lei Zhang, Qinyou An. Self-Adaptive Electrochemistry of Phosphate Cathodes toward Improved Calcium Storage. ACS Nano 2024, 18 (41) , 28246-28257. https://doi.org/10.1021/acsnano.4c08704
    5. JinKiong Ling, Chelladurai Karuppiah, Izan Izwan Misnon, Hye Jin Lee, Chun-Chen Yang, Rajan Jose. In Situ Interphase Engineering for beyond Lithium-Ion Battery Technologies. Energy & Fuels 2024, 38 (19) , 18292-18311. https://doi.org/10.1021/acs.energyfuels.4c03140
    6. Sunita Saharan, Umesh Ghanekar, Bhavana R. Shivankar, Shweta Meena. High-Capacity V2N MXene for Multivalent Ion Batteries: An Ab Initio Study. The Journal of Physical Chemistry C 2024, 128 (31) , 12840-12848. https://doi.org/10.1021/acs.jpcc.4c03063
    7. Chunli Zuo, Yihan Shao, Ming Li, Wenwei Zhang, Dongyao Zhu, Wen Tang, Jisong Hu, Pei Liu, Fangyu Xiong, Qinyou An. Layered Na2Ti3O7 as an Ultrastable Intercalation-Type Anode for Non-Aqueous Calcium-Ion Batteries. ACS Applied Materials & Interfaces 2024, 16 (26) , 33733-33739. https://doi.org/10.1021/acsami.4c07585
    8. Daniela Söllinger, Jürgen Schoiber, Philipp L. Darge, Günther J. Redhammer, Simone Pokrant. Exploring the Insertion Mechanisms of Metal Cations into V3O7·H2O. The Journal of Physical Chemistry C 2024, 128 (5) , 2255-2265. https://doi.org/10.1021/acs.jpcc.3c08056
    9. Kingo Ariyoshi, Kazuki Matsumoto. Effect of Cations on the Electrochemical Properties of Insertion Reactions Using Prussian Blue Analogues. The Journal of Physical Chemistry C 2023, 127 (31) , 15114-15121. https://doi.org/10.1021/acs.jpcc.3c03838
    10. Daniele Meggiolaro, Marco Agostini, Sergio Brutti. Aprotic Sulfur–Metal Batteries: Lithium and Beyond. ACS Energy Letters 2023, 8 (3) , 1300-1312. https://doi.org/10.1021/acsenergylett.2c02493
    11. Lauren E. Blanc, Yunyeong Choi, Abhinandan Shyamsunder, Baris Key, Saul H. Lapidus, Chang Li, Liang Yin, Xiang Li, Bharat Gwalani, Yihan Xiao, Christopher J. Bartel, Gerbrand Ceder, Linda F. Nazar. Phase Stability and Kinetics of Topotactic Dual Ca2+–Na+ Ion Electrochemistry in NaSICON NaV2(PO4)3. Chemistry of Materials 2023, 35 (2) , 468-481. https://doi.org/10.1021/acs.chemmater.2c02816
    12. Imran Muhammad, Shehzad Ahmed, Hao Cao, Asif Mahmood, Yang-Gang Wang. Three-Dimensional Silicene-Based Materials: A Universal Anode for Monovalent and Divalent Ion Batteries. The Journal of Physical Chemistry C 2023, 127 (2) , 1198-1208. https://doi.org/10.1021/acs.jpcc.2c06877
    13. Si Zheng, Licheng Wei, Zhaoyu Zhang, Jiageng Pan, Jiangfeng He, Liang Gao, Cheng Chao Li. In Situ Polymerization of Ionic Liquid with Tunable Phase Separation for Highly Reversible and Ultralong Cycle Life Zn-Ion Battery. Nano Letters 2022, 22 (22) , 9062-9070. https://doi.org/10.1021/acs.nanolett.2c03421
    14. Muhammad Hilmy Alfaruqi, Seunggyeong Lee, Hyokyeong Kang, Balaji Sambandam, Vinod Mathew, Jang-Yeon Hwang, Jaekook Kim. Recent Achievements in Experimental and Computational Studies of Positive Electrode Materials for Nonaqueous Ca- and Al-Ion Batteries. The Journal of Physical Chemistry C 2022, 126 (22) , 9209-9227. https://doi.org/10.1021/acs.jpcc.2c01622
    15. Lu Chen, Wenlu Sun, Kui Xu, Qingyu Dong, Lei Zheng, Jun Wang, Derong Lu, Yanbin Shen, Junyu Zhang, Fang Fu, Huabin Kong, Jiaqian Qin, Hongwei Chen. How Prussian Blue Analogues Can Be Stable in Concentrated Aqueous Electrolytes. ACS Energy Letters 2022, 7 (5) , 1672-1678. https://doi.org/10.1021/acsenergylett.2c00292
