Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Crystal Structure and Nontypical Deep-Red Luminescence of Ca3Mg[Li2Si2N6]:Eu2+
My Activity
    Article

    Crystal Structure and Nontypical Deep-Red Luminescence of Ca3Mg[Li2Si2N6]:Eu2+
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13 (D), 81377 Munich, Germany
    Other Access OptionsSupporting Information (2)

    Chemistry of Materials

    Cite this: Chem. Mater. 2017, 29, 8, 3778–3784
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.7b00871
    Published April 3, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Rare-earth-doped nitridosilicates exhibit outstanding luminescence properties and have been intensively studied for solid-state lighting. Here, we describe the new nitridolithosilicate Ca3Mg[Li2Si2N6]:Eu2+ with extraordinary luminescence characteristics. The compound was synthesized by the solid-state metathesis reaction in sealed Ta ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ca3Mg[Li2Si2N6]:Eu2+ crystallizes in the monoclinic space group C2/m (no. 12) [Z = 4, a = 5.966(1), b = 9.806(2), c = 11.721(2) Å, β = 99.67(3)°, V = 675.9(2) Å3] and exhibits a layered anionic network made up of edge- and corner-sharing LiN4 tetrahedra and [Si2N6]10– bow-tie units. The network charge is compensated by Ca2+ and Mg2+ ions. Upon irradiation with UV to blue light, red emission at exceptionally long wavelengths (λem = 734 nm, fwhm ≈2293 cm–1) is observed. According to emission in the near-infrared, application in LEDs for horticultural lighting appears promising.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.7b00871.

    • Selected bond lengths in Ca3Mg[Li2Si2N6]:Eu2+, selected bond angles in Ca3Mg[Li2Si2N6]:Eu2+, and anisotropic displacement parameters for Ca3Mg[Li2Si2N6]:Eu2+ (PDF)

    • Crystallographic data for Ca3Mg[Li2Si2N6]:Eu2+ (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 45 publications.

    1. Mu-Huai Fang, Zhen Bao, Wen-Tse Huang, Ru-Shi Liu. Evolutionary Generation of Phosphor Materials and Their Progress in Future Applications for Light-Emitting Diodes. Chemical Reviews 2022, 122 (13) , 11474-11513. https://doi.org/10.1021/acs.chemrev.1c00952
    2. Yi Wei, Peipei Dang, Zhigao Dai, Guogang Li, Jun Lin. Advances in Near-Infrared Luminescent Materials without Cr3+: Crystal Structure Design, Luminescence Properties, and Applications. Chemistry of Materials 2021, 33 (14) , 5496-5526. https://doi.org/10.1021/acs.chemmater.1c01325
    3. Julius L. Leaño, Jr., Carl Osby M. Mariano, Wen-Tse Huang, Sebastian Mahlik, Tadeusz Lesniewski, Marek Grinberg, Hwo-Shuenn Sheu, Shu-Fen Hu, Ru-Shi Liu. Thermally Stable and Deep Red Luminescence of Sr1–xBax[Mg2Al2N4]:Eu2+ (x = 0–1) Phosphors for Solid State and Agricultural Lighting Applications. ACS Applied Materials & Interfaces 2020, 12 (20) , 23165-23171. https://doi.org/10.1021/acsami.0c07345
    4. Thomas Wylezich, Rolf Böttcher, Atul D. Sontakke, Victor Castaing, Bruno Viana, Andreas Pöppl, Nathalie Kunkel. Lanthanide Ions as Local Probes in Ionic Hydrides: A Pulsed Electron Nuclear Double Resonance and Thermoluminescence Study of Eu2+-Doped Hydride Perovskites. The Journal of Physical Chemistry C 2019, 123 (8) , 5031-5041. https://doi.org/10.1021/acs.jpcc.8b12420
    5. Robin Niklaus, Lukas Neudert, Juliane Stahl, Peter J. Schmidt, Wolfgang Schnick. Orange-Emitting Li4Sr4[Si4O4N6]O:Eu2+—a Layered Lithium Oxonitridosilicate Oxide. Inorganic Chemistry 2018, 57 (22) , 14304-14313. https://doi.org/10.1021/acs.inorgchem.8b02391
    6. Florian Gehlhaar, Raphael Finger, Nicolas Zapp, Marko Bertmer, Holger Kohlmann. LiSr2SiO4H, an Air-Stable Hydride as Host for Eu(II) Luminescence. Inorganic Chemistry 2018, 57 (19) , 11851-11854. https://doi.org/10.1021/acs.inorgchem.8b01780
    7. Christian Maak, Philipp Strobel, Volker Weiler, Peter J. Schmidt, Wolfgang Schnick. Unprecedented Deep-Red Ce3+ Luminescence of the Nitridolithosilicates Li38.7RE3.3Ca5.7[Li2Si30N59]O2F (RE = La, Ce, Y). Chemistry of Materials 2018, 30 (15) , 5500-5506. https://doi.org/10.1021/acs.chemmater.8b02604
    8. Le Wang, Rong-Jun Xie, Takayuki Suehiro, Takashi Takeda, and Naoto Hirosaki . Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. Chemical Reviews 2018, 118 (4) , 1951-2009. https://doi.org/10.1021/acs.chemrev.7b00284
    9. Yuuki Kitagawa, Kenji Shinozaki. Near-infrared luminescence shift in Ni2+-doped double perovskite phosphors. Journal of Alloys and Compounds 2024, 1007 , 176451. https://doi.org/10.1016/j.jallcom.2024.176451
    10. Chao Jiang, Quan Liu, Kaiyang Li, Yubo Feng, Yingkai Fu, Yue Li, Yicheng Zhang, Xu Qian, Bo Wei, Peng Du. Regulating the broadband near-infrared emission of Eu2+-doped Ca3Sc2Si3O12 phosphors through constructing defect for diversified applications. Chemical Engineering Journal 2024, 496 , 154360. https://doi.org/10.1016/j.cej.2024.154360
    11. Shahab Khan, Hong-Wei Zheng, Huan Jiao, Shahroz Saleem, Zarif Gul, Jehan Y. Al-Humaidi, Areej Al Bahir, Raed H. Althomali, Arshad Ali, Mohammed M. Rahman. Reduction mechanism and energy transfer between Eu 3+ and Eu 2+ in Eu-doped materials synthesized in air atmosphere. Reviews in Inorganic Chemistry 2024, https://doi.org/10.1515/revic-2024-0011
    12. Ying Lv, Yunkai Li, Zhongyuan Li, Rong‐Jun Xie. Near‐Infrared Emission of Sm 2+ in Oxynitrides. Advanced Optical Materials 2024, 12 (10) https://doi.org/10.1002/adom.202302303
    13. Linlin Wang, Yan-gai Liu, Haojun Yu, Chenguang Yang, Lefu Mei, Hao Ding, Ruiyu Mi. A garnet Ca2GdZr2Ga3O12:Cr3+ phosphor with ultra-broadband near-infrared luminesce for night-vision and biomedical imaging. Journal of Alloys and Compounds 2023, 961 , 170745. https://doi.org/10.1016/j.jallcom.2023.170745
    14. Zuobin Tang, Feng Du, Lei Zhao, Hu Liu, Zhihua Leng, Huidong Xie, Gangyi Zhang, Yuhua Wang. Single‐Site Occupancy of Eu 2+ in Multiple Cations Enables Efficient Ultra‐Broadband Visible to Near‐Infrared Luminescence. Laser & Photonics Reviews 2023, 17 (5) https://doi.org/10.1002/lpor.202200911
    15. Zhiyu Yang, Zhiguo Xia. Ceramics phosphor powders. 2023, 395-429. https://doi.org/10.1016/B978-0-323-90761-3.00012-7
    16. Can He, Takashi Takeda, Zhaohui Huang, Jian Xu, Jun Chen, Wei Yi, Rongjun Xie, Naoto Hirosaki. Powder synthesis and luminescence of a novel yellow-emitting Ba5Si11Al7N25: Eu2+ phosphor discovered by a single-particle-diagnosis approach for warm w-LEDs. Chemical Engineering Journal 2023, 455 , 140932. https://doi.org/10.1016/j.cej.2022.140932
    17. Yuuki Kitagawa, Jumpei Ueda, Jian Xu, Takayuki Nakanishi, Takashi Takeda, Naoto Hirosaki, Setsuhisa Tanabe. Deep-red to near-infrared luminescence from Eu 2+ -trapped exciton states in YSiO 2 N. Physical Chemistry Chemical Physics 2022, 24 (7) , 4348-4357. https://doi.org/10.1039/D1CP05242J
    18. Zhiyu Yang, Yifei Zhao, Yayun Zhou, Jianwei Qiao, Yu‐Chun Chuang, Maxim S. Molokeev, Zhiguo Xia. Giant Red‐Shifted Emission in (Sr,Ba)Y 2 O 4 :Eu 2+ Phosphor Toward Broadband Near‐Infrared Luminescence. Advanced Functional Materials 2022, 32 (1) https://doi.org/10.1002/adfm.202103927
    19. . Defects in rare-earth-doped inorganic materials. 2022, 59-107. https://doi.org/10.1016/B978-0-323-89856-0.00006-7
    20. Lizhen Zhang, Yan Yang, Fei Tang, Shijie Xu, Zihao Wang, Changcheng Zheng, Jiqiang Ning, Kangzhen Tian. Luminescence performance and vibronic behavior of Mn 4+ -activated Ca 14-x K x Al 10 Zn 6 O 35 deep-red phosphor. Optics Letters 2021, 46 (23) , 5938. https://doi.org/10.1364/OL.446203
    21. Mengmeng Jiao, Wenzhi Sun, Yanhui Wang, Shufang Zhang, Qinfeng Xu, Lichun Zhang, Dehua Wang, Chuanlu Yang. Luminescence property improvement and controllable color regulation of a novel Bi 3+ doped Ca 2 Ta 2 O 7 green phosphor through charge compensation engineering and energy transfer. Physical Chemistry Chemical Physics 2021, 23 (45) , 25886-25895. https://doi.org/10.1039/D1CP04635G
    22. Sayed Ali Khan, Noor Zamin Khan, Muhammad Sohail, Jahangeer Ahmed, Norah Alhokbany, Saad M. Alshehri, Xin Xu, Jinfeng Zhu, Simeon Agathopoulos. Modern aspects of strategies for developing single-phase broadly tunable white light-emitting phosphors. Journal of Materials Chemistry C 2021, 9 (38) , 13041-13071. https://doi.org/10.1039/D1TC02952E
    23. Pan Liang, Wen‐Li Lian, Zhi‐Hong Liu. Ca[B 8 O 11 (OH) 4 ] : Eu 2+ – A Highly Efficient Deep Blue‐Emitting Phosphor Prepared by Low‐Temperature Self‐reduction. Chemistry – A European Journal 2021, 27 (55) , 13819-13827. https://doi.org/10.1002/chem.202101639
    24. Freia Ruegenberg, Markus Seibald, Dominik Baumann, Simon Peschke, Frauke Philipp, Hubert Huppertz. Rb[Li 5 Si 2 O 7 ] – A Latecomer in the Family of Alkali Lithosilicates Hiding a Green‐Emitting Lithosilicate. Chemistry – A European Journal 2021, 27 (45) , 11701-11706. https://doi.org/10.1002/chem.202101433
    25. Hong-Wei Zheng, Xiao-Ming Wang, Heng-Wei Wei, Yu Zheng, Cong-Ling Yin, Zu-Pei Yang, Huan Jiao. Narrow-band red emitting oxonitridosilicate phosphor La 4−x Sr 2+x Si 5 N 12−x O x :Pr 3+ ( x ≈ 1.69). Chemical Communications 2021, 57 (31) , 3761-3764. https://doi.org/10.1039/D1CC00893E
    26. Xiao-Jun Wang, Rong-Jun Xie. Screening and discovery of phosphors by the single-particle-diagnosis approach. Journal of Applied Physics 2021, 129 (12) https://doi.org/10.1063/5.0046797
    27. Zuobin Tang, Qiang Zhang, Yaxin Cao, Yixin Li, Yuhua Wang. Eu2+-doped ultra-broadband VIS-NIR emitting phosphor. Chemical Engineering Journal 2020, 388 , 124231. https://doi.org/10.1016/j.cej.2020.124231
    28. Xuefang Luo, Rong-Jun Xie. Recent progress on discovery of novel phosphors for solid state lighting. Journal of Rare Earths 2020, 38 (5) , 464-473. https://doi.org/10.1016/j.jre.2020.01.016
    29. Jianming Liu, Linli Shen, Ya Chen, Yi Zhao, Yaqian Zhang, Mengfeifei Jin, Haisheng Yang, Yujie Zhang, Weidong Xiang, Xiaojuan Liang. Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering. Journal of Materials Chemistry C 2019, 7 (43) , 13606-13612. https://doi.org/10.1039/C9TC04799A
    30. Robert Schmidt, Markus Ströbele, Carl P. Romao, David Enseling, Thomas Jüstel, Hans-Jürgen Meyer. Synthesis, structure and properties of a calcium oxonitridosilicate phosphor showing green or red luminescence upon doping with Eu 2+ or Ce 3+. Dalton Transactions 2019, 48 (37) , 14069-14076. https://doi.org/10.1039/C9DT02564B
    31. Robin Niklaus, Ján Minár, Philipp Strobel, Peter J. Schmidt, Wolfgang Schnick. Ab initio exploration and prediction of AE-containing nitrido(litho/magneso)tetrelates (AE = Ca, Sr; Tt = Si, Ge) with [Si 2 N 6 ] 10− or [Ge 2 N 6 ] 10− units. Dalton Transactions 2019, 48 (24) , 8671-8677. https://doi.org/10.1039/C9DT01158G
    32. Peipei Dang, Guogang Li, Sisi Liang, Hongzhou Lian, Jun Lin. Multichannel photoluminescence tuning in Eu-doped apatite phosphors via coexisting cation substitution, energy transfer and valence mixing. Journal of Materials Chemistry C 2019, 7 (20) , 5975-5987. https://doi.org/10.1039/C9TC01051C
    33. Daniel Rudolph, Thomas Wylezich, Atul D. Sontakke, Andries Meijerink, Philippe Goldner, Philip Netzsch, Henning A. Höppe, Nathalie Kunkel, Thomas Schleid. Synthesis and optical properties of the Eu2+-doped alkaline-earth metal hydride chlorides AE7H12Cl2 (AE = Ca and Sr). Journal of Luminescence 2019, 209 , 150-155. https://doi.org/10.1016/j.jlumin.2019.01.033
    34. Nathalie Kunkel, Thomas Wylezich. Recent Advances in Rare Earth‐Doped Hydrides. Zeitschrift für anorganische und allgemeine Chemie 2019, 645 (3) , 137-145. https://doi.org/10.1002/zaac.201800408
    35. Dashuai Sun, Liangliang Zhang, Zhendong Hao, Xia Zhang, Guo-Hui Pan, Huajun Wu, Yongshi Luo, Shuai He, Haifeng Zhao, Jiahua Zhang. Two Ce 3+ centers induced broadband emission in Y 3 Si 6 N 11 :Ce 3+ yellow phosphor. Dalton Transactions 2018, 47 (46) , 16723-16728. https://doi.org/10.1039/C8DT03936D
