ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Super-Resolution Imaging and Plasmonics

View Author Information
Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
Cite this: Chem. Rev. 2017, 117, 11, 7538–7582
Publication Date (Web):January 13, 2017
https://doi.org/10.1021/acs.chemrev.6b00547
Copyright © 2017 American Chemical Society

    Article Views

    9615

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 235 publications.

    1. Saaj Chattopadhyay, Maciej Lipok, Zechariah J. Pfaffenberger, Joanna Olesiak-Bańska, Julie S. Biteen. Single-Particle Photoluminescence Measures a Heterogeneous Distribution of Differential Circular Absorbance of Gold Nanoparticle Aggregates near Constricted Thioflavin T Molecules. The Journal of Physical Chemistry Letters 2024, 15 (6) , 1618-1622. https://doi.org/10.1021/acs.jpclett.3c03450
    2. Jayanta Dolai, Reeddhi Ray, Santu Ghosh, Anupam Maity, Nikhil R. Jana. Optical Nanomaterials for Advanced Bioimaging Applications. ACS Applied Optical Materials 2024, 2 (1) , 1-14. https://doi.org/10.1021/acsaom.3c00357
    3. Meikun Shen, William H. Rackers, Bryce Sadtler. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. Chemical & Biomedical Imaging 2023, 1 (8) , 692-715. https://doi.org/10.1021/cbmi.3c00075
    4. Zhang Quan Wu, Yun Peng Ma, Hui Liu, Cheng Zhi Huang, Jun Zhou. High Confidence Single Particle Analysis with Machine Learning. Analytical Chemistry 2023, 95 (41) , 15375-15383. https://doi.org/10.1021/acs.analchem.3c03297
    5. Polina Bainova, Jean-Patrick Joly, Marie Urbanova, Daria Votkina, Mariia Erzina, Barbora Vokata, Andrii Trelin, Premysl Fitl, Gérard Audran, Nicolas Vanthuyne, Jaromír Vinklarek, Václav Svorcik, Pavel Postnikov, Sylvain R. A. Marque, Oleksiy Lyutakov. Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis. ACS Catalysis 2023, 13 (19) , 12859-12867. https://doi.org/10.1021/acscatal.3c02958
    6. Emiko Kazuma, Minhui Lee, Jaehoon Jung, Michael Trenary, Yousoo Kim. Real-Space Observations of Multiple Reaction Pathways Enabled by Plasmonic Hot Carriers. The Journal of Physical Chemistry C 2023, 127 (23) , 10953-10959. https://doi.org/10.1021/acs.jpcc.3c01916
    7. Zechariah J. Pfaffenberger, Saaj Chattopadhyay, Julie S. Biteen. Far-Field Polarization Optics Control the Nanometer-Scale Pattern of High-Fluorescence Dissymmetry Emission from Achiral Molecules near Plasmonic Nanodimers. The Journal of Physical Chemistry C 2023, 127 (20) , 9663-9672. https://doi.org/10.1021/acs.jpcc.3c00467
    8. Grayson R. Hoy, Grace A. DeSalvo, Sophia H. Haile, Emma N. Smith, Kristin L. Wustholz. Rapid, Accurate Classification of Single Emitters in Various Conditions and Environments for Blinking-Based Multiplexing. The Journal of Physical Chemistry A 2023, 127 (15) , 3518-3525. https://doi.org/10.1021/acs.jpca.3c00917
    9. Peihong Cheng, Hongxia Zhao, Jingrui Wang, Zhiqun Ding, Zhuoyuan Wang, Fei Zhuge. CoSi Nanostructures Prepared by Laser Ablation as Plasmonic Absorbers for Photothermal Conversion. ACS Applied Optical Materials 2023, 1 (2) , 552-557. https://doi.org/10.1021/acsaom.2c00131
    10. Naoki Ichiji, Hibiki Kikuchi, Murat Yessenov, Kenneth L. Schepler, Ayman F. Abouraddy, Atsushi Kubo. Observation of Ultrabroadband Striped Space-Time Surface Plasmon Polaritons. ACS Photonics 2023, 10 (2) , 374-382. https://doi.org/10.1021/acsphotonics.2c00296
