ACS Publications. Most Trusted. Most Cited. Most Read
Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects
My Activity
    Review

    Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
    Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
    § Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
    Luminescent Materials Laboratory, DB, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy
    Center for Functional Materials, NUS Suzhou Research Institute, Suzhou, Jiangsu 215123, P. R. China
    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 2017, 117, 5, 4488–4527
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.6b00691
    Published February 27, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The synthesis of lanthanide-activated phosphors is pertinent to many emerging applications, ranging from high-resolution luminescence imaging to next-generation volumetric full-color display. In particular, the optical processes governed by the 4f-5d transitions of divalent and trivalent lanthanides have been the key to enabling precisely tuned color emission. The fundamental importance of lanthanide-activated phosphors for the physical and biomedical sciences has led to rapid development of novel synthetic methodologies and relevant tools that allow for probing the dynamics of energy transfer processes. Here, we review recent progress in developing methods for preparing lanthanide-activated phosphors, especially those featuring 4f-5d optical transitions. Particular attention will be devoted to two widely studied dopants, Ce3+ and Eu2+. The nature of the 4f-5d transition is examined by combining phenomenological theories with quantum mechanical calculations. An emphasis is placed on the correlation of host crystal structures with the 5d-4f luminescence characteristics of lanthanides, including quantum yield, emission color, decay rate, and thermal quenching behavior. Several parameters, namely Debye temperature and dielectric constant of the host crystal, geometrical structure of coordination polyhedron around the luminescent center, and the accurate energies of 4f and 5d levels, as well as the position of 4f and 5d levels relative to the valence and conduction bands of the hosts, are addressed as basic criteria for high-throughput computational design of lanthanide-activated phosphors.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 822 publications.

    1. Ana M. Toader, Maria C. Buta, Ionel Humelnicu, Werner Urland, Markus Suta, Dumitru-Claudiu Sergentu, Fanica Cimpoesu. Ab Initio Modeling of the Photoluminescence of SrCl2:Eu2+─Direct Comparison between Density Functional and Wave Function Theory-Based Approaches. Inorganic Chemistry 2025, 64 (12) , 5996-6009. https://doi.org/10.1021/acs.inorgchem.4c05073
    2. Leonardo F. Saraiva, Albano N. Carneiro Neto, Airton G. Bispo-Jr. , Mateus M. Quintano, Elfi Kraka, Luís D. Carlos, Sergio A. M. Lima, Ana M. Pires, Renaldo T. Moura Jr. . Role of Vibronic Coupling for the Dynamics of Intersystem Crossing in Eu3+ Complexes: an Avenue for Brighter Compounds. Journal of Chemical Theory and Computation 2025, 21 (6) , 3066-3076. https://doi.org/10.1021/acs.jctc.4c01461
    3. Jinqing Liang, Chao Li, Qi Wu, Lu Yao, Yang Hai, Xunsheng Zhou, Cai Lin Wang. Fast Ce-Doped LiYSiO4/Polymer Composite Scintillators for Multimodal Radiation Detection. The Journal of Physical Chemistry C 2025, 129 (7) , 3798-3808. https://doi.org/10.1021/acs.jpcc.4c07275
    4. Wojciech M. Piotrowski, Justyna Zeler, Vasyl Kinzhybalo, Karolina Ledwa, Paulina Bukowska, Eugeniusz Zych, Lukasz Marciniak. Understanding the Influence of Electron Traps and Urbach States on the Kinetics of Ti3+ Persistent Luminescence in LaAlO3:Ti3+. Inorganic Chemistry 2025, 64 (6) , 3137-3149. https://doi.org/10.1021/acs.inorgchem.5c00390
    5. Fan Fang, Fang Xu, Xue Li, Chong Chen, Nengjie Feng, Yijiao Jiang, Jun Huang. Mechanistic Insights into Potassium-Assistant Thermal-Catalytic Oxidation of Soot over Single-Crystalline SrTiO3 Nanotubes with Ordered Mesopores. ACS Catalysis 2025, 15 (2) , 789-799. https://doi.org/10.1021/acscatal.4c06289