    16. Bob Jin Kwon, Liang Yin, Christopher J. Bartel, Khagesh Kumar, Prakash Parajuli, Jihyeon Gim, Sanghyeon Kim, Yimin A. Wu, Robert F. Klie, Saul H. Lapidus, Baris Key, Gerbrand Ceder, Jordi Cabana. Intercalation of Ca into a Highly Defective Manganese Oxide at Room Temperature. Chemistry of Materials 2022, 34 (2) , 836-846. https://doi.org/10.1021/acs.chemmater.1c03803
    17. Paula Sanz Camacho, Romain Wernert, Mathieu Duttine, Alain Wattiaux, Ashish Rudola, Palani Balaya, François Fauth, Romain Berthelot, Laure Monconduit, Dany Carlier, Laurence Croguennec. Impact of Synthesis Conditions in Na-Rich Prussian Blue Analogues. ACS Applied Materials & Interfaces 2021, 13 (36) , 42682-42692. https://doi.org/10.1021/acsami.1c09378
    18. Meladia E. Purbarani, Jooeun Hyoung, Seung-Tae Hong. Crystal-Water-Free Potassium Vanadium Bronze (K0.5V2O5) as a Cathode Material for Ca-Ion Batteries. ACS Applied Energy Materials 2021, 4 (8) , 7487-7491. https://doi.org/10.1021/acsaem.1c01158
    19. Munseok S. Chae, Amey Nimkar, Netanel Shpigel, Yosef Gofer, Doron Aurbach. High Performance Aqueous and Nonaqueous Ca-Ion Cathodes Based on Fused-Ring Aromatic Carbonyl Compounds. ACS Energy Letters 2021, 6 (8) , 2659-2665. https://doi.org/10.1021/acsenergylett.1c01010
    20. Sharma S. R. K. C. Yamijala, Hyuna Kwon, Juchen Guo, Bryan M. Wong. Stability of Calcium Ion Battery Electrolytes: Predictions from Ab Initio Molecular Dynamics Simulations. ACS Applied Materials & Interfaces 2021, 13 (11) , 13114-13122. https://doi.org/10.1021/acsami.0c21716
    21. Kwangnam Kim, Donald J. Siegel. Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes. Chemistry of Materials 2021, 33 (6) , 2187-2197. https://doi.org/10.1021/acs.chemmater.1c00096
    22. Chunyan Wang, Mingqiang Wang, Li Liu, Yudong Huang. 3D Porous Sponge-Inspired Electrode for High-Energy and High-Power Zinc-Ion Batteries. ACS Applied Energy Materials 2021, 4 (2) , 1833-1839. https://doi.org/10.1021/acsaem.0c02945
    23. Yaosen Tian, Guobo Zeng, Ann Rutt, Tan Shi, Haegyeom Kim, Jingyang Wang, Julius Koettgen, Yingzhi Sun, Bin Ouyang, Tina Chen, Zhengyan Lun, Ziqin Rong, Kristin Persson, Gerbrand Ceder. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chemical Reviews 2021, 121 (3) , 1623-1669. https://doi.org/10.1021/acs.chemrev.0c00767
    24. Gang Ni, Xiuwen Xu, Zhao Hao, Wenwen Wang, Chuanyuan Li, Yuxin Yang, Chenggang Zhou, Ling Qin, Wangchao Chen, Xin Yao, Jing Cai. Tuning the Electrochemical Stability of Zinc Hexacyanoferrate through Manganese Substitution for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials 2021, 4 (1) , 602-610. https://doi.org/10.1021/acsaem.0c02496
    25. Boosik Jeon, Jongwook W. Heo, Jooeun Hyoung, Hunho H. Kwak, Dongmin M. Lee, Seung-Tae Hong. Reversible Calcium-Ion Insertion in NASICON-Type NaV2(PO4)3. Chemistry of Materials 2020, 32 (20) , 8772-8780. https://doi.org/10.1021/acs.chemmater.0c01112
    26. Sanghyeon Kim, Liang Yin, Myeong Hwan Lee, Prakash Parajuli, Lauren Blanc, Timothy T. Fister, Haesun Park, Bob Jin Kwon, Brian J. Ingram, Peter Zapol, Robert F. Klie, Kisuk Kang, Linda F. Nazar, Saul H. Lapidus, John T. Vaughey. High-Voltage Phosphate Cathodes for Rechargeable Ca-Ion Batteries. ACS Energy Letters 2020, 5 (10) , 3203-3211. https://doi.org/10.1021/acsenergylett.0c01663
    27. Puspamitra Panigrahi, Shashi B. Mishra, Tanveer Hussain, B. R. K. Nanda, Rajeev Ahuja. Density Functional Theory Studies of Si2BN Nanosheets as Anode Materials for Magnesium-Ion Batteries. ACS Applied Nano Materials 2020, 3 (9) , 9055-9063. https://doi.org/10.1021/acsanm.0c01747