    11. Donatello Pagnotto, Alina Muravitskaya, David M. Benoit, Jean-Sebastien G. Bouillard, Ali M. Adawi. Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps Containing an Organic Semiconductor. ACS Applied Optical Materials 2023, 1 (1) , 500-506. https://doi.org/10.1021/acsaom.2c00135
    12. Nhat M. Ngo, Hung-Vu Tran, T. Randall Lee. Plasmonic Nanostars: Systematic Review of their Synthesis and Applications. ACS Applied Nano Materials 2022, 5 (10) , 14051-14091. https://doi.org/10.1021/acsanm.2c02533
    13. Hankyul Lee, Hyungjun Park, Gyu Jin Yeon, Zee Hwan Kim. Amplitude and Phase Spectra of Light Scattered from a Single Nanoparticle. ACS Photonics 2022, 9 (9) , 3052-3059. https://doi.org/10.1021/acsphotonics.2c00803
    14. Deben N. Shoup, Brian T. Scarpitti, Zachary D. Schultz. A Wide-Field Imaging Approach for Simultaneous Super-Resolution Surface-Enhanced Raman Scattering Bioimaging and Spectroscopy. ACS Measurement Science Au 2022, 2 (4) , 332-341. https://doi.org/10.1021/acsmeasuresciau.2c00013
    15. Jazlynn C. Sikes, Kevin Wonner, Aaron Nicholson, Paolo Cignoni, Ingrid Fritsch, Kristina Tschulik. Characterization of Nanoparticles in Diverse Mixtures Using Localized Surface Plasmon Resonance and Nanoparticle Tracking by Dark-Field Microscopy with Redox Magnetohydrodynamics Microfluidics. ACS Physical Chemistry Au 2022, 2 (4) , 289-298. https://doi.org/10.1021/acsphyschemau.1c00046
    16. Siyu Chen, Shirui Weng, Yuan-hui Xiao, Pan Li, Miao Qin, Guoliang Zhou, Ronglu Dong, Liangbao Yang, De-yin Wu, Zhong-qun Tian. Insight into the Heterogeneity of Longitudinal Plasmonic Field in a Nanocavity Using an Intercalated Two-Dimensional Atomic Crystal Probe with a ∼7 Å Resolution. Journal of the American Chemical Society 2022, 144 (29) , 13174-13183. https://doi.org/10.1021/jacs.2c03081
    17. Grace A. DeSalvo, Grayson R. Hoy, Isabelle M. Kogan, John Z. Li, Elise T. Palmer, Emilio Luz-Ricca, Paul Scemama de Gialluly, Kristin L. Wustholz. Blinking-Based Multiplexing: A New Approach for Differentiating Spectrally Overlapped Emitters. The Journal of Physical Chemistry Letters 2022, 13 (22) , 5056-5060. https://doi.org/10.1021/acs.jpclett.2c01252
    18. Nathan C. Lindquist, Ariadne Tückmantel Bido, Alexandre G. Brolo. Single-Molecule SERS Hotspot Dynamics in Both Dry and Aqueous Environments. The Journal of Physical Chemistry C 2022, 126 (16) , 7117-7126. https://doi.org/10.1021/acs.jpcc.2c00319
    19. Venkata Swaroopa Datta Devulapalli, Rinku Kushwaha, Edwin Ovalle, Himan Dev Singh, Pragalbh Shekhar, Debanjan Chakraborty, Chathakudath Prabhakaran Vinod, Ramanathan Vaidhyanathan, Eric Borguet. Synergistic Electronic Effects in AuCo Nanoparticles Stabilized in a Triazine-Based Covalent Organic Framework: A Catalyst for Methyl Orange and Methylene Blue Reduction. ACS Applied Nano Materials 2022, 5 (4) , 4744-4753. https://doi.org/10.1021/acsanm.1c04212
    20. Ming Ke Song, Yun Peng Ma, Hui Liu, Ping Ping Hu, Cheng Zhi Huang, Jun Zhou. High Resolution of Plasmonic Resonance Scattering Imaging with Deep Learning. Analytical Chemistry 2022, 94 (11) , 4610-4616. https://doi.org/10.1021/acs.analchem.1c04330
    21. Shasha Liu, Mengqi Lv, Haoran Li, Sa Wang, Chengdong Feng, Xiaoliang Wang, Wenbing Hu, Wei Wang. Optical Imaging of the Molecular Mobility of Single Polystyrene Nanospheres. Journal of the American Chemical Society 2022, 144 (3) , 1267-1273. https://doi.org/10.1021/jacs.1c10575
    22. Sangwon Park, Gyu Jin Yeon, Hankyul Lee, Hyun-Hang Shin, Zee Hwan Kim. Self-Referenced SERS Thermometry of Molecules on a Metallic Nanostructure. The Journal of Physical Chemistry C 2022, 126 (1) , 451-458. https://doi.org/10.1021/acs.jpcc.1c09717