    6. Dayton J. Vogel, Jessica M. Rimsza, Linda E. Hansen, Eric R. Westphal, Caroline Winters. Molecular Origins of Temperature-Dependent X-ray Absorption in YAG:Dy. The Journal of Physical Chemistry C 2025, 129 (2) , 1428-1435. https://doi.org/10.1021/acs.jpcc.4c06104
    7. Ying Lv, Wuqiang Li, Yunkai Li, Mengdi Xu, Yu Liu, Cunjian Lin, Zhongyuan Li, Shihai You. Broadband Near-Infrared Emission of Sm2+ in Highly Stable (Ba,Sr)Al3Si3O4N5 for Encryption and Nondestructive Inspection. ACS Materials Letters 2025, 7 (1) , 68-75. https://doi.org/10.1021/acsmaterialslett.4c01855
    8. Roberto M. Diaz-Rodriguez, Diogo A. Gálico, Daniel Chartrand, Muralee Murugesu. Ligand Effects on the Emission Characteristics of Molecular Eu(II) Luminescence Thermometers. Journal of the American Chemical Society 2024, 146 (49) , 34118-34129. https://doi.org/10.1021/jacs.4c13805
    9. Yukinori Koyama, Yukako Kohriki, Masamichi Harada, Naoto Hirosaki, Takashi Takeda. Accelerating Materials Discovery of Novel Europium(II)-Activated Phosphors through Machine Learning Classification of Europium Valences. Chemistry of Materials 2024, 36 (23) , 11412-11420. https://doi.org/10.1021/acs.chemmater.4c01981
    10. Jaeyeong Ha, Seongbeom Yeon, Jaehwan Lee, Hyungdoh Lee, Himchan Cho. Revealing the Role of Organic Ligands in Deep-Blue-Emitting Colloidal Europium Bromide Perovskite Nanocrystals. ACS Nano 2024, 18 (46) , 31891-31902. https://doi.org/10.1021/acsnano.4c09018
    11. Jiaojiao Wang, Zien Cheng, Rihong Cong, Tao Yang. Structure–Photoluminescence Relationship in Ce3+-Doped K5Y(P2O7)2 and Its Sensitization to Dy3+ with Enhanced White Light Emission. Inorganic Chemistry 2024, 63 (45) , 21488-21498. https://doi.org/10.1021/acs.inorgchem.4c03513
    12. Guanjun Deng, Siwei Zhang, Xinghua Peng, Gongcheng Ma, Luxuan Liu, Yuyu Tan, Ping Gong, Ben Zhong Tang, Lintao Cai, Pengfei Zhang. Methylene Blue: An FDA-Approved NIR-II Fluorogenic Probe with Extremely Low pH Responsibility for Hyperchlorhydria Imaging. Chemical & Biomedical Imaging 2024, 2 (10) , 683-688. https://doi.org/10.1021/cbmi.4c00011
    13. Sergely Steephen Bokouende, Cassandra L. Ward, Matthew J. Allen. Understanding the Coordination Chemistry and Structural and Photophysical Properties of EuII- and SmII-Containing Complexes of Hexamethylhexacyclen and Noncyclic Tetradentate Amines. Inorganic Chemistry 2024, 63 (37) , 16991-17004. https://doi.org/10.1021/acs.inorgchem.4c02590
    14. Ying Ye, Kai Li, Yudong Zhang, Pengbo Lyu, Changfu Xu, Lizhong Sun, Chao Liu. Europium(II)-Doped CsBr Nanocrystals in Glass for Spectrally Stable and Narrow-Band Blue-Light-Emitting Applications. ACS Applied Nano Materials 2024, 7 (17) , 20145-20152. https://doi.org/10.1021/acsanm.4c02954
    15. Nicholas A. Garcia, Victoria C. Tafuri, Rana B. Abdu, Courtney C. Roberts. Elucidating the Impact of Rare Earth or Transition Metal Identity on the Physical and Electronic Structural Properties of a Series of Redox-Active Tris(amido) Complexes. Inorganic Chemistry 2024, 63 (33) , 15283-15293. https://doi.org/10.1021/acs.inorgchem.4c01909
    16. Zheng Lu, Dashuai Sun, Sida Shen, Zeyu Lyu, Luhui Zhou, Pengcheng Luo, Shuai Wei, Hongpeng You. Efficient Energy Transfer for Near-Perfect Quantum Efficiency and Thermal Stability. ACS Applied Materials & Interfaces 2024, 16 (24) , 31304-31312. https://doi.org/10.1021/acsami.4c04067
    17. Gurusamy Sivakumar, Akkarakkaran Thayyil Muhammed Munthasir, Pakkirisamy Thilagar, Srinivasan Natarajan. Mn-Doped Ca14Mg4Ga12O36 with the Tululite Mineral Structure for Color-Tunable Emission. Chemistry of Materials 2024, 36 (11) , 5356-5369. https://doi.org/10.1021/acs.chemmater.3c03267
    18. Xu Li, Xu Chen, Huifang Jiang, Meng Wang, Shuailing Lin, Zhuangzhuang Ma, Hui Wang, Huifang Ji, Mochen Jia, Yanbing Han, Jinyang Zhu, Gencai Pan, Di Wu, Xinjian Li, Wen Xu, Ying Liu, Chong-Xin Shan, Zhifeng Shi. Efficient Deep-Blue Light-Emitting Diodes from Highly Luminescent Eu2+-Doped Alkali Metal Halide Nanocrystals via Lattice Field Modulation. Nano Letters 2024, 24 (22) , 6601-6609. https://doi.org/10.1021/acs.nanolett.4c01155