    28. George Hasegawa, Yuto Akiyama, Moeko Tanaka, Ryo Ishikawa, Hirofumi Akamatsu, Yuichi Ikuhara, Katsuro Hayashi. Reversible Electrochemical Insertion/Extraction of Magnesium Ion into/from Robust NASICON-Type Crystal Lattice in a Mg(BF4)2-Based Electrolyte. ACS Applied Energy Materials 2020, 3 (7) , 6824-6833. https://doi.org/10.1021/acsaem.0c00943
    29. M. Elena Arroyo-de Dompablo, Alexandre Ponrouch, Patrik Johansson, M. Rosa Palacín. Achievements, Challenges, and Prospects of Calcium Batteries. Chemical Reviews 2020, 120 (14) , 6331-6357. https://doi.org/10.1021/acs.chemrev.9b00339
    30. Munseok S. Chae, Hunho H. Kwak, Seung-Tae Hong. Calcium Molybdenum Bronze as a Stable High-Capacity Cathode Material for Calcium-Ion Batteries. ACS Applied Energy Materials 2020, 3 (6) , 5107-5112. https://doi.org/10.1021/acsaem.0c00567
    31. Saeid Biria, Shreyas Pathreeker, Francielli S. Genier, Ian D. Hosein. A Highly Conductive and Thermally Stable Ionic Liquid Gel Electrolyte for Calcium-Ion Batteries. ACS Applied Polymer Materials 2020, 2 (6) , 2111-2118. https://doi.org/10.1021/acsapm.9b01223
    32. Casey G. Hawkins, Ankit Verma, Wade Horbinski, Rory Weeks, Partha P. Mukherjee, Luisa Whittaker-Brooks. Decreasing the Ion Diffusion Pathways for the Intercalation of Multivalent Cations into One-Dimensional TiS2 Nanobelt Arrays. ACS Applied Materials & Interfaces 2020, 12 (19) , 21788-21798. https://doi.org/10.1021/acsami.9b21702
    33. Haesun Park, Yanjie Cui, Sanghyeon Kim, J. T. Vaughey, Peter Zapol. Ca Cobaltites as Potential Cathode Materials for Rechargeable Ca-Ion Batteries: Theory and Experiment. The Journal of Physical Chemistry C 2020, 124 (11) , 5902-5909. https://doi.org/10.1021/acs.jpcc.9b11192
    34. Md. Adil, Ananta Sarkar, Amlan Roy, Manas Ranjan Panda, Abharana Nagendra, Sagar Mitra. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage. ACS Applied Materials & Interfaces 2020, 12 (10) , 11489-11503. https://doi.org/10.1021/acsami.9b20129
    35. Shengqi Fan, Genevieve M. Asselin, Baofei Pan, Hao Wang, Yang Ren, John T. Vaughey, Niya Sa. A Simple Halogen-Free Magnesium Electrolyte for Reversible Magnesium Deposition through Cosolvent Assistance. ACS Applied Materials & Interfaces 2020, 12 (9) , 10252-10260. https://doi.org/10.1021/acsami.9b18833
    36. Saeid Biria, Shreyas Pathreeker, Hansheng Li, Ian D. Hosein. Plating and Stripping of Calcium in an Alkyl Carbonate Electrolyte at Room Temperature. ACS Applied Energy Materials 2019, 2 (11) , 7738-7743. https://doi.org/10.1021/acsaem.9b01670
    37. Romain Dugas, Juan D. Forero-Saboya, Alexandre Ponrouch. Methods and Protocols for Reliable Electrochemical Testing in Post-Li Batteries (Na, K, Mg, and Ca). Chemistry of Materials 2019, 31 (21) , 8613-8628. https://doi.org/10.1021/acs.chemmater.9b02776
    38. Yu Jing, Jie Liu, Zhenpei Zhou, Juan Zhang, Yafei Li. Metallic Nb2S2C Monolayer: A Promising Two-Dimensional Anode Material for Metal-Ion Batteries. The Journal of Physical Chemistry C 2019, 123 (44) , 26803-26811. https://doi.org/10.1021/acs.jpcc.9b07950
    39. Xiang Xiao, Mingyong Wang, Jiguo Tu, Yiwa Luo, Shuqiang Jiao. Metal–Organic Framework-Derived Co3O4@MWCNTs Polyhedron as Cathode Material for a High-Performance Aluminum-Ion Battery. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16200-16208. https://doi.org/10.1021/acssuschemeng.9b03159
    40. Jiayue Wang, Francielli S. Genier, Hansheng Li, Saeid Biria, Ian D. Hosein. A Solid Polymer Electrolyte from Cross-Linked Polytetrahydrofuran for Calcium Ion Conduction. ACS Applied Polymer Materials 2019, 1 (7) , 1837-1844. https://doi.org/10.1021/acsapm.9b00371