    23. Carlos Diego L. de Albuquerque, Chelsea M. Zoltowski, Brian T. Scarpitti, Deben N. Shoup, Zachary D. Schultz. Spectrally Resolved Surface-Enhanced Raman Scattering Imaging Reveals Plasmon-Mediated Chemical Transformations. ACS Nanoscience Au 2021, 1 (1) , 38-46. https://doi.org/10.1021/acsnanoscienceau.1c00031
    24. Zhuangqiang Gao, Yujing Song, Te Yi Hsiao, Jiacheng He, Chuanyu Wang, Jialiang Shen, Alana MacLachlan, Siyuan Dai, Benjamin H. Singer, Katsuo Kurabayashi, Pengyu Chen. Machine-Learning-Assisted Microfluidic Nanoplasmonic Digital Immunoassay for Cytokine Storm Profiling in COVID-19 Patients. ACS Nano 2021, 15 (11) , 18023-18036. https://doi.org/10.1021/acsnano.1c06623
    25. Katherine A. Willets . Emerging Trends in Super-resolution Imaging: How Lasers Light the Way. , 255-276. https://doi.org/10.1021/bk-2021-1398.ch012
    26. Frank Bloksma, Peter Zijlstra. Imaging and Localization of Single Emitters near Plasmonic Particles of Different Size, Shape, and Material. The Journal of Physical Chemistry C 2021, 125 (40) , 22084-22092. https://doi.org/10.1021/acs.jpcc.1c06665
    27. Jong Sung Moon, Haneul Lee, Jin Hee Lee, Woong Bae Jeon, Dowon Lee, Junghyun Lee, Seoyoung Paik, Sang-Wook Han, Rolf Reuter, Andrej Denisenko, Jörg Wrachtrup, Sang-Yun Lee, Je-Hyung Kim. High-Resolution, High-Contrast Optical Interface for Defect Qubits. ACS Photonics 2021, 8 (9) , 2642-2649. https://doi.org/10.1021/acsphotonics.1c00576
    28. Chengcheng Rao, Brian C. Olsen, Erik J. Luber, Jillian M. Buriak. Kinetics of Plasmon-Driven Hydrosilylation of Silicon Surfaces: Photogenerated Charges Drive Silicon–Carbon Bond Formation. The Journal of Physical Chemistry C 2021, 125 (32) , 17983-17992. https://doi.org/10.1021/acs.jpcc.1c04738
    29. Zhou Zeng, Prabhu K. Venuthurumilli, Xianfan Xu. Inverse Design of Plasmonic Structures with FDTD. ACS Photonics 2021, 8 (5) , 1489-1496. https://doi.org/10.1021/acsphotonics.1c00260
    30. Changhyoup Lee, Benjamin Lawrie, Raphael Pooser, Kwang-Geol Lee, Carsten Rockstuhl, Mark Tame. Quantum Plasmonic Sensors. Chemical Reviews 2021, 121 (8) , 4743-4804. https://doi.org/10.1021/acs.chemrev.0c01028
    31. Nathan C. Lindquist, Alexandre G. Brolo. Ultra-High-Speed Dynamics in Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C 2021, 125 (14) , 7523-7532. https://doi.org/10.1021/acs.jpcc.0c11150
    32. Tinglian Yuan, Wei Wei, Wenxuan Jiang, Wei Wang. Vertical Diffusion of Ions within Single Particles during Electrochemical Charging. ACS Nano 2021, 15 (2) , 3522-3528. https://doi.org/10.1021/acsnano.1c00431
    33. Ming Ke Song, Shan Xiong Chen, Ping Ping Hu, Cheng Zhi Huang, Jun Zhou. Automated Plasmonic Resonance Scattering Imaging Analysis via Deep Learning. Analytical Chemistry 2021, 93 (4) , 2619-2626. https://doi.org/10.1021/acs.analchem.0c04763
    34. Saaj Chattopadhyay, Julie S. Biteen. Super-Resolution Characterization of Heterogeneous Light–Matter Interactions between Single Dye Molecules and Plasmonic Nanoparticles. Analytical Chemistry 2021, 93 (1) , 430-444. https://doi.org/10.1021/acs.analchem.0c04280
    35. W. E. Moerner. Viewpoint: Single Molecules at 31: What’s Next?. Nano Letters 2020, 20 (12) , 8427-8429. https://doi.org/10.1021/acs.nanolett.0c04042