    19. Ashleigh K. Wilson, John Munga, Tori Furlow, Violet Macauley, Jordan Graham, Asia Jones, Chantel Johnson, Natalia Noginova. Effect of the Growth Conditions on Organic Crystals with Rare Earth Ions and 1,10-Phenanthroline. ACS Omega 2024, 9 (18) , 20206-20213. https://doi.org/10.1021/acsomega.4c00526
    20. Jai Sharma, Brandon Reynolds, Matthew J. Crane, Corinne E. Packard. Revealing the Pressure-Induced Phase Transformation of Xenotime TbPO4 via In Situ Photoluminescence Spectroscopy. The Journal of Physical Chemistry Letters 2024, 15 (16) , 4294-4300. https://doi.org/10.1021/acs.jpclett.4c00196
    21. Qianli Rao, Jing Zhou, Yingying Su, Lichun Zhang, Yang Feng, Yi Lv. Near-Infrared Catalytic Chemiluminescence System based on Zinc Gallate Nanoprobe for Hydrazine Sensing. Analytical Chemistry 2024, 96 (16) , 6373-6380. https://doi.org/10.1021/acs.analchem.4c00254
    22. Takuya Yasunaga, Makoto Kobayashi, Kenji Oqmhula, Huan Qi, Tom Ichibha, Kenta Hongo, Shunsuke Yamamoto, Ryo Maezono, Masaya Mitsuishi, Minoru Osada, Hideki Kato, Masato Kakihana. Multiemission of Ce3+ from a Single Crystallographic Site Induced by Disordering of Ions. Inorganic Chemistry 2024, 63 (2) , 1288-1295. https://doi.org/10.1021/acs.inorgchem.3c03789
    23. Xiang Zhang, Zichun Zhou, Chen Ming, Yi-Yang Sun. GPT-Assisted Learning of Structure–Property Relationships by Graph Neural Networks: Application to Rare-Earth-Doped Phosphors. The Journal of Physical Chemistry Letters 2023, 14 (50) , 11342-11349. https://doi.org/10.1021/acs.jpclett.3c02848
    24. Zheng Lu, Dashuai Sun, Zeyu Lyu, Sida Shen, Shuai Wei, Pengcheng Luo, Luhui Zhou, Hongpeng You. Crystal Field Engineering Yields New 3D Layered Solid Solution Phosphors (Ca/Sr)4MgAl2Si3O14:Eu2+ for White-Light-Emitting Diode Full-Spectrum Lighting. Inorganic Chemistry 2023, 62 (47) , 19341-19349. https://doi.org/10.1021/acs.inorgchem.3c03218
    25. Yu Chen, Zhiyu Yang, Jiance Jin, Jianwei Qiao, Yuzhen Wang, Maxim S. Molokeev, Hendrik C. Swart, Zhiguo Xia. Site Occupation Engineering toward Giant Red-Shifted Photoluminescence in (Ba,Sr)2LaGaO5:Eu2+ Phosphors. Chemistry of Materials 2023, 35 (20) , 8714-8721. https://doi.org/10.1021/acs.chemmater.3c01980
    26. Małgorzata Sójka, Shruti Hariyani, Nakyung Lee, Jakoah Brgoch. Colossal Chromatic Shift in the Ba2Ca2B4O10:Ce3+ Phosphor. Chemistry of Materials 2023, 35 (16) , 6491-6501. https://doi.org/10.1021/acs.chemmater.3c01465
    27. Dundappa Mumbaraddi, Vidyanshu Mishra, Mohammed Jomaa, Xiaoyuan Liu, Abhoy Karmakar, Sambhavi Thirupurasanthiran, Vladimir K. Michaelis, Andrew P. Grosvenor, Alkiviathes Meldrum, Arthur Mar. Controlling the Luminescence of Rare-Earth Chalcogenide Iodides RE3(Ge1–xSix)2S8I (RE = La, Ce, and Pr) and Ce3Si2(S1–ySey)8I. Chemistry of Materials 2023, 35 (15) , 6039-6049. https://doi.org/10.1021/acs.chemmater.3c01113
    28. Huan Wang, Xicai Liu, Dongcheng Yang, Hailong Qiu, Fangli Jing, Hongjun Liu, Zhanggui Hu. Multiband Monochromatic Upconversion Emissions of Lanthanide Codoped Monolayer MoS2 Nanosheets for Lighting Applications. ACS Applied Nano Materials 2023, 6 (13) , 11651-11660. https://doi.org/10.1021/acsanm.3c01644
    29. Chao Dou, Shengqiang Liu, Fangyi Zhao, Zhen Song, Quanlin Liu. Enhancing External Quantum Efficiency of Blue-Emitting Phosphor Ba(K)-β-Al2O3:Eu2+ by Lattice Site Engineering for Full-Spectrum Lighting. Inorganic Chemistry 2023, 62 (25) , 10021-10028. https://doi.org/10.1021/acs.inorgchem.3c01405
    30. Małgorzata Sójka, Jiyou Zhong, Jakoah Brgoch. Developing Broadband Cr3+-Substituted Phosphor-Converted Near-Infrared Light Sources. ACS Applied Optical Materials 2023, 1 (6) , 1138-1149. https://doi.org/10.1021/acsaom.3c00058
    31. Xiangyu Han, Chengrui Xin, Shuxian Wang, Jiaming Wu, Zhengmao Ye, Haohai Yu, Huaijin Zhang. Insight into Eu3+-Doped Phase-Change K3Lu(PO4)2 Phosphate toward Data Encryption. Inorganic Chemistry 2023, 62 (24) , 9679-9686. https://doi.org/10.1021/acs.inorgchem.3c01205