    41. Wenxiang Chen, Xun Zhan, Binbin Luo, Zihao Ou, Pei-Chieh Shih, Lehan Yao, Saran Pidaparthy, Arghya Patra, Hyosung An, Paul V. Braun, Ryan M. Stephens, Hong Yang, Jian-Min Zuo, Qian Chen. Effects of Particle Size on Mg2+ Ion Intercalation into λ-MnO2 Cathode Materials. Nano Letters 2019, 19 (7) , 4712-4720. https://doi.org/10.1021/acs.nanolett.9b01780
    42. Mehdi Shakourian-Fard, Ganesh Kamath, S. Maryamdokht Taimoory, John F. Trant. Calcium-Ion Batteries: Identifying Ideal Electrolytes for Next-Generation Energy Storage Using Computational Analysis. The Journal of Physical Chemistry C 2019, 123 (26) , 15885-15896. https://doi.org/10.1021/acs.jpcc.9b01655
    43. Amir H. Farokh Niaei, Tanglaw Roman, Tanveer Hussain, Debra J. Searles. Computational Study on the Adsorption of Sodium and Calcium on Edge-Functionalized Graphene Nanoribbons. The Journal of Physical Chemistry C 2019, 123 (24) , 14895-14908. https://doi.org/10.1021/acs.jpcc.9b02003
    44. Kim Ta, Ruixian Zhang, Minjeong Shin, Ryan T. Rooney, Elizabeth K. Neumann, Andrew A. Gewirth. Understanding Ca Electrodeposition and Speciation Processes in Nonaqueous Electrolytes for Next-Generation Ca-Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (24) , 21536-21542. https://doi.org/10.1021/acsami.9b04926
    45. Xiaoming Xu, Manyi Duan, Yunfan Yue, Qi Li, Xiao Zhang, Lu Wu, Peijie Wu, Bo Song, Liqiang Mai. Bilayered Mg0.25V2O5·H2O as a Stable Cathode for Rechargeable Ca-Ion Batteries. ACS Energy Letters 2019, 4 (6) , 1328-1335. https://doi.org/10.1021/acsenergylett.9b00830
    46. Santanu Mukherjee, Gurpreet Singh. Two-Dimensional Anode Materials for Non-lithium Metal-Ion Batteries. ACS Applied Energy Materials 2019, 2 (2) , 932-955. https://doi.org/10.1021/acsaem.8b00843
    47. Abhishek Parija, Gregory R. Waetzig, Justin L. Andrews, Sarbajit Banerjee. Traversing Energy Landscapes Away from Equilibrium: Strategies for Accessing and Utilizing Metastable Phase Space. The Journal of Physical Chemistry C 2018, 122 (45) , 25709-25728. https://doi.org/10.1021/acs.jpcc.8b04622
    48. Marta Cabello, Francisco Nacimiento, Ricardo Alcántara, Pedro Lavela, Carlos Pérez Vicente, José L. Tirado. Applicability of Molybdite as an Electrode Material in Calcium Batteries: A Structural Study of Layer-type CaxMoO3. Chemistry of Materials 2018, 30 (17) , 5853-5861. https://doi.org/10.1021/acs.chemmater.8b01116
    49. Joshua Young, Manuel Smeu. Ethylene Carbonate-Based Electrolyte Decomposition and Solid–Electrolyte Interphase Formation on Ca Metal Anodes. The Journal of Physical Chemistry Letters 2018, 9 (12) , 3295-3300. https://doi.org/10.1021/acs.jpclett.8b01261
    50. Gene M. Nolis, Abdullah Adil, Hyun Deog Yoo, Linhua Hu, Ryan D. Bayliss, Saul H. Lapidus, Lisa Berkland, Patrick J. Phillips, John W. Freeland, Chunjoong Kim, Robert F. Klie, and Jordi Cabana . Electrochemical Reduction of a Spinel-Type Manganese Oxide Cathode in Aqueous Electrolytes with Ca2+ or Zn2+. The Journal of Physical Chemistry C 2018, 122 (8) , 4182-4188. https://doi.org/10.1021/acs.jpcc.7b12084
    51. Deyana S. Tchitchekova, Alexandre Ponrouch, Roberta Verrelli, Thibault Broux, Carlos Frontera, Andrea Sorrentino, Fanny Bardé, Neven Biskup, M. Elena Arroyo-de Dompablo, and M. Rosa Palacín . Electrochemical Intercalation of Calcium and Magnesium in TiS2: Fundamental Studies Related to Multivalent Battery Applications. Chemistry of Materials 2018, 30 (3) , 847-856. https://doi.org/10.1021/acs.chemmater.7b04406
    52. Ziheng Lu and Francesco Ciucci . Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study. Chemistry of Materials 2017, 29 (21) , 9308-9319. https://doi.org/10.1021/acs.chemmater.7b03284
