ACS Publications. Most Trusted. Most Cited. Most Read
Amorphization as a Pathway to Fast Charging Kinetics in Atomic Layer Deposition-Derived Titania Films for Lithium Ion Batteries
My Activity
    Article

    Amorphization as a Pathway to Fast Charging Kinetics in Atomic Layer Deposition-Derived Titania Films for Lithium Ion Batteries
    Click to copy article linkArticle link copied!

    • Jianchao Ye*
      Jianchao Ye
      Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
      *E-mail: [email protected]
      More by Jianchao Ye
    • Patrick Shea
      Patrick Shea
      Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
      More by Patrick Shea
    • Andreas C. Baumgaertel
      Andreas C. Baumgaertel
      Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
    • Stanimir A. Bonev
      Stanimir A. Bonev
      Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
    • Monika M. Biener
      Monika M. Biener
      Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
    • Michael Bagge-Hansen
      Michael Bagge-Hansen
      Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
    • Y. Morris Wang
      Y. Morris Wang
      Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
    • Juergen Biener
      Juergen Biener
      Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
    • Brandon C. Wood*
      Brandon C. Wood
      Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 24, 8871–8882
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.8b04002
    Published November 29, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Safe, reliable materials with fast charging kinetics are required to increase the power density of batteries in electric vehicles. One potential avenue for improving kinetics involves disturbing the electrode crystalline structure to alter diffusion properties. However, it remains controversial whether amorphization universally benefits intercalation kinetics, and the specific enhancement mechanisms with respect to the crystalline counterpart are often unclear. In this work, we systematically explore the effects of amorphization on Li+ intercalation kinetics using variable-thickness TiO2 films derived from atomic layer deposition. The amorphous films exhibit an order-of-magnitude faster Li+ diffusivity and >0.3 eV reduction in the effective Li+ migration barrier with respect to the crystalline anatase phase, resulting in superior high-rate capacity. To investigate the origin of this improvement, we perform a detailed analysis of the energy landscape, migration barriers, and diffusion rates in validated models of amorphous TiO2 using multiscale simulations. The range of site energies produced by the intrinsic structural disorder of amorphous TiO2 is found to generate low-barrier pathways for Li+ migration that penetrate some distance into the material, resulting in defined regions with faster diffusion behavior. We propose that the formation of these fast ion transport “highways” improves accessibility to interior sites, leading to significantly improved overall rate performance in the amorphous films. In addition to confirming the viability of amorphous TiO2 films as an alternative to crystalline layered materials for high-rate-performance energy storage, this work outlines a strategy for determining the conditions under which such performance might be realized in other similar materials.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b04002.

    • SEM images of TiO2/np-Au samples; galvanostatic charge/discharge capacity at varied rates; CV analysis; diffusion coefficients at different temperatures; structural factors; initial Coulombic efficiency; functional dependence of KMC results on Meyer-Neldel parameters (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 24 publications.