    32. Konglan Chen, Shiyu Jia, Xueliang Zhang, Zifan Shao, Yayun Zhou, Ting Fan, Ting Yu, Tingting Deng. Stable Polyhedron-Cluster-Based Rigid Fluoride Framework toward Zero-Thermal-Quenching Near-Infrared Emission for Prolonged LED Applications. Inorganic Chemistry 2023, 62 (20) , 7964-7975. https://doi.org/10.1021/acs.inorgchem.3c00789
    33. Xinyu Fu, Yao Li, Huwei Li, Jing Feng, Hongjie Zhang. Cerium Ion Promoting the Emission of Self-Trapped Excitons of Quasi-2D Europium Halide Perovskites for Self-Activated White Light-Emitting. The Journal of Physical Chemistry C 2023, 127 (17) , 8159-8166. https://doi.org/10.1021/acs.jpcc.3c01271
    34. Yiyi Ou, Weijie Zhou, Pieter Dorenbos, Hongbin Liang. Cationic Effects on Photo- and X-ray Radioluminescence of K3RE(PO4)2:Ce3+/Pr3+ (RE = La, Gd, and Y) Phosphors toward X-ray Detection. Inorganic Chemistry 2023, 62 (15) , 6181-6188. https://doi.org/10.1021/acs.inorgchem.3c00566
    35. Baofeng Zheng, Yanhua Song, Zhibo Zheng, Yanxia Zhao, Qing Yang, Zhan Shi, Bo Zou, Haifeng Zou. Eu2+-Doped Ca4Y3Si7O15N5 Phosphor with High Thermal Stability and Pressure Sensitivity for Dual-Functional Applications in W-LEDs and Pressure Sensors. Inorganic Chemistry 2023, 62 (10) , 4361-4372. https://doi.org/10.1021/acs.inorgchem.3c00146
    36. Elodie Rousset, Matteo Piccardo, Robert W. Gable, Massimiliano Massi, Lorenzo Sorace, Alessandro Soncini, Colette Boskovic. Elucidation of LMCT Excited States for Lanthanoid Complexes: A Theoretical and Solid-State Experimental Framework. Inorganic Chemistry 2022, 61 (35) , 14004-14018. https://doi.org/10.1021/acs.inorgchem.2c01985
    37. Zhibo Zheng, Shaopu Liu, Yusen Jie, Yuancheng Wang, Dan Zhang, Baofeng Zheng, Yanxia Zhao, Yanhua Song, Zhan Shi, Haifeng Zou. A Triple-Doped Phosphor Strategy for the Conversion of Cool and Warm White Light. Inorganic Chemistry 2022, 61 (35) , 14211-14223. https://doi.org/10.1021/acs.inorgchem.2c02643
    38. Longbo Yang, Jiajun Luo, Liang Gao, Boxiang Song, Jiang Tang. Inorganic Lanthanide Compounds with f–d Transition: From Materials to Electroluminescence Devices. The Journal of Physical Chemistry Letters 2022, 13 (19) , 4365-4373. https://doi.org/10.1021/acs.jpclett.2c00927
    39. Xuesong Wang, Xiaoxiao Huang, Ming Zhao, Peter A. Tanner, Xianju Zhou, Lixin Ning. Role of the Rigid Host Structure in Narrow-Band Green Emission of Eu2+ in Rb2Na2(Li3SiO4)4: Insights into Electron–Phonon Coupling. Inorganic Chemistry 2022, 61 (19) , 7617-7623. https://doi.org/10.1021/acs.inorgchem.2c00868
    40. Yunlin Yang, Bibo Lou, Yiyi Ou, Fang Su, Chong-Geng Ma, Chang-Kui Duan, Pieter Dorenbos, Hongbin Liang. Experimental and Theoretical Studies of the Site Occupancy and Luminescence of Ce3+ in LiSr4(BO3)3 for Potential X-ray Detecting Applications. Inorganic Chemistry 2022, 61 (19) , 7654-7662. https://doi.org/10.1021/acs.inorgchem.2c01016
    41. Rafael Vieira Perrella, Marc Walker, Thomas W. Chamberlain, Richard I. Walton, Paulo Cesar de Sousa Filho. The Influence of Defects on the Luminescence of Trivalent Terbium in Nanocrystalline Yttrium Orthovanadate. Nano Letters 2022, 22 (9) , 3569-3575. https://doi.org/10.1021/acs.nanolett.1c04937
    42. Shunqi Lai, Ming Zhao, Yifei Zhao, Maxim S. Molokeev, Zhiguo Xia. Eu2+ Doping Concentration-Induced Site-Selective Occupation and Photoluminescence Tuning in KSrScSi2O7:Eu2+ Phosphor. ACS Materials Au 2022, 2 (3) , 374-380. https://doi.org/10.1021/acsmaterialsau.1c00081
    43. Mahdi Amachraa, Shuxing Li, Po-Yuan Huang, Ru-Shi Liu, Zhenbin Wang, Rong-Jun Xie, Shyue Ping Ong. MxLa1–xSiO2–yNz (M = Ca/Sr/Ba): Elucidating and Tuning the Structure and Eu2+ Local Environments to Develop Full-Visible Spectrum Phosphors. Chemistry of Materials 2022, 34 (9) , 4039-4049. https://doi.org/10.1021/acs.chemmater.2c00252