    36. Zhe Qiang, Muzhou Wang. 100th Anniversary of Macromolecular Science Viewpoint: Enabling Advances in Fluorescence Microscopy Techniques. ACS Macro Letters 2020, 9 (9) , 1342-1356. https://doi.org/10.1021/acsmacrolett.0c00506
    37. Issam Kherbouche, Yun Luo, Nordin Félidj, Claire Mangeney. Plasmon-Mediated Surface Functionalization: New Horizons for the Control of Surface Chemistry on the Nanoscale. Chemistry of Materials 2020, 32 (13) , 5442-5454. https://doi.org/10.1021/acs.chemmater.0c00921
    38. Zhigao Dai, Guangwei Hu, Qingdong Ou, Lei Zhang, Fengnian Xia, Francisco J. Garcia-Vidal, Cheng-Wei Qiu, Qiaoliang Bao. Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews 2020, 120 (13) , 6197-6246. https://doi.org/10.1021/acs.chemrev.9b00592
    39. Si-Min Lu, Yue-Yi Peng, Yi-Lun Ying, Yi-Tao Long. Electrochemical Sensing at a Confined Space. Analytical Chemistry 2020, 92 (8) , 5621-5644. https://doi.org/10.1021/acs.analchem.0c00931
    40. Amanpreet Singh, Deepak Bains, Walid M. Hassen, Narinder Singh, Jan J. Dubowski. Formation of a Au/Au9Ga4 Alloy Nanoshell on a Bacterial Surface through Galvanic Displacement Reaction for High-Contrast Imaging. ACS Applied Bio Materials 2020, 3 (1) , 477-485. https://doi.org/10.1021/acsabm.9b00932
    41. Mengmeng Liu, Xiuhai Mao, Lulu Huang, Chunhai Fan, Yang Tian, Qian Li. Automated Nanoplasmonic Analysis of Spherical Nucleic Acids Clusters in Single Cells. Analytical Chemistry 2020, 92 (1) , 1333-1339. https://doi.org/10.1021/acs.analchem.9b04500
    42. Rituraj Borah, Sammy W. Verbruggen. Coupled Plasmon Modes in 2D Gold Nanoparticle Clusters and Their Effect on Local Temperature Control. The Journal of Physical Chemistry C 2019, 123 (50) , 30594-30603. https://doi.org/10.1021/acs.jpcc.9b09048
    43. Zhongju Ye, Xin Wang, Lehui Xiao. Single-Particle Tracking with Scattering-Based Optical Microscopy. Analytical Chemistry 2019, 91 (24) , 15327-15334. https://doi.org/10.1021/acs.analchem.9b02760
    44. Jun Ando, Akihiko Nakamura, Mayuko Yamamoto, Chihong Song, Kazuyoshi Murata, Ryota Iino. Multicolor High-Speed Tracking of Single Biomolecules with Silver, Gold, and Silver–Gold Alloy Nanoparticles. ACS Photonics 2019, 6 (11) , 2870-2883. https://doi.org/10.1021/acsphotonics.9b00953
    45. Jia Gao, Xiang Wo, Yongjie Wang, Minghe Li, Chunyuan Zhou, Wei Wang. Postrecording Pixel-Reconstruction Approach for Correcting the Lateral Drifts in Surface Plasmon Resonance Microscope. Analytical Chemistry 2019, 91 (21) , 13620-13626. https://doi.org/10.1021/acs.analchem.9b02804
    46. Julian Gargiulo, Rodrigo Berté, Yi Li, Stefan A. Maier, Emiliano Cortés. From Optical to Chemical Hot Spots in Plasmonics. Accounts of Chemical Research 2019, 52 (9) , 2525-2535. https://doi.org/10.1021/acs.accounts.9b00234
    47. Tiancheng Zuo, Harrison J. Goldwyn, Benjamin P. Isaacoff, David J. Masiello, Julie S. Biteen. Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods. The Journal of Physical Chemistry Letters 2019, 10 (17) , 5047-5054. https://doi.org/10.1021/acs.jpclett.9b02270
    48. Yasutaka Kitahama, Misato Funaoka, Yukihiro Ozaki. Plasmon-Enhanced Optical Tweezers for Single Molecules on and near a Colloidal Silver Nanoaggregate. The Journal of Physical Chemistry C 2019, 123 (29) , 18001-18006. https://doi.org/10.1021/acs.jpcc.9b05626
    49. Tao Liu, Shasha Liu, Wenxuan Jiang, Wei Wang. Tracking Sub-Nanometer Shift in the Scattering Centroid of Single Gold Nanorods during Electrochemical Charging. ACS Nano 2019, 13 (6) , 6279-6286. https://doi.org/10.1021/acsnano.8b09636