    1. Debolina Deb, Gopalakrishnan Sai Gautam. Exploration of Oxyfluoride Frameworks as Na-ion Cathodes. Chemistry of Materials 2024, 36 (24) , 11892-11904. https://doi.org/10.1021/acs.chemmater.4c02374
    2. Kumar Debajyoti Jena, Keemi Lim, Ying Xu, Neeraj Sharma, Peng Cao. Enhancing Charge Storage of Anatase Nanoparticles through Pseudocapacitance in Amorphous–Crystalline–Amorphous Architectures. ACS Applied Energy Materials 2024, 7 (16) , 6908-6919. https://doi.org/10.1021/acsaem.4c00862
    3. Rui Wang, Lu Wang, Rui Liu, Xiangye Li, Youzhi Wu, Fen Ran. “Fast-Charging” Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. ACS Nano 2024, 18 (4) , 2611-2648. https://doi.org/10.1021/acsnano.3c08712
    4. Alireza Shirazi Amin, Wen Zhao, Panteha Toloueinia, Inosh Prabasha Perera, Jared Fee, Yue Su, Luisa F. Posada, Steven L. Suib. Cycling-Induced Capacity Increase of Bulk and Artificially Layered LiTaO3 Anodes in Lithium-Ion Batteries. ACS Nano 2023, 17 (20) , 20203-20217. https://doi.org/10.1021/acsnano.3c05990
    5. Valentin Sallaz, Sylvain Poulet, Jouhaiz Rouchou, Jean-Marc Boissel, Isabelle Chevalier, Frédéric Voiron, Yann Lamy, Sami Oukassi. Hybrid All-Solid-State Thin-Film Micro-supercapacitor Based on a Pseudocapacitive Amorphous TiO2 Electrode. ACS Applied Energy Materials 2023, 6 (1) , 201-210. https://doi.org/10.1021/acsaem.2c02742
    6. Nikolina Makivić, Jae-Young Cho, Kenneth D. Harris, Jean-Marie Tarascon, Benoît Limoges, Véronique Balland. Evidence of Bulk Proton Insertion in Nanostructured Anatase and Amorphous TiO2 Electrodes. Chemistry of Materials 2021, 33 (9) , 3436-3448. https://doi.org/10.1021/acs.chemmater.1c00840
    7. Na Li, Xiwei Lan, Libin Wang, Yingjun Jiang, Songtao Guo, Yaqian Li, Xianluo Hu. Precisely Tunable T-Nb2O5 Nanotubes via Atomic Layer Deposition for Fast-Charging Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2021, 13 (14) , 16445-16453. https://doi.org/10.1021/acsami.1c02207
    8. Savithri Vishwanathan, Harshit Pandey, H. S. S. Ramakrishna Matte. Amorphous Anode Materials for Fast‐charging Lithium‐ion Batteries. Chemistry – A European Journal 2024, 30 (22) https://doi.org/10.1002/chem.202303840
    9. Xiu-Fen Ma, Hong-Yi Li, Weiwei Ren, Daibo Gao, Fuyu Chen, Jiang Diao, Bing Xie, Guangsheng Huang, Jingfeng Wang, Fusheng Pan. A critical review of vanadium-based electrode materials for rechargeable magnesium batteries. Journal of Materials Science & Technology 2023, 153 , 56-74. https://doi.org/10.1016/j.jmst.2022.12.052
    10. Hongyang Li, Xiao Sun, Huiyang Gou, Chengwei Zhang, Gongkai Wang. 3D ordered amorphous and porous TiO2 framework anode with low insertion barrier and fast kinetics for K-ion hybrid capacitors. Journal of Colloid and Interface Science 2023, 638 , 161-172. https://doi.org/10.1016/j.jcis.2023.01.085
    11. O Concepción, O de Melo. The versatile family of molybdenum oxides: synthesis, properties, and recent applications. Journal of Physics: Condensed Matter 2023, 35 (14) , 143002. https://doi.org/10.1088/1361-648X/acb24a
    12. Zhongda Chen, Wenqi Zhan, Zhihao Liu, Hang Wang, Liang Wu, Zhixin Sun, Min Zhou, . Amorphous TiO<sub>2</sub> ultrathin nanosheet for stable high-rate lithium storage. JUSTC 2023, 53 (6) , 0605. https://doi.org/10.52396/JUSTC-2023-0057
    13. Ngoc‐Anh Nguyen, Olivier Schneegans, Raphaël Salot, Yann Lamy, John Giapintzakis, Van Huy Mai, Sami Oukassi. An Ultralow Power Li x TiO 2 ‐Based Synaptic Transistor for Scalable Neuromorphic Computing. Advanced Electronic Materials 2022, 8 (12) https://doi.org/10.1002/aelm.202200607
    14. Junxiu Wu, Hao-Wen Liu, Anwen Tang, Weifeng Zhang, Hwo-Shuenn Sheu, Jyh-Fu Lee, Yen-Fa Liao, Shuping Huang, Mingdeng Wei, Nae-Lih Wu. Unexpected reversible crystalline/amorphous (de)lithiation transformations enabling fast (dis)charge of high-capacity anatase mesocrystal anode. Nano Energy 2022, 102 , 107715. https://doi.org/10.1016/j.nanoen.2022.107715
    15. Jiao Chen, Qiuying Xia, Wei Liu, Hui Xia. Enhancing the lithium storage capability of TiO2 thin film for all-solid-state microbatteries via amorphous-crystalline heterostructure design. Applied Physics Letters 2022, 121 (13) https://doi.org/10.1063/5.0117083
    16. Wessel van den Bergh, Morgan Stefik. Understanding Rapid Intercalation Materials One Parameter at a Time. Advanced Functional Materials 2022, 32 (31) https://doi.org/10.1002/adfm.202204126
    17. Wessel van den Bergh, Taylor Larison, Maximiliano Jesus Jara Fornerod, Stefan Guldin, Morgan Stefik. Faster Intercalation Pseudocapacitance Enabled by Adjustable Amorphous Titania Where Tunable Isomorphic Architectures Reveal Accelerated Lithium Diffusivity. Batteries & Supercaps 2022, 5 (7) https://doi.org/10.1002/batt.202200122
    18. Wessel van den Bergh, Sean Wechsler, Hasala Nadeesini Lokupitiya, Lauren Jarocha, Kwangnam Kim, James Chapman, Kyoung E. Kweon, Brandon C. Wood, Steve Heald, Morgan Stefik. Amorphization of Pseudocapacitive T−Nb 2 O 5 Accelerates Lithium Diffusivity as Revealed Using Tunable Isomorphic Architectures. Batteries & Supercaps 2022, 5 (6) https://doi.org/10.1002/batt.202200056
    19. Henghan Dai, Jinyuan Zhou, Gang Qin, Gengzhi Sun. Enhanced Jahn–Teller distortion boosts molybdenum trioxide's superior lithium ion storage capability. Dalton Transactions 2022, 51 (2) , 524-531. https://doi.org/10.1039/D1DT03580K
    20. Tae Wook Heo, Andrew Grieder, Bo Wang, Marissa Wood, Tim Hsu, Sneha A. Akhade, Liwen F. Wan, Long-Qing Chen, Nicole Adelstein, Brandon C. Wood. Microstructural impacts on ionic conductivity of oxide solid electrolytes from a combined atomistic-mesoscale approach. npj Computational Materials 2021, 7 (1) https://doi.org/10.1038/s41524-021-00681-8
    21. Brandon C. Wood, Joel B. Varley, Kyoung E. Kweon, Patrick Shea, Alex T. Hall, Andrew Grieder, Michael Ward, Vincent P. Aguirre, Dylan Rigling, Eduardo Lopez Ventura, Chimara Stancill, Nicole Adelstein. Paradigms of frustration in superionic solid electrolytes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2021, 379 (2211) https://doi.org/10.1098/rsta.2019.0467
    22. Yuan Liu, Chenfeng Ding, Xiaodong Yan, Peitao Xie, Bingqing Xu, Lili Chen, Yaochun Liu, Chunzhao Liu, Yunhua Yu, Yuanhua Lin. Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage. Chemical Engineering Journal 2021, 420 , 129894. https://doi.org/10.1016/j.cej.2021.129894
    23. Tongshuai Wang, Siwei Liang, Zhen Qi, Monika Biener, Thomas Voisin, Joshua A. Hammons, Ich C. Tran, Marcus A. Worsley, Tom Braun, Y. Morris Wang, Juergen Biener, Theodore Baumann, Sangil Kim, Jianchao Ye. A 3D nm-thin biomimetic membrane for ultimate molecular separation. Materials Horizons 2020, 7 (9) , 2422-2430. https://doi.org/10.1039/D0MH00853B
    24. Zhang Xinyue, Shubham Kaushik, Kazuhiko Matsumoto, Rika Hagiwara. High-Performance Sodium Secondary Batteries Using Synergistic Effect of Amorphous SiP 2 /C Anode and Ionic Liquid Electrolyte. Journal of The Electrochemical Society 2020, 167 (7) , 070514. https://doi.org/10.1149/1945-7111/ab69f8

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 24, 8871–8882
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.8b04002
    Published November 29, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    1260

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.