    44. Yongmei Li, Zhihua Liu, Rui Wang, Yuemei Li. Upconversion Luminescence and Temperature-Sensing Characteristic of Yb(III), Er(III), and Tm(III) Codoped 12CaO·7Al2O3 Single Crystals. The Journal of Physical Chemistry C 2022, 126 (16) , 7264-7271. https://doi.org/10.1021/acs.jpcc.2c00692
    45. Chengkun Yi, Ziyi Xu, Liang Chen, Wenshan Ren. Cerocene and Lanthanocene Chalcogenides: Synthesis, Structure, and Luminescence. Inorganic Chemistry 2022, 61 (13) , 5373-5379. https://doi.org/10.1021/acs.inorgchem.2c00212
    46. Bingzhu Zheng, Jingyue Fan, Bing Chen, Xian Qin, Juan Wang, Feng Wang, Renren Deng, Xiaogang Liu. Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews 2022, 122 (6) , 5519-5603. https://doi.org/10.1021/acs.chemrev.1c00644
    47. Peiran Zhao, Yuqian Liu, Cheng He, Chunying Duan. Synthesis of a Lanthanide Metal–Organic Framework and Its Fluorescent Detection for Phosphate Group-Based Molecules Such as Adenosine Triphosphate. Inorganic Chemistry 2022, 61 (7) , 3132-3140. https://doi.org/10.1021/acs.inorgchem.1c03412
    48. Liang Wang, Qingxun Guo, Jiashun Duan, Weiwei Xie, Guoqi Ji, Shunran Li, Chao Chen, Jinghui Li, Longbo Yang, Zhifang Tan, Ling Xu, Zewen Xiao, Jiajun Luo, Jiang Tang. Exploration of Nontoxic Cs3CeBr6 for Violet Light-Emitting Diodes. ACS Energy Letters 2021, 6 (12) , 4245-4254. https://doi.org/10.1021/acsenergylett.1c02022
    49. Dan Zhao, Lijun Song, Linxi Hou. Efficient Persistent Luminescence Tuning Using a Cyclodextrin Inclusion Complex as Efficient Light Conversion Materials. ACS Omega 2021, 6 (39) , 25585-25593. https://doi.org/10.1021/acsomega.1c03670
    50. Xiangyu Han, Jiaming Wu, Changqing Hu, Qingchun Yang, Chengrui Xin, Shuxian Wang, Zhengmao Ye. Enhancing the Photoluminescence Property of Pr3+ Ions by Understanding the Polymorphous Influence of the K3Lu(PO4)2 Host. Inorganic Chemistry 2021, 60 (19) , 14978-14987. https://doi.org/10.1021/acs.inorgchem.1c02368
    51. Yi Wei, Peipei Dang, Zhigao Dai, Guogang Li, Jun Lin. Advances in Near-Infrared Luminescent Materials without Cr3+: Crystal Structure Design, Luminescence Properties, and Applications. Chemistry of Materials 2021, 33 (14) , 5496-5526. https://doi.org/10.1021/acs.chemmater.1c01325
    52. Qingzhe Zhang, Xiaolei Liu, Mohamed Chaker, Dongling Ma. Advancing Graphitic Carbon Nitride-Based Photocatalysts toward Broadband Solar Energy Harvesting. ACS Materials Letters 2021, 3 (6) , 663-697. https://doi.org/10.1021/acsmaterialslett.1c00160
    53. Yi Zhang, Xiaohui Zhu, Yong Zhang. Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications. ACS Nano 2021, 15 (3) , 3709-3735. https://doi.org/10.1021/acsnano.0c09231
    54. Maxim A. Lutoshkin, Alexander I. Petrov, Yuriy N. Malyar, Alexandr S. Kazachenko. Interaction of Rare-Earth Metals and Some Perfluorinated β-Diketones. Inorganic Chemistry 2021, 60 (5) , 3291-3304. https://doi.org/10.1021/acs.inorgchem.0c03717
    55. Jidong Lin, Yixuan Lu, Xiaoyan Li, Feng Huang, Changbin Yang, Menglong Liu, Naizhong Jiang, Daqin Chen. Perovskite Quantum Dots Glasses Based Backlit Displays. ACS Energy Letters 2021, 6 (2) , 519-528. https://doi.org/10.1021/acsenergylett.0c02561
    56. Riccardo Marin, Daniel Jaque. Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chemical Reviews 2021, 121 (3) , 1425-1462. https://doi.org/10.1021/acs.chemrev.0c00692
    57. Xing-Yu Sun, Meng Yue, Yong-Xin Jiang, Cheng-Hao Zhao, Yuan-Yuan Liao, Xiao-Wu Lei, Cheng-Yang Yue. Combining Dual-Light Emissions to Achieve Efficient Broadband Yellowish-Green Luminescence in One-Dimensional Hybrid Lead Halides. Inorganic Chemistry 2021, 60 (3) , 1491-1498. https://doi.org/10.1021/acs.inorgchem.0c02785
    58. Luca Babetto, Silvia Carlotto, Alice Carlotto, Marzio Rancan, Gregorio Bottaro, Lidia Armelao, Maurizio Casarin. Multireference Ab Initio Investigation on Ground and Low-Lying Excited States: Systematic Evaluation of J–J Mixing in a Eu3+ Luminescent Complex. Inorganic Chemistry 2021, 60 (1) , 315-324. https://doi.org/10.1021/acs.inorgchem.0c02956