    50. Katherine A. Willets. Supercharging Superlocalization Microscopy: How Electrochemical Charging of Plasmonic Nanostructures Uncovers Hidden Heterogeneity. ACS Nano 2019, 13 (6) , 6145-6150. https://doi.org/10.1021/acsnano.9b04062
    51. Xiaoyu Cheng, Taryn P. Anthony, Claire A. West, Zhongwei Hu, Vignesh Sundaresan, Aaron J. McLeod, David J. Masiello, Katherine A. Willets. Plasmon Heating Promotes Ligand Reorganization on Single Gold Nanorods. The Journal of Physical Chemistry Letters 2019, 10 (6) , 1394-1401. https://doi.org/10.1021/acs.jpclett.9b00079
    52. Rashad Baiyasi, Seyyed Ali Hosseini Jebeli, Qingfeng Zhang, Liang Su, Johan Hofkens, Hiroshi Uji-i, Stephan Link, Christy F. Landes. PSF Distortion in Dye–Plasmonic Nanomaterial Interactions: Friend or Foe?. ACS Photonics 2019, 6 (3) , 699-708. https://doi.org/10.1021/acsphotonics.8b01576
    53. Brock Doiron, Mónica Mota, Matthew P. Wells, Ryan Bower, Andrei Mihai, Yi Li, Lesley F. Cohen, Neil McN. Alford, Peter K. Petrov, Rupert F. Oulton, Stefan A. Maier. Quantifying Figures of Merit for Localized Surface Plasmon Resonance Applications: A Materials Survey. ACS Photonics 2019, 6 (2) , 240-259. https://doi.org/10.1021/acsphotonics.8b01369
    54. Diego P. dos Santos, Marcia L. A. Temperini, Alexandre G. Brolo. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering. Accounts of Chemical Research 2019, 52 (2) , 456-464. https://doi.org/10.1021/acs.accounts.8b00563
    55. Ibrahim Misbah, Fusheng Zhao, Wei-Chuan Shih. Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold–Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing. ACS Applied Materials & Interfaces 2019, 11 (2) , 2273-2281. https://doi.org/10.1021/acsami.8b17876
    56. Cameron L. Bentley, James Edmondson, Gabriel N. Meloni, David Perry, Viacheslav Shkirskiy, Patrick R. Unwin. Nanoscale Electrochemical Mapping. Analytical Chemistry 2019, 91 (1) , 84-108. https://doi.org/10.1021/acs.analchem.8b05235
    57. Kevin Wonner, Mathies V. Evers, Kristina Tschulik. Simultaneous Opto- and Spectro-Electrochemistry: Reactions of Individual Nanoparticles Uncovered by Dark-Field Microscopy. Journal of the American Chemical Society 2018, 140 (40) , 12658-12661. https://doi.org/10.1021/jacs.8b02367
    58. Anna Bezryadina, Junxiang Zhao, Yang Xia, Xiang Zhang, Zhaowei Liu. High Spatiotemporal Resolution Imaging with Localized Plasmonic Structured Illumination Microscopy. ACS Nano 2018, 12 (8) , 8248-8254. https://doi.org/10.1021/acsnano.8b03477
    59. Harrison J. Goldwyn, Kevin C. Smith, Jacob A. Busche, David J. Masiello. Mislocalization in Plasmon-Enhanced Single-Molecule Fluorescence Microscopy as a Dynamical Young’s Interferometer. ACS Photonics 2018, 5 (8) , 3141-3151. https://doi.org/10.1021/acsphotonics.8b00372
    60. Soumyadyuti Samai, Tina Lok Yee Choi, Kathryn N. Guye, Yunqi Yan, David S. Ginger. Plasmonic Nanoparticle Dimers with Reversibly Photoswitchable Interparticle Distances Linked by DNA. The Journal of Physical Chemistry C 2018, 122 (25) , 13363-13370. https://doi.org/10.1021/acs.jpcc.7b10181
    61. Ningmu Zou, Guanqun Chen, Xianwen Mao, Hao Shen, Eric Choudhary, Xiaochun Zhou, Peng Chen. Imaging Catalytic Hotspots on Single Plasmonic Nanostructures via Correlated Super-Resolution and Electron Microscopy. ACS Nano 2018, 12 (6) , 5570-5579. https://doi.org/10.1021/acsnano.8b01338
    62. Adam Ferrick, Mei Wang, Taylor J. Woehl. Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields. Langmuir 2018, 34 (21) , 6237-6248. https://doi.org/10.1021/acs.langmuir.8b00992