    36. Chao Li, Hong-Wei Zheng, Heng-Wei Wei, Jie Su, Fu-Hui Liao, Zhen-Yi Zhang, Ling Xu, Zu-Pei Yang, Xiao-Ming Wang, Huan Jiao. Narrow-band blue emitting nitridomagnesosilicate phosphor Sr 8 Mg 7 Si 9 N 22 :Eu 2+ for phosphor-converted LEDs. Chemical Communications 2018, 54 (82) , 11598-11601. https://doi.org/10.1039/C8CC07218C
    37. Mengmeng Jiao, Qinfeng Xu, Yimei Xu, Yalin Li, Chuanlu Yang, Mingliang Liu. Color tunable Ba3Lu(PO4)3:Tb3+,Mn2+ phosphor via Tb3+→Mn2+ energy transfer for white LEDs. Ceramics International 2018, 44 (13) , 15243-15248. https://doi.org/10.1016/j.ceramint.2018.05.166
    38. Quansheng Wu, Yanyan Li, Chuang Wang, Jiangshui Luo. Li2SrSi2N4:Eu2+: Electronic structure and luminescence of a red phosphor. Journal of Luminescence 2018, 201 , 485-492. https://doi.org/10.1016/j.jlumin.2018.05.038
    39. Takashi Takeda, Rong-Jun Xie, Takayuki Suehiro, Naoto Hirosaki. Nitride and oxynitride phosphors for white LEDs: Synthesis, new phosphor discovery, crystal structure. Progress in Solid State Chemistry 2018, 51 , 41-51. https://doi.org/10.1016/j.progsolidstchem.2017.11.002
    40. Renping Cao, Xinyu Cheng, Fangteng Zhang, Lei Su, Ting Chen, Hui Ao, Xiaoguang Yu, Wen Ruan. Enhanced luminescence properties of MgTO3:Mn4+ red-emitting phosphor by adding Ge4+ ion and H3BO3. Journal of Materials Science: Materials in Electronics 2018, 29 (15) , 13005-13010. https://doi.org/10.1007/s10854-018-9421-5
    41. Philipp Strobel, Volker Weiler, Peter J. Schmidt, Wolfgang Schnick. Sr[BeSi 2 N 4 ]:Eu 2+ /Ce 3+ and Eu[BeSi 2 N 4 ]: Nontypical Luminescence in Highly Condensed Nitridoberyllosilicates. Chemistry – A European Journal 2018, 24 (28) , 7243-7249. https://doi.org/10.1002/chem.201800912
    42. Nathalie Kunkel, Philippe Goldner. Recent Advances in Rare Earth Doped Inorganic Crystalline Materials for Quantum Information Processing. Zeitschrift für anorganische und allgemeine Chemie 2018, 644 (2) , 66-76. https://doi.org/10.1002/zaac.201700425
    43. Otmar M. ten Kate, Zhijun Zhang, J. Ruud van Ommen, H. T. (Bert) Hintzen. Dependence of the photoluminescence properties of Eu 2+ doped M–Si–N (M = alkali, alkaline earth or rare earth metal) nitridosilicates on their structure and composition. Journal of Materials Chemistry C 2018, 6 (21) , 5671-5683. https://doi.org/10.1039/C8TC00885J
    44. Zhi Zhou, Yuan Zhong, Mao Xia, Nan Zhou, Bingfu Lei, Jing Wang, Fangfang Wu. Tunable dual emission of Ca 3 Al 4 ZnO 10 :Bi 3+ ,Mn 4+ via energy transfer for indoor plant growth lighting. Journal of Materials Chemistry C 2018, 6 (33) , 8914-8922. https://doi.org/10.1039/C8TC02792G
    45. Otmar M. ten Kate, Zhijun Zhang, H. T. (Bert) Hintzen. On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates. Journal of Materials Chemistry C 2017, 5 (44) , 11504-11514. https://doi.org/10.1039/C7TC04259K

    Chemistry of Materials

    Cite this: Chem. Mater. 2017, 29, 8, 3778–3784
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.7b00871
    Published April 3, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    1214

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.