    59. Shanshan Ye, Hai Liu, Yijie Wang, Jiao Lin, Kun Zhong, Jianyan Ding, Quansheng Wu. Design of a Bismuth-Activated Narrow-Band Cyan Phosphor for Use in White Light Emitting Diodes and Field Emission Displays. ACS Sustainable Chemistry & Engineering 2020, 8 (49) , 18187-18195. https://doi.org/10.1021/acssuschemeng.0c06593
    60. Ming Zhao, Qinyuan Zhang, Zhiguo Xia. Structural Engineering of Eu2+-Doped Silicates Phosphors for LED Applications. Accounts of Materials Research 2020, 1 (2) , 137-145. https://doi.org/10.1021/accountsmr.0c00014
    61. Xiaoxiao Huang, Zheng Qiao, Zhongxian Qiu, Naiyu Ma, Jun Wen, Lixin Ning. Site Occupation and Spectral Assignment in Eu2+-Activated β-Ca3(PO4)2-Type Phosphors: Insights from First-Principles Calculations. Inorganic Chemistry 2020, 59 (22) , 16760-16768. https://doi.org/10.1021/acs.inorgchem.0c02849
    62. Jiansheng Huo, Aiwen Yu, Quwei Ni, Dandan Guo, Min Zeng, Jinwei Gao, Yong Zhang, Qianming Wang. Efficient Energy Transfer from Trap Levels to Eu3+ Leads to Antithermal Quenching Effect in High-Power White Light-Emitting Diodes. Inorganic Chemistry 2020, 59 (20) , 15514-15525. https://doi.org/10.1021/acs.inorgchem.0c02541
    63. Yi Wei, Zhiyu Gao, Xiaohan Yun, Hang Yang, Yixin Liu, Guogang Li. Abnormal Bi3+-Activated NIR Emission in Highly Symmetric XAl12O19 (X = Ba, Sr, Ca) by Selective Sites Occupation. Chemistry of Materials 2020, 32 (19) , 8747-8753. https://doi.org/10.1021/acs.chemmater.0c02814
    64. Toshifumi Iimori, Hiroto Sugawa, Nobuya Uchida. Bright Solvent-Free Luminescent Liquid with Magnetism Composed of a Thiocyanate Complex of Ce(III). The Journal of Physical Chemistry B 2020, 124 (38) , 8317-8322. https://doi.org/10.1021/acs.jpcb.0c04958
    65. Jiyou Zhong, Ya Zhuo, Shruti Hariyani, Weiren Zhao, Weidong Zhuang, Jakoah Brgoch. Thermally Robust and Color-Tunable Blue-Green-Emitting BaMgSi4O10:Eu2+,Mn2+ Phosphor for Warm-White LEDs. Inorganic Chemistry 2020, 59 (18) , 13427-13434. https://doi.org/10.1021/acs.inorgchem.0c01803
    66. Liubov I. Silantyeva, Vasily A. Ilichev, Andrey S. Shavyrin, Artem N. Yablonskiy, Roman V. Rumyantcev, Georgy K. Fukin, Mikhail N. Bochkarev. Unexpected Findings in a Simple Metathesis Reaction of Europium and Ytterbium Diiodides with Perfluorinated Mercaptobenzothiazolates of Alkali Metals. Organometallics 2020, 39 (16) , 2972-2983. https://doi.org/10.1021/acs.organomet.0c00334
    67. Dawei Wen, Hideki Kato, Masato Kakihana. Highly Robust Oxynitride Phosphor against Thermal Oxidization and Hydrolysis. ACS Sustainable Chemistry & Engineering 2020, 8 (32) , 12286-12294. https://doi.org/10.1021/acssuschemeng.0c04389
    68. Shruti Hariyani, Jakoah Brgoch. Local Structure Distortion Induced Broad Band Emission in the All-Inorganic BaScO2F:Eu2+ Perovskite. Chemistry of Materials 2020, 32 (15) , 6640-6649. https://doi.org/10.1021/acs.chemmater.0c02062
    69. Aohan Hu, Samantha N. MacMillan, Justin J. Wilson. Macrocyclic Ligands with an Unprecedented Size-Selectivity Pattern for the Lanthanide Ions. Journal of the American Chemical Society 2020, 142 (31) , 13500-13506. https://doi.org/10.1021/jacs.0c05217
    70. Maxim A. Lutoshkin, Yuriy N. Malyar. Determination of Acid–Base and Complexing Parameters of Chlorine-Substituted Trifluorobenzoylacetone in Water Medium. Journal of Chemical & Engineering Data 2020, 65 (7) , 3696-3705. https://doi.org/10.1021/acs.jced.0c00304
    71. Jinfang Li, Peiyao Du, Jing Chen, Shuhui Huo, Zhengang Han, Yang Deng, Yang Chen, Xiaoquan Lu. Dual-Channel Luminescent Signal Readout Strategy for Classifying Aprotic/Protic Polar Organic Medium and Naked-Eye Monitoring of Water in Organic Solvents. Analytical Chemistry 2020, 92 (13) , 8974-8982. https://doi.org/10.1021/acs.analchem.0c00966
    72. Xiaoxiao Huang, Zheng Qiao, Jun Wen, Lixin Ning. Intrinsic Point Defects and Dopants Ce3+ in SrLiAl3N4: Thermodynamic and Spectral Properties from First Principles. The Journal of Physical Chemistry C 2020, 124 (24) , 13400-13408. https://doi.org/10.1021/acs.jpcc.0c04052
    73. Kotona Kohaku, Mizuki Inoue, Hirofumi Kanoh, Tatsuo Taniguchi, Keiki Kishikawa, Michinari Kohri. Full-Color Magnetic Nanoparticles Based on Holmium-Doped Polymers. ACS Applied Polymer Materials 2020, 2 (5) , 1800-1806. https://doi.org/10.1021/acsapm.0c00038
    74. Shihai You, Shuxing Li, Yongchao Jia, Rong-Jun Xie. Interstitial Site Engineering for Creating Unusual Red Emission in La3Si6N11:Ce3+. Chemistry of Materials 2020, 32 (8) , 3631-3640. https://doi.org/10.1021/acs.chemmater.0c01151
    75. Chengning Xie, Shikun Xie, Rongxi Yi, Renping Cao, Huiling Yuan, Fen Xiao. Site-Selective Occupation for Broadband Upconversion Luminescence in Ca3Y(GaO)3(BO3)4:Yb3+,Mn2+ Phosphors. The Journal of Physical Chemistry C 2020, 124 (12) , 6845-6852. https://doi.org/10.1021/acs.jpcc.0c00809
    76. Zhiling Liu, Lina Hou, Ya Li, Gang Li, Zhengbo Qin, Hai-Shun Wu, Jianfeng Jia, Hua Xie, Zichao Tang. Thermodynamics and Kinetics of Gas-Phase CO Oxidation on the Scandium Monoxide Carbonyl Complexes. The Journal of Physical Chemistry A 2020, 124 (5) , 924-931. https://doi.org/10.1021/acs.jpca.9b10659
    77. Ya Zhuo, Shruti Hariyani, Edward Armijo, Zainab Abolade Lawson, Jakoah Brgoch. Evaluating Thermal Quenching Temperature in Eu3+-Substituted Oxide Phosphors via Machine Learning. ACS Applied Materials & Interfaces 2020, 12 (5) , 5244-5250. https://doi.org/10.1021/acsami.9b16065
    78. Chenyang Liu, Suman Pokhrel, Christian Tessarek, Haipeng Li, Marco Schowalter, Andreas Rosenauer, Martin Eickhoff, Shuiqing Li, Lutz Mädler. Rare-Earth-Doped Y4Al2O9 Nanoparticles for Stable Light-Converting Phosphors. ACS Applied Nano Materials 2020, 3 (1) , 699-710. https://doi.org/10.1021/acsanm.9b02231
    79. Zhiqiang Ming, Jianwei Qiao, Maxim S. Molokeev, Jing Zhao, Hendrik C. Swart, Zhiguo Xia. Multiple Substitution Strategies toward Tunable Luminescence in Lu2MgAl4SiO12:Eu2+ Phosphors. Inorganic Chemistry 2020, 59 (2) , 1405-1413. https://doi.org/10.1021/acs.inorgchem.9b03142
    80. Kazushige Ueda, Syuto Tanaka, Ryo Yamamoto, Yuhei Shimizu, Tetsuo Honma, Florian Massuyeau, Stéphane Jobic. Site Dependence of Tb3+ Luminescence in Double Perovskite-Type Alkaline Earth Lanthanum Tantalates. The Journal of Physical Chemistry C 2020, 124 (1) , 854-860. https://doi.org/10.1021/acs.jpcc.9b09260
    81. Yongjin Li, Tianhui Wang, Weizhou Ren, Jiajun Han, Zhaoyi Yin, Jianbei Qiu, Zhengwen Yang, Zhiguo Song. BiOCl:Er3+ Nanosheets with Tunable Thickness for Photon Avalanche Phosphors. ACS Applied Nano Materials 2019, 2 (12) , 7652-7660. https://doi.org/10.1021/acsanm.9b01735
    82. Dechao Yu, Yuanshu Zhou, Chenshuo Ma, Jonathan H. Melman, Kristen M. Baroudi, Mikio LaCapra, Richard E. Riman. Non-Rare-Earth Na3AlF6:Cr3+ Phosphors for Far-Red Light-Emitting Diodes. ACS Applied Electronic Materials 2019, 1 (11) , 2325-2333. https://doi.org/10.1021/acsaelm.9b00527
    83. Thomas Wylezich, Atul D. Sontakke, Victor Castaing, Markus Suta, Bruno Viana, Andries Meijerink, Nathalie Kunkel. One Ion, Many Facets: Efficient, Structurally and Thermally Sensitive Luminescence of Eu2+ in Binary and Ternary Strontium Borohydride Chlorides. Chemistry of Materials 2019, 31 (21) , 8957-8968. https://doi.org/10.1021/acs.chemmater.9b03048
    84. Santosh K. Gupta, Maya Abdou, Jose P. Zuniga, Alexander A. Puretzky, Yuanbing Mao. Samarium-Activated La2Hf2O7 Nanoparticles as Multifunctional Phosphors. ACS Omega 2019, 4 (19) , 17956-17966. https://doi.org/10.1021/acsomega.9b01318
    85. Haijie Guo, Yuhua Wang, Peng Feng, Qiangfei Ye, Songsong Ding. Modifying the Electronic Trap Distribution in Ba2Zr2Si3O12:Eu2+,Nd3+ via Regulating the Composition of Matrix Elements. The Journal of Physical Chemistry C 2019, 123 (40) , 24409-24416. https://doi.org/10.1021/acs.jpcc.9b06775
    86. Lei Lei, Han Xia, Chang-Keun Lim, Shiqing Xu, Ke Wang, Yaping Du, Paras N. Prasad. Modulation of Surface Energy Transfer Cascade for Reversible Photoluminescence pH Sensing. Chemistry of Materials 2019, 31 (19) , 8121-8128. https://doi.org/10.1021/acs.chemmater.9b02857
    87. Mingke Yu, Ying Xie, Xinyu Wang, Yuxin Li, Guangming Li. Highly Water-Stable Dye@Ln-MOFs for Sensitive and Selective Detection toward Antibiotics in Water. ACS Applied Materials & Interfaces 2019, 11 (23) , 21201-21210. https://doi.org/10.1021/acsami.9b05815
    88. Yuan-Chih Lin, Marco Bettinelli, Maths Karlsson. Unraveling the Mechanisms of Thermal Quenching of Luminescence in Ce3+-Doped Garnet Phosphors. Chemistry of Materials 2019, 31 (11) , 3851-3862. https://doi.org/10.1021/acs.chemmater.8b05300
    89. Chen Shi, Xiuyu Shen, Yanan Zhu, Xiaoqiang Li, Zengyuan Pang, Mingqiao Ge. Excitation Wavelength-Dependent Dual-Mode Luminescence Emission for Dynamic Multicolor Anticounterfeiting. ACS Applied Materials & Interfaces 2019, 11 (20) , 18548-18554. https://doi.org/10.1021/acsami.9b04213
    90. Yi Wei, Junsong Gao, Gongcheng Xing, Guogang Li, Peipei Dang, Sisi Liang, Yu Shu Huang, Chun Che Lin, Ting-Shan Chan, Jun Lin. Controllable Eu2+-Doped Orthophosphate Blue-/Red-Emitting Phosphors: Charge Compensation and Lattice-Strain Control. Inorganic Chemistry 2019, 58 (9) , 6376-6387. https://doi.org/10.1021/acs.inorgchem.9b00577
    91. Xian Qin, Lei Shen, Liangliang Liang, Sanyang Han, Zhigao Yi, Xiaogang Liu. Suppression of Defect-Induced Quenching via Chemical Potential Tuning: A Theoretical Solution for Enhancing Lanthanide Luminescence. The Journal of Physical Chemistry C 2019, 123 (17) , 11151-11161. https://doi.org/10.1021/acs.jpcc.9b02596
    92. Dongling Geng, Elena Cabello-Olmo, Gabriel Lozano, Hernán Míguez. Tamm Plasmons Directionally Enhance Rare-Earth Nanophosphor Emission. ACS Photonics 2019, 6 (3) , 634-641. https://doi.org/10.1021/acsphotonics.8b01407
    93. Xian Qin, Jiahui Xu, Yiming Wu, Xiaogang Liu. Energy-Transfer Editing in Lanthanide-Activated Upconversion Nanocrystals: A Toolbox for Emerging Applications. ACS Central Science 2019, 5 (1) , 29-42. https://doi.org/10.1021/acscentsci.8b00827
    94. Liangliang Liang, Xian Qin, Kezhi Zheng, Xiaogang Liu. Energy Flux Manipulation in Upconversion Nanosystems. Accounts of Chemical Research 2019, 52 (1) , 228-236. https://doi.org/10.1021/acs.accounts.8b00469
    95. Kayahan Saritas, Wenmei Ming, Mao-Hua Du, Fernando A. Reboredo. Excitation Energies of Localized Correlated Defects via Quantum Monte Carlo: A Case Study of Mn4+-Doped Phosphors. The Journal of Physical Chemistry Letters 2019, 10 (1) , 67-74. https://doi.org/10.1021/acs.jpclett.8b03015
    96. Yusen Qiao, Eric J. Schelter. Lanthanide Photocatalysis. Accounts of Chemical Research 2018, 51 (11) , 2926-2936. https://doi.org/10.1021/acs.accounts.8b00336
    97. Robin Niklaus, Lukas Neudert, Juliane Stahl, Peter J. Schmidt, Wolfgang Schnick. Orange-Emitting Li4Sr4[Si4O4N6]O:Eu2+—a Layered Lithium Oxonitridosilicate Oxide. Inorganic Chemistry 2018, 57 (22) , 14304-14313. https://doi.org/10.1021/acs.inorgchem.8b02391
    98. Shuzhen Liao, Xiaoyu Ji, Yongfu Liu, Jilin Zhang. Highly Efficient and Thermally Stable Blue-Green (Ba0.8Eu0.2O)(Al2O3)4.575×(1+x) Phosphor through Structural Modification. ACS Applied Materials & Interfaces 2018, 10 (45) , 39064-39073. https://doi.org/10.1021/acsami.8b14816
    99. Michinari Kohri, Kenshi Yanagimoto, Kotona Kohaku, Shohei Shiomoto, Motoyasu Kobayashi, Akira Imai, Fumiyuki Shiba, Tatsuo Taniguchi, Keiki Kishikawa. Magnetically Responsive Polymer Network Constructed by Poly(acrylic acid) and Holmium. Macromolecules 2018, 51 (17) , 6740-6745. https://doi.org/10.1021/acs.macromol.8b01550
    100. Małgorzata Skwierczyńska, Marcin Runowski, Szymon Goderski, Jacek Szczytko, Jarosław Rybusiński, Piotr Kulpiński, Stefan Lis. Luminescent–Magnetic Cellulose Fibers, Modified with Lanthanide-Doped Core/Shell Nanostructures. ACS Omega 2018, 3 (8) , 10383-10390. https://doi.org/10.1021/acsomega.8b00965
    Load more citations

    Chemical Reviews

    Cite this: Chem. Rev. 2017, 117, 5, 4488–4527
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.6b00691
    Published February 27, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    13k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.