    63. Vivek Garg, Brajendra S. Sengar, Vishnu Awasthi, Amitesh Kumar, Rohit Singh, Shailendra Kumar, C. Mukherjee, V. V. Atuchin, and Shaibal Mukherjee . Investigation of Dual-Ion Beam Sputter-Instigated Plasmon Generation in TCOs: A Case Study of GZO. ACS Applied Materials & Interfaces 2018, 10 (6) , 5464-5474. https://doi.org/10.1021/acsami.7b15103
    64. Vignesh Sundaresan, Joseph W. Monaghan, and Katherine A. Willets . Visualizing the Effect of Partial Oxide Formation on Single Silver Nanoparticle Electrodissolution. The Journal of Physical Chemistry C 2018, 122 (5) , 3138-3145. https://doi.org/10.1021/acs.jpcc.7b11824
    65. Martin Kluenker, Mihail Mondeshki, Muhammad Nawaz Tahir, and Wolfgang Tremel . Monitoring Thiol–Ligand Exchange on Au Nanoparticle Surfaces. Langmuir 2018, 34 (4) , 1700-1710. https://doi.org/10.1021/acs.langmuir.7b04015
    66. Cloudy Carnegie, Rohit Chikkaraddy, Felix Benz, Bart de Nijs, William M. Deacon, Matthew Horton, Wenting Wang, Charlie Readman, Steven J. Barrow, Oren A. Scherman, and Jeremy J. Baumberg . Mapping SERS in CB:Au Plasmonic Nanoaggregates. ACS Photonics 2017, 4 (11) , 2681-2686. https://doi.org/10.1021/acsphotonics.7b00902
    67. Yun Yu, Vignesh Sundaresan, Sabyasachi Bandyopadhyay, Yulun Zhang, Martin A. Edwards, Kim McKelvey, Henry S. White, and Katherine A. Willets . Three-Dimensional Super-resolution Imaging of Single Nanoparticles Delivered by Pipettes. ACS Nano 2017, 11 (10) , 10529-10538. https://doi.org/10.1021/acsnano.7b05902
    68. Minkyung Kang, David Perry, Cameron L. Bentley, Geoff West, Ashley Page, Patrick R. Unwin. Simultaneous Topography and Reaction Flux Mapping at and around Electrocatalytic Nanoparticles. ACS Nano 2017, 11 (9) , 9525-9535. https://doi.org/10.1021/acsnano.7b05435
    69. Adam B. Taylor and Peter Zijlstra . Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sensors 2017, 2 (8) , 1103-1122. https://doi.org/10.1021/acssensors.7b00382
    70. Tao Li, Fanwei Zhang, Qiang Li, Wenye Rao, Pei Xu, Lei Xu, and Li-Jun Wu . Revealing the Mechanism of Photoluminescence from Single Gold Nanospheres by Defocused Imaging. ACS Photonics 2017, 4 (8) , 2003-2010. https://doi.org/10.1021/acsphotonics.7b00376
    71. Julie Biteen , Katherine A. Willets . Introduction: Super-Resolution and Single-Molecule Imaging. Chemical Reviews 2017, 117 (11) , 7241-7243. https://doi.org/10.1021/acs.chemrev.7b00242
    72. Amelia G. Seabury, Alisha J. Khodabocus, Isabelle M. Kogan, Grayson R. Hoy, Grace A. DeSalvo, Kristin L. Wustholz. Blinking characteristics of organic fluorophores for blink-based multiplexing. Communications Chemistry 2024, 7 (1) https://doi.org/10.1038/s42004-024-01106-5
    73. Changhong Dai, Tong Liu, Dongyi Wang, Lei Zhou. Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces. PhotoniX 2024, 5 (1) https://doi.org/10.1186/s43074-024-00128-5
    74. Yao Deng, Wenhao Xu, Wenshuai Zhang, Qiang Yang, Dingyu Xu, Hailu Luo. Rotational photonic spin Hall effect on twisted bilayer metasurfaces. Optics Communications 2024, 560 , 130480. https://doi.org/10.1016/j.optcom.2024.130480
    75. Yuzhao Zhang, Xuan Liu, Chao Feng, Yanqi Liu, Yan Zhao. Centimeter-scale, low-cost plasmonic structural color device prepared by AAO template method. Optical Materials 2024, 152 , 115453. https://doi.org/10.1016/j.optmat.2024.115453