    53. Feng Lin, Yijin Liu, Xiqian Yu, Lei Cheng, Andrej Singer, Oleg G. Shpyrko, Huolin L. Xin, Nobumichi Tamura, Chixia Tian, Tsu-Chien Weng, Xiao-Qing Yang, Ying Shirley Meng, Dennis Nordlund, Wanli Yang, and Marca M. Doeff . Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chemical Reviews 2017, 117 (21) , 13123-13186. https://doi.org/10.1021/acs.chemrev.7b00007
    54. Giuseppe Antonio Elia, Jean-Baptiste Ducros, Dane Sotta, Virginie Delhorbe, Agnès Brun, Krystan Marquardt, and Robert Hahn . Polyacrylonitrile Separator for High-Performance Aluminum Batteries with Improved Interface Stability. ACS Applied Materials & Interfaces 2017, 9 (44) , 38381-38389. https://doi.org/10.1021/acsami.7b09378
    55. Ismael A. Rodríguez-Pérez, Yifei Yuan, Clement Bommier, Xingfeng Wang, Lu Ma, Daniel P. Leonard, Michael M. Lerner, Rich G. Carter, Tianpin Wu, P. Alex Greaney, Jun Lu, and Xiulei Ji . Mg-Ion Battery Electrode: An Organic Solid’s Herringbone Structure Squeezed upon Mg-Ion Insertion. Journal of the American Chemical Society 2017, 139 (37) , 13031-13037. https://doi.org/10.1021/jacs.7b06313
    56. Pieremanuele Canepa, Gopalakrishnan Sai Gautam, Daniel C. Hannah, Rahul Malik, Miao Liu, Kevin G. Gallagher, Kristin A. Persson, and Gerbrand Ceder . Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chemical Reviews 2017, 117 (5) , 4287-4341. https://doi.org/10.1021/acs.chemrev.6b00614
    57. Ali Eftekhari, Zelang Jian, and Xiulei Ji . Potassium Secondary Batteries. ACS Applied Materials & Interfaces 2017, 9 (5) , 4404-4419. https://doi.org/10.1021/acsami.6b07989
    58. M. Elena Arroyo-de Dompablo, Christopher Krich, Jessica Nava-Avendaño, Neven Biškup, M. Rosa Palacín, and Fanny Bardé . A Joint Computational and Experimental Evaluation of CaMn2O4 Polymorphs as Cathode Materials for Ca Ion Batteries. Chemistry of Materials 2016, 28 (19) , 6886-6893. https://doi.org/10.1021/acs.chemmater.6b02146
    59. Evan N. Keyzer, Hugh F. J. Glass, Zigeng Liu, Paul M. Bayley, Siân E. Dutton, Clare P. Grey, and Dominic S. Wright . Mg(PF6)2-Based Electrolyte Systems: Understanding Electrolyte–Electrode Interactions for the Development of Mg-Ion Batteries. Journal of the American Chemical Society 2016, 138 (28) , 8682-8685. https://doi.org/10.1021/jacs.6b04319
    60. Gopalakrishnan Sai Gautam, Pieremanuele Canepa, William Davidson Richards, Rahul Malik, and Gerbrand Ceder . Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5. Nano Letters 2016, 16 (4) , 2426-2431. https://doi.org/10.1021/acs.nanolett.5b05273
    61. Jillian M. Buriak (Editor-in-Chief). Which Font Looks Best in a Figure?. Chemistry of Materials 2016, 28 (3) , 689-690. https://doi.org/10.1021/acs.chemmater.6b00306
    62. Shuzo Yamazaki, Atsuya Miyazaki, Hirotaka Imai, Mikka Nisitani-Gamo, Kiyoharu Nakagawa. Generation of solid electrolyte interface (SEI) film on graphite negative electrode surface in calcium-ion secondary batteries and its dependence on electrolyte. Materials Research Bulletin 2025, 185 , 113294. https://doi.org/10.1016/j.materresbull.2025.113294
    63. Wenjing Fu, Yuefeng Su, Lai Chen, Hongtao Cao, Yaning Yang, Jianbiao Liu, Yuxi Wu, Zhenxiao Hu, Kang Yan, Peng Li. Enhanced electrochemical performance of aluminum-ion batteries with novel polyimide nanofiber separators. Electrochimica Acta 2025, 523 , 145903. https://doi.org/10.1016/j.electacta.2025.145903
    64. Shaymaa Abed Hussein, Maryam Hussein Abdulameer, Mohammed Al-Bahrani, Subhash Chandra, Prakash Kanjariya, Irwanjot Kaur, Abhishek Kumar, Rishabh Thakur, Abdulrahman A. Almehizia. Understanding the electrochemical performance of 2D boron phosphide cathode for Mg-ion batteries. Journal of Molecular Structure 2025, 1327 , 141258. https://doi.org/10.1016/j.molstruc.2024.141258
    65. Chong-Yu Du, Rui-Jie Luo, Xun-Lu Li, Kai Wu, Na Liu, Cui Ma, Jian Bao, Jie Zeng, Xuan Xu, Zi-Ting Zhou, Yong-Ning Zhou. Coupling active and inactive transition metals to boost calcium storage cycle stability for Prussian blue cathodes. Journal of Colloid and Interface Science 2025, 683 , 543-551. https://doi.org/10.1016/j.jcis.2024.12.101
    66. Azher M. Abed, Anjan Kumar, Vicky Jain, Mohd Shukri Ab Yajid, Mamata Chahar, G Sanyasi Raju, Maher Ali Rusho, Hamad M. Alkahtani. A C2B two-dimensional monolayer with superior electrochemical performance of anode for Mg-ion batteries. Solid State Sciences 2025, 161 , 107857. https://doi.org/10.1016/j.solidstatesciences.2025.107857
    67. Jianping Yan, Bo Wang, Yongchao Tang, Jiaming Xiong, Guigui Liu, Zhenfeng Feng, Jintu Qi, Hongqing Li, Zhipeng Wen, Minghui Ye, Yufei Zhang, Wencheng Du, Xiaoqing Liu, Cheng Chao Li. Bridging Zn 2+ /Ca 2+ ‐Storage Chemistries by Hetero‐Solvation Electrolyte toward High‐Voltage Ca 2+ ‐Based Hybrid Batteries. Advanced Energy Materials 2025, 15 (10) https://doi.org/10.1002/aenm.202403888
    68. Kyunglim Pyo, Young-Kook Lee, Jung Yong Seo, Docheon Ahn, Woon-Bae Park, Kee-Sun Sohn, S.J. Richard Prabakar. Ca-K hybrid batteries: Combination of dendrite-free K plating/stripping on anode and selective Ca2+ insertion into cathode. Chemical Engineering Journal 2025, 508 , 160958. https://doi.org/10.1016/j.cej.2025.160958
    69. Wenjing Ji, Yuntong Peng, Yazhou Wang, Shangquan Zhao, Naigen Zhou. Enhancing MXene-Based anodes with two-dimensional VO2/V2CO2 heterostructures: A first-principles calculations study. Computational Materials Science 2025, 249 , 113615. https://doi.org/10.1016/j.commatsci.2024.113615
    70. Andrey Arbenin, Semyon Egorov, Igor Prikhodko, Anna Fedorova, Anastasia Penkova, Artem Selyutin. Prussian Blue Analogues Based on 3d-Metals as Cathode Materials for Magnesium Ion Batteries. Energies 2025, 18 (3) , 711. https://doi.org/10.3390/en18030711
    71. Ritupurna Baishya, Horsita Kalita. An electrochemical study on Manganese tungstate (MnWO 4 ) for energy storage. Journal of Physics: Conference Series 2025, 2957 (1) , 012010. https://doi.org/10.1088/1742-6596/2957/1/012010
    72. Zhenyou Li, Shuangshuang Cui, Joachim Häcker, Maryam Nojabaee, Maximilian Fichtner, Guanglei Cui, Zhirong Zhao‐Karger. Calcium Chemistry as A New Member of Post‐Lithium Battery Family: What Can We Learn from Sodium and Magnesium Systems. Angewandte Chemie International Edition 2025, 64 (5) https://doi.org/10.1002/anie.202415942
    73. Zhenyou Li, Shuangshuang Cui, Joachim Häcker, Maryam Nojabaee, Maximilian Fichtner, Guanglei Cui, Zhirong Zhao‐Karger. Calciumchemie als ein neues Mitglied der Post‐Lithium‐Batteriefamilie: Was können wir von Natrium‐ und Magnesium‐Systemen lernen. Angewandte Chemie 2025, 137 (5) https://doi.org/10.1002/ange.202415942
    74. Mohmmad Faizan, Ravinder Pawar. What comes next: the fate of germa-, stanna-, and plumba- closo -dodecaborate based electrolytes in calcium ion batteries. Physical Chemistry Chemical Physics 2025, 27 (3) , 1250-1255. https://doi.org/10.1039/D4CP04670F
    75. Yiyuan Ma, Qi Qi, Qi Meng, Yuyang Yi, Huijun Lin, Jingya Yu, Chi Fai Cheung, Zheng‐Long Xu. A Small Molecular Cathode for High‐Performance Calcium Metal Batteries. Advanced Functional Materials 2025, 35 (3) https://doi.org/10.1002/adfm.202411715
    76. Mahla Talari, Angelina Sarapulova, Eugen Zemlyanushin, Noha Sabi, Andreas Hofmann, Vanessa Trouillet, Sonia Dsoke. Exploring the Possibility of Aluminum Plating/Stripping from a Non‐Corrosive Al(OTf) 3 ‐Based Electrolyte. Batteries & Supercaps 2025, 8 (1) https://doi.org/10.1002/batt.202400317
    77. Wei Zong, Ouyang Yue, Leiqian Zhang. Calcium-ion batteries. 2025, 275-304. https://doi.org/10.1016/B978-0-443-15514-7.00016-3
    78. Henry R Tinker, Mingrui Li, Ajay Piriya Vijaya Kumar Saroja, Yuhan Liu, Yudong Luo, Wanjun Ren, Runzhe Wei, Yi Lu, Pan He, Yupei Han, Christopher A. Howard, Furio Corà, Yang Xu. Competition for Ion Intercalation in Prussian Blue Analogues as Cathode Materials for Calcium Ion Batteries. Small Structures 2024, 5 (12) https://doi.org/10.1002/sstr.202400317
    79. Mansi Sopan Rathod, Arati Chandragupta Mehere, Pallavi Baliram Kadam, Satish Vitthal Gaikwad, Sandip Kisan Jagadale, Sopan Mansing Rathod. Boosting nickel nanoferrite’s specific capacitance with Azadirachta Indica for advanced supercapacitors. Inorganic Chemistry Communications 2024, 170 , 113265. https://doi.org/10.1016/j.inoche.2024.113265
    80. Suman Yadav, Narendra Kurra. Nanoconfinement-induced calcium ion redox charge storage of V 2 CT x MXene. Journal of Materials Chemistry A 2024, 12 (46) , 32182-32190. https://doi.org/10.1039/D4TA05932H
    81. Mengpei Qi, Qiqi Sun, Yonglin Wang, Qi Lai, Li Wang, Zixuan Chen, Yunhai Zhu, Aiqing Zhang, Yingkui Yang. Molecular Engineering and Microstructure Modulation of High‐Performance Organic Batteries. Batteries & Supercaps 2024, 11 https://doi.org/10.1002/batt.202400607
    82. Wenbo Guo, Zening Wu, Shuyuan Zhao, Jichen Zhao, Xue Han, Boao Wanyan, Jiehua Wang, Lei Yan, Liyuan Zhang, Haoxiang Yu, Ting-Feng Yi, Jie Shu. Zinc hexacyanoferrate with open framework for efficient aqueous cobalt ions storage. Chemical Engineering Journal 2024, 499 , 156480. https://doi.org/10.1016/j.cej.2024.156480
    83. Alan K. X. Tan, Shiladitya Paul. Beyond Lithium: Future Battery Technologies for Sustainable Energy Storage. Energies 2024, 17 (22) , 5768. https://doi.org/10.3390/en17225768
    84. Yingkai Hua, Yiyuan Ma, Qi Qi, Zheng-Long Xu. Cathode materials for non-aqueous calcium rechargeable batteries. Nanoscale 2024, 16 (38) , 17683-17698. https://doi.org/10.1039/D4NR02966F
    85. Junjun Wang, Ruohan Yu, Yalong Jiang, Fan Qiao, Xiaobin Liao, Jianxiang Wang, Meng Huang, Fangyu Xiong, Lianmeng Cui, Yuhang Dai, Lei Zhang, Qinyou An, Guanjie He, Liqiang Mai. High-solvation electrolytes for ultra-stable calcium-ion storage. Energy & Environmental Science 2024, 17 (18) , 6616-6626. https://doi.org/10.1039/D4EE02003K
    86. Titus Masese, Godwill Mbiti Kanyolo. Electrode materials for calcium batteries: Future directions and perspectives. EcoEnergy 2024, 2 (3) , 339-368. https://doi.org/10.1002/ece2.53
    87. Mecaelah S. Palaganas, Jayson S. Garcia, Giancarlo Dominador D. Sanglay, Lora Monique E. Sapanta, Lawrence A. Limjuco, Joey D. Ocon. Can Prussian Blue Analogues be Holy Grail for Advancing Post‐Lithium Batteries?. Batteries & Supercaps 2024, 29 https://doi.org/10.1002/batt.202400280
    88. Mohamed J. Saadh, Sabrean Farhan Jawad, Suhas Ballal, G. V. Siva Prasad, Ahmad Ismael Saber, Manmeet Singh, Maha Noori Shakir, Ahmed Elawady, Rahadian Zainul. The probability of application of various nanostructures of boron nitride as an anode material for Ca-ion battery: a DFT study. Journal of Nanoparticle Research 2024, 26 (8) https://doi.org/10.1007/s11051-024-06078-0
    89. Dereje Bekele Tekliye, Gopalakrishnan Sai Gautam. Fluoride frameworks as potential calcium battery cathodes. Journal of Materials Chemistry A 2024, 12 (30) , 18993-19007. https://doi.org/10.1039/D4TA02426E
    90. Junjun Wang, Yadi Zhang, Fan Qiao, Yalong Jiang, Ruohan Yu, Jiantao Li, Sungsik Lee, Yuhang Dai, Fei Guo, Peie Jiang, Lei Zhang, Qinyou An, Guanjie He, Liqiang Mai. Freestanding Ammonium Vanadate Composite Cathodes with Lattice Self‐Regulation and Ion Exchange for Long‐Lasting Ca‐Ion Batteries. Advanced Materials 2024, 36 (30) https://doi.org/10.1002/adma.202403371
    91. Peng Zhang, Yanmeng Peng, Qizhen Zhu, Razium Ali Soomro, Ning Sun, Bin Xu. 3D Foam‐Based MXene Architectures: Structural and Electrolytic Engineering for Advanced Potassium‐Ion Storage. ENERGY & ENVIRONMENTAL MATERIALS 2024, 7 (4) https://doi.org/10.1002/eem2.12379
    92. S. Heidari, M.D. Esrafili, J.J. Sardroodi. Pristine and Ti- or Al-doped B3CN4 nanosheets as efficient anodes for Mg-ion batteries: A DFT study. Journal of Energy Storage 2024, 93 , 112109. https://doi.org/10.1016/j.est.2024.112109
    93. I.S. Imaduddin, N.H. Idris, S.R. Majid. Optimizing the electrochemical performance of MOF-derived Co3O4/Ca4O4 electrode materials in calcium-ion based organic electrolytes. Journal of Energy Storage 2024, 94 , 112362. https://doi.org/10.1016/j.est.2024.112362
    94. Chun-Fang Wang, Shi-Wei Zhang, Lan Huang, Yuan-Min Zhu, Feng Liu, Jian-Chuan Wang, Li-Ming Tan, Chun-Yi Zhi, Cui-Ping Han. Constructing highly safe and long-life calcium ion batteries based on hydratedvanadium oxide cathodes featuring a pillar structure. Rare Metals 2024, 43 (6) , 2597-2612. https://doi.org/10.1007/s12598-023-02613-5
    95. Khurram Shahzad, Izzat Iqbal Cheema. Aluminum batteries: Unique potentials and addressing key challenges in energy storage. Journal of Energy Storage 2024, 90 , 111795. https://doi.org/10.1016/j.est.2024.111795
    96. Ang Ye, Manuel Reyes De Guzman, Jiankang Ye, Changkangle Xu, Feiyu Zhou, Xuedan Chen, Wenli Zhu, Die Gong, Qingshan Fu. Mechanically enhanced battery separator prepared by hot‐pressing electrospun polyvinylidene fluoride @ polymethyl methacrylate membranes with different fiber orientations in adjacent layers. Polymer Engineering & Science 2024, 64 (4) , 1835-1847. https://doi.org/10.1002/pen.26660
    97. Xingyang Bao, Zhenshuai Wang, Dai Zhang, Ruoyu Hong, Minglin Li, Campion M. Smith, Jinjia Xu. A deep eutectic electrolyte of AlCl 3 –acetamide for rechargeable aluminum-ion batteries. New Journal of Chemistry 2024, 48 (13) , 5893-5901. https://doi.org/10.1039/D4NJ00147H
    98. Masayuki KAWAGUCHI. Preparation and Ion Stotage of B/C/N Two-Dimensional Materials. Denki Kagaku 2024, 92 (1) , 4-9. https://doi.org/10.5796/denkikagaku.24-FE0007
    99. Renjie Li, Youngsu Lee, Huijun Lin, Xiangli Che, Xiangjun Pu, Yuyang Yi, Feiyang Chen, Jingya Yu, Kang Cheung Chan, Kyu‐Young Park, Zheng‐Long Xu. K x VPO 4 F (x∼0): A New High‐Voltage and Low‐Stain Cathode Material for Ultrastable Calcium Rechargeable Batteries. Advanced Energy Materials 2024, 14 (11) https://doi.org/10.1002/aenm.202302700
    100. Ameneh Taghavi-Kahagh, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi. Powering the future: A comprehensive review on calcium-ion batteries. Journal of Energy Chemistry 2024, 90 , 77-97. https://doi.org/10.1016/j.jechem.2023.10.043
    Load more citations

    Chemistry of Materials

    Cite this: Chem. Mater. 2015, 27, 24, 8442–8447
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.5b04027
    Published November 24, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    9205

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.