    76. Meng Yu, Xiaohui Tang, Zhenhua Li, Weidong Wang, Shaopeng Wang, Min Li, Qiuliyang Yu, Sijia Xie, Xiaolei Zuo, Chang Chen. High-throughput DNA synthesis for data storage. Chemical Society Reviews 2024, 53 (9) , 4463-4489. https://doi.org/10.1039/D3CS00469D
    77. Pavel Pleskunov, Mariia Protsak, Zdeněk Krtouš, Tereza Košutová, Marco Tosca, Kateryna Biliak, Veronika Červenková, Daniil Nikitin, Jan Hanuš, Miroslav Cieslar, Ivan Gordeev, Milan Dopita, Michael Vorochta, Jaroslav Kousal, Ludvik Martinu, Andrei Choukourov. Refractory Plasmonics of Reactively Sputtered Hafnium Nitride Nanoparticles: Pushing Limits. Advanced Optical Materials 2024, 12 (13) https://doi.org/10.1002/adom.202302715
    78. Miao-Yi 妙怡 Deng 邓, Xing 星 Zhu 朱. A historical overview of nano-optics: From near-field optics to plasmonics. Chinese Physics B 2024, 33 (5) , 050703. https://doi.org/10.1088/1674-1056/ad2a77
    79. Vahid Abbasian, Kashif M. Awan, Arash Darafsheh, , , . Design and fabrication of universal resolution targets for microsphere-assisted microscopy. 2024, 2. https://doi.org/10.1117/12.3000274
    80. Naoki Ichiji, Murat Yessenov, Kenneth L. Schepler, Ayman F. Abouraddy, Atsushi Kubo. Exciting space-time surface plasmon polaritons by irradiating a nanoslit structure. Journal of the Optical Society of America A 2024, 41 (3) , 396. https://doi.org/10.1364/JOSAA.508044
    81. A. S. Fedorov, M. A. Visotin, A. V. Lukyanenko, V. S. Gerasimov, A. S. Aleksandrovsky. Intense charge transfer plasmons in golden nanoparticle dimers connected by conductive molecular linkers. The Journal of Chemical Physics 2024, 160 (8) https://doi.org/10.1063/5.0183334
    82. Mike Hardy, Pola Goldberg Oppenheimer. ‘When is a hotspot a good nanospot’ – review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms. Nanoscale 2024, 16 (7) , 3293-3323. https://doi.org/10.1039/D3NR05332F
    83. Yanan 亚南 Dai 戴. Ultrafast photoemission electron microscopy: A multidimensional probe of nonequilibrium physics. Chinese Physics B 2024, 33 (3) , 038703. https://doi.org/10.1088/1674-1056/ad174a
    84. M. Serra González, M. Keil, R. Deshpande, S. Kadkhodazadeh, N. Okulova, R. J. Taboryski. Design and large-scale nanofabrication of plasmonic solar light absorbers. Journal of Vacuum Science & Technology B 2023, 41 (6) https://doi.org/10.1116/6.0002998
    85. Vasily N. Astratov, Yair Ben Sahel, Yonina C. Eldar, Luzhe Huang, Aydogan Ozcan, Nikolay Zheludev, Junxiang Zhao, Zachary Burns, Zhaowei Liu, Evgenii Narimanov, Neha Goswami, Gabriel Popescu, Emanuel Pfitzner, Philipp Kukura, Yi‐Teng Hsiao, Chia‐Lung Hsieh, Brian Abbey, Alberto Diaspro, Aymeric LeGratiet, Paolo Bianchini, Natan T. Shaked, Bertrand Simon, Nicolas Verrier, Matthieu Debailleul, Olivier Haeberlé, Sheng Wang, Mengkun Liu, Yeran Bai, Ji‐Xin Cheng, Behjat S. Kariman, Katsumasa Fujita, Moshe Sinvani, Zeev Zalevsky, Xiangping Li, Guan‐Jie Huang, Shi‐Wei Chu, Omer Tzang, Dror Hershkovitz, Ori Cheshnovsky, Mikko J. Huttunen, Stefan G. Stanciu, Vera N. Smolyaninova, Igor I. Smolyaninov, Ulf Leonhardt, Sahar Sahebdivan, Zengbo Wang, Boris Luk'yanchuk, Limin Wu, Alexey V. Maslov, Boya Jin, Constantin R. Simovski, Stephane Perrin, Paul Montgomery, Sylvain Lecler. Roadmap on Label‐Free Super‐Resolution Imaging. Laser & Photonics Reviews 2023, 17 (12) https://doi.org/10.1002/lpor.202200029
    86. Zachary D. Schultz. Raman Scattering for Label-Free Chemical Imaging. Spectroscopy 2023, , 34-39. https://doi.org/10.56530/spectroscopy.uj1082r1
    87. Mingwei Tang, Qing Yang. Spatial‐frequency‐shift Super‐resolution Imaging Based on Micro/nanomaterials. 2023, 175-213. https://doi.org/10.1002/9783527835201.ch6
    88. YuLu QIN, Rui WANG, YunQuan LIU. Ultrafast photoelectron imaging with high spatiotemporal and energy resolution. SCIENTIA SINICA Physica, Mechanica & Astronomica 2023, 53 (10) , 100003. https://doi.org/10.1360/SSPMA-2022-0442
    89. Yujie Guo, Zhenyu Xu, Alberto G. Curto, Yu-Jia Zeng, Dries Van Thourhout. Plasmonic semiconductors: materials, tunability and applications. Progress in Materials Science 2023, 138 , 101158. https://doi.org/10.1016/j.pmatsci.2023.101158
    90. Do T. Nga, Anh D. Phan, Thudsaphungthong Julie, Nam B. Le, Chu Viet Ha. Photo-to-heat conversion of broadband metamaterial absorbers based on TiN nanoparticles under laser and solar illumination. Materials Today Communications 2023, 35 , 105794. https://doi.org/10.1016/j.mtcomm.2023.105794
    91. Xin Zhu, Jingyun Zhang, Cuihong Yang, Ying Li, Yunyun Chen. Evolutionary Plasmonic Properties of Single Truncated Ag Nanowire-on-Au Film Nanocavity. Chinese Physics Letters 2023, 40 (5) , 057801. https://doi.org/10.1088/0256-307X/40/5/057801
    92. Satyam Suman, Jakkula Pravalika, Pulluru Manjula, Umar Farooq. Gender and CVD- Does It Really Matters?. Current Problems in Cardiology 2023, 48 (5) , 101604. https://doi.org/10.1016/j.cpcardiol.2023.101604
    93. Do T. Nga, Thudsaphungthong Julie, Chu Viet Ha, Chu Thuy Anh, Do Chi Nghia, Anh D. Phan. Optimization of TiN-based ultra-flexible materials for photothermal and solar harvesting applications. Journal of Physics: Conference Series 2023, 2485 (1) , 012003. https://doi.org/10.1088/1742-6596/2485/1/012003
    94. Racheli Ron, Tchiya Zar, Adi Salomon. Linear and Nonlinear Optical Properties of Well‐Defined and Disordered Plasmonic Systems: A Review. Advanced Optical Materials 2023, 11 (5) https://doi.org/10.1002/adom.202201475
    95. Oleg Kameshkov, Vasily Gerasimov, Sergei Kuznetsov. Sensing Performance Analysis of Spiral Metasurface Utilizing Phase Spectra Measurement Technique. Photonics 2023, 10 (3) , 243. https://doi.org/10.3390/photonics10030243
    96. Nannan Li, Qi Zou, Bo Zhao, Changjun Min, Xiaocong Yuan, Michael Somekh, Fu Feng. Near-field manipulation of Tamm plasmon polaritons. Optics Express 2023, 31 (5) , 7321. https://doi.org/10.1364/OE.481440
    97. Yoshio Nakahara, Jun Miyazaki, Aoi Hirono, Takashi Ienaga, Setsuko Yajima. Quantitative Discrimination of Silver and Gold Nanoparticles Immobilized in Transparent Plastic Film by Photothermal Microscopy with Multiwavelength Excitation. Chemistry Letters 2023, 52 (2) , 113-115. https://doi.org/10.1246/cl.220501
    98. Chen Wang, Fuwei Sun, Guokang He, Hongwei Zhao, Li Tian, Yibo Cheng, Guangtao Li. Noble metal nanoparticles meet molecular cages: A tale of integration and synergy. Current Opinion in Colloid & Interface Science 2023, 63 , 101660. https://doi.org/10.1016/j.cocis.2022.101660
    99. Jean-Francois Masson, John S. Biggins, Emilie Ringe. Machine learning for nanoplasmonics. Nature Nanotechnology 2023, 18 (2) , 111-123. https://doi.org/10.1038/s41565-022-01284-0
    100. Xiaoxuan Li, Mingdi Jia, Licheng Yu, Yijun Li, Xiwen He, Langxing Chen, Yukui Zhang. An ultrasensitive label-free biosensor based on aptamer functionalized two-dimensional photonic crystal for kanamycin detection in milk. Food Chemistry 2023, 402 , 134239. https://doi.org/10.1016/j.foodchem.2022.134239
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect