ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVContaminants in Aqua...Contaminants in Aquatic and Terrestrial EnvironmentsNEXT

Transport of Legacy Perfluoroalkyl Substances and the Replacement Compound HFPO-DA through the Atlantic Gateway to the Arctic Ocean—Is the Arctic a Sink or a Source?

  • Hanna Joerss*
    Hanna Joerss
    Department for Environmental Chemistry, Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, 21502 Geesthacht, Germany
    Institute of Inorganic and Applied Chemistry, Universität Hamburg, 20146 Hamburg, Germany
    *E-mail: [email protected]
    More by Hanna Joerss
  • Zhiyong Xie
    Zhiyong Xie
    Department for Environmental Chemistry, Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, 21502 Geesthacht, Germany
    More by Zhiyong Xie
  • Charlotte C. Wagner
    Charlotte C. Wagner
    Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
  • Wilken-Jon von Appen
    Wilken-Jon von Appen
    Section Physical Oceanography of Polar Seas, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
  • Elsie M. Sunderland
    Elsie M. Sunderland
    Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
  • , and 
  • Ralf Ebinghaus
    Ralf Ebinghaus
    Department for Environmental Chemistry, Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, 21502 Geesthacht, Germany
Cite this: Environ. Sci. Technol. 2020, 54, 16, 9958–9967
Publication Date (Web):July 29, 2020
https://doi.org/10.1021/acs.est.0c00228
Copyright © 2020 American Chemical Society

    Article Views

    3498

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The spatial distribution of 29 per- and polyfluoroalkyl substances (PFASs) in seawater was investigated along a sampling transect from Europe to the Arctic and two transects within Fram Strait, located between Greenland and Svalbard, in the summer of 2018. Hexafluoropropylene oxide-dimer acid (HFPO-DA), a replacement compound for perfluorooctanoic acid (PFOA), was detected in Arctic seawater for the first time. This provides evidence for its long-range transport to remote areas. The total PFAS concentration was significantly enriched in the cold, low-salinity surface water exiting the Arctic compared to warmer, higher-salinity water from the North Atlantic entering the Arctic (260 ± 20 pg/L versus 190 ± 10 pg/L). The higher ratio of perfluoroheptanoic acid (PFHpA) to perfluorononanoic acid (PFNA) in outflowing water from the Arctic suggests a higher contribution of atmospheric sources compared to ocean circulation. An east–west cross section of the Fram Strait, which included seven depth profiles, revealed higher PFAS concentrations in the surface water layer than in intermediate waters and a negligible intrusion into deep waters (>1000 m). Mass transport estimates indicated a net inflow of PFASs with ≥8 perfluorinated carbons via the boundary currents and a net outflow of shorter-chain homologues. We hypothesize that this reflects higher contributions from atmospheric sources to the Arctic outflow and a higher retention of the long-chain compounds in melting snow and ice.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.0c00228.

    • Details on sample collection, PFAS analysis, QA/QC measures, and data analysis (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 78 publications.

    1. Matthew Dunn, Simon Vojta, Thomas Soltwedel, Wilken-Jon von Appen, Rainer Lohmann. Passive Sampler Derived Profiles and Mass Flows of Perfluorinated Alkyl Substances (PFASs) across the Fram Strait in the North Atlantic. Environmental Science & Technology Letters 2024, 11 (2) , 166-171. https://doi.org/10.1021/acs.estlett.3c00835
    2. Jianglin Hu, Jiayin Dai, Nan Sheng. Kynurenic Acid Plays a Protective Role in Hepatotoxicity Induced by HFPO-DA in Male Mice. Environmental Science & Technology 2024, 58 (4) , 1842-1853. https://doi.org/10.1021/acs.est.3c08033
    3. Dino Camdzic, Heshali K. Welgama, Matthew R. Crawley, Anish Avasthi, Timothy R. Cook, Diana S. Aga. Rapid Capture of Per- and Polyfluoroalkyl Substances Using a Self-Assembling Zirconium-Based Metal-Organic Cage. ACS Applied Engineering Materials 2024, 2 (1) , 87-95. https://doi.org/10.1021/acsaenm.3c00592
    4. Mengyang Liu, Haowen Zheng, Minggang Cai, Kenneth. M. Y. Leung, Yifan Li, Meng Yan, Zifeng Zhang, Kai Zhang, Meng Chen, Hongwei Ke. Ocean Stratification Impacts on Dissolved Polycyclic Aromatic Hydrocarbons (PAHs): From Global Observation to Deep Learning. Environmental Science & Technology 2023, 57 (46) , 18339-18349. https://doi.org/10.1021/acs.est.3c03237
    5. Christina E. Schumm, Narasimhan Loganathan, Angela K. Wilson. Influence of Soil Minerals on the Adsorption, Structure, and Dynamics of GenX. ACS ES&T Water 2023, 3 (8) , 2659-2670. https://doi.org/10.1021/acsestwater.3c00171
    6. Ali Alinezhad, Heng Shao, Katerina Litvanova, Runze Sun, Alena Kubatova, Wen Zhang, Yang Li, Feng Xiao. Mechanistic Investigations of Thermal Decomposition of Perfluoroalkyl Ether Carboxylic Acids and Short-Chain Perfluoroalkyl Carboxylic Acids. Environmental Science & Technology 2023, 57 (23) , 8796-8807. https://doi.org/10.1021/acs.est.3c00294
    7. Eleni K. Savvidou, Bo Sha, Matthew E. Salter, Ian T. Cousins, Jana H. Johansson. Horizontal and Vertical Distribution of Perfluoroalkyl Acids (PFAAs) in the Water Column of the Atlantic Ocean. Environmental Science & Technology Letters 2023, 10 (5) , 418-424. https://doi.org/10.1021/acs.estlett.3c00119
    8. Jack Garnett, Crispin Halsall, Holly Winton, Hanna Joerss, Robert Mulvaney, Ralf Ebinghaus, Markus Frey, Anna Jones, Amber Leeson, Peter Wynn. Increasing Accumulation of Perfluorocarboxylate Contaminants Revealed in an Antarctic Firn Core (1958–2017). Environmental Science & Technology 2022, 56 (16) , 11246-11255. https://doi.org/10.1021/acs.est.2c02592
    9. Jingzhi Yao, Nan Sheng, Yong Guo, Leo W.Y. Yeung, Jiayin Dai, Yitao Pan. Nontargeted Identification and Temporal Trends of Per- and Polyfluoroalkyl Substances in a Fluorochemical Industrial Zone and Adjacent Taihu Lake. Environmental Science & Technology 2022, 56 (12) , 7986-7996. https://doi.org/10.1021/acs.est.2c00891
    10. Hua Guo, Jiamiao Chen, Hongxia Zhang, Jingzhi Yao, Nan Sheng, Qi Li, Yong Guo, Chengying Wu, Weidong Xie, Jiayin Dai. Exposure to GenX and Its Novel Analogs Disrupts Hepatic Bile Acid Metabolism in Male Mice. Environmental Science & Technology 2022, 56 (10) , 6133-6143. https://doi.org/10.1021/acs.est.1c02471
    11. William Jouanneau, Don-Jean Léandri-Breton, Alexandre Corbeau, Dorte Herzke, Børge Moe, Vladimir A. Nikiforov, Geir W. Gabrielsen, Olivier Chastel. A Bad Start in Life? Maternal Transfer of Legacy and Emerging Poly- and Perfluoroalkyl Substances to Eggs in an Arctic Seabird. Environmental Science & Technology 2022, 56 (10) , 6091-6102. https://doi.org/10.1021/acs.est.1c03773
    12. Yibo Jia, Yumin Zhu, Dashan Xu, Xuemin Feng, Xiaoyong Yu, Guoqiang Shan, Lingyan Zhu. Insights into the Competitive Mechanisms of Per- and Polyfluoroalkyl Substances Partition in Liver and Blood. Environmental Science & Technology 2022, 56 (10) , 6192-6200. https://doi.org/10.1021/acs.est.1c08493
    13. Susan D. Richardson, Thomas A. Ternes. Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry 2022, 94 (1) , 382-416. https://doi.org/10.1021/acs.analchem.1c04640
    14. Bo Sha, Jana H. Johansson, Peter Tunved, Pernilla Bohlin-Nizzetto, Ian T. Cousins, Matthew E. Salter. Sea Spray Aerosol (SSA) as a Source of Perfluoroalkyl Acids (PFAAs) to the Atmosphere: Field Evidence from Long-Term Air Monitoring. Environmental Science & Technology 2022, 56 (1) , 228-238. https://doi.org/10.1021/acs.est.1c04277
    15. Daniele de A. Miranda, Juliana Leonel, Jonathan P. Benskin, Jana Johansson, Vanessa Hatje. Perfluoroalkyl Substances in the Western Tropical Atlantic Ocean. Environmental Science & Technology 2021, 55 (20) , 13749-13758. https://doi.org/10.1021/acs.est.1c01794
    16. Jack Garnett, Crispin Halsall, Anna Vader, Hanna Joerss, Ralf Ebinghaus, Amber Leeson, Peter M. Wynn. High Concentrations of Perfluoroalkyl Acids in Arctic Seawater Driven by Early Thawing Sea Ice. Environmental Science & Technology 2021, 55 (16) , 11049-11059. https://doi.org/10.1021/acs.est.1c01676
    17. Derek Muir, Luc T. Miaz. Spatial and Temporal Trends of Perfluoroalkyl Substances in Global Ocean and Coastal Waters. Environmental Science & Technology 2021, 55 (14) , 9527-9537. https://doi.org/10.1021/acs.est.0c08035
    18. Jack Garnett, Crispin Halsall, Max Thomas, Odile Crabeck, James France, Hanna Joerss, Ralf Ebinghaus, Jan Kaiser, Amber Leeson, Peter M. Wynn. Investigating the Uptake and Fate of Poly- and Perfluoroalkylated Substances (PFAS) in Sea Ice Using an Experimental Sea Ice Chamber. Environmental Science & Technology 2021, 55 (14) , 9601-9608. https://doi.org/10.1021/acs.est.1c01645
    19. Megumi S. Shimizu, Rachael Mott, Ariel Potter, Jiaqi Zhou, Karsten Baumann, Jason D. Surratt, Barbara Turpin, G. Brooks Avery, Jennifer Harfmann, Robert J. Kieber, Ralph N. Mead, Stephen A. Skrabal, Joan D. Willey. Atmospheric Deposition and Annual Flux of Legacy Perfluoroalkyl Substances and Replacement Perfluoroalkyl Ether Carboxylic Acids in Wilmington, NC, USA. Environmental Science & Technology Letters 2021, 8 (5) , 366-372. https://doi.org/10.1021/acs.estlett.1c00251
    20. Hao Guo, Junwei Zhang, Lu Elfa Peng, Xianhui Li, Yiliang Chen, Zhikan Yao, Yiang Fan, Kaimin Shih, Chuyang Y. Tang. High-Efficiency Capture and Recovery of Anionic Perfluoroalkyl Substances from Water Using PVA/PDDA Nanofibrous Membranes with Near-Zero Energy Consumption. Environmental Science & Technology Letters 2021, 8 (4) , 350-355. https://doi.org/10.1021/acs.estlett.1c00128
    21. Emma L. D’Ambro, Havala O. T. Pye, Jesse O. Bash, James Bowyer, Chris Allen, Christos Efstathiou, Robert C. Gilliam, Lara Reynolds, Kevin Talgo, Benjamin N. Murphy. Characterizing the Air Emissions, Transport, and Deposition of Per- and Polyfluoroalkyl Substances from a Fluoropolymer Manufacturing Facility. Environmental Science & Technology 2021, 55 (2) , 862-870. https://doi.org/10.1021/acs.est.0c06580
    22. Thi Minh Hong Nguyen, Jennifer Bräunig, Kristie Thompson, Jack Thompson, Shervin Kabiri, Divina A. Navarro, Rai S. Kookana, Charles Grimison, Craig M. Barnes, Christopher P. Higgins, Michael J. McLaughlin, Jochen F. Mueller. Influences of Chemical Properties, Soil Properties, and Solution pH on Soil–Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environmental Science & Technology 2020, 54 (24) , 15883-15892. https://doi.org/10.1021/acs.est.0c05705
    23. Jingzhi Yao, Yitao Pan, Nan Sheng, Zhaoben Su, Yong Guo, Jianshe Wang, Jiayin Dai. Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs): Occurrence and Association with Serum Biochemical Parameters in Residents Living Near a Fluorochemical Plant in China. Environmental Science & Technology 2020, 54 (21) , 13389-13398. https://doi.org/10.1021/acs.est.0c02888
    24. Hao Guo, Tongyu Hu, Xiaoman Yang, Zhaoyang Liu, Qianqian Cui, Chenchen Qu, Fayang Guo, Shun Liu, Andrew J. Sweetman, Jingtao Hou, Wenfeng Tan. Roles of varying carbon chains and functional groups of legacy and emerging per-/polyfluoroalkyl substances in adsorption on metal-organic framework: Insights into mechanism and adsorption prediction. Environmental Research 2024, 251 , 118679. https://doi.org/10.1016/j.envres.2024.118679
    25. Siting Feng, Xiaofei Lu, Kaige Ouyang, Guijin Su, Qianqian Li, Bin Shi, Jing Meng. Environmental occurrence, bioaccumulation and human risks of emerging fluoroalkylether substances: Insight into security of alternatives. Science of The Total Environment 2024, 922 , 171151. https://doi.org/10.1016/j.scitotenv.2024.171151
    26. Guojun Wan, Zengli Zhang, Jingsi Chen, Mei Li, Jiafu Li. GenX caused liver injury and potential hepatocellular carcinoma of mice via drinking water even at environmental concentration. Environmental Pollution 2024, 346 , 123574. https://doi.org/10.1016/j.envpol.2024.123574
    27. Fengfeng Dong, Haijun Zhang, Nan Sheng, Jianglin Hu, Jiayin Dai, Yitao Pan. Nationwide distribution of perfluoroalkyl ether carboxylic acids in Chinese diets: An emerging concern. Environment International 2024, 186 , 108648. https://doi.org/10.1016/j.envint.2024.108648
    28. Guanzheng Lai, Jiayin Dai, Nan Sheng. Recognition, distribution, and toxicities of novel per- and polyfluoropolyether carboxylic acids. Chinese Science Bulletin 2024, 69 (6) , 774-786. https://doi.org/10.1360/TB-2023-0288
    29. Bao Zhu, Nan Sheng, Jiayin Dai. Adverse effects of gestational exposure to hexafluoropropylene oxide trimer acid (HFPO-TA) homologs on maternal, fetal, and placental health in mice. Science of The Total Environment 2024, 912 , 169151. https://doi.org/10.1016/j.scitotenv.2023.169151
    30. Sisi Xu, Cunliang Zhang, Yuanhang Zhou, Fanghui Chen, Feiyong Chen, Wenlei Wang, Hua Tang, Yan Gao, Lun Meng. Occurrence and transport of novel and legacy poly- and perfluoroalkyl substances in coastal rivers along the Laizhou Bay, northern China. Marine Pollution Bulletin 2024, 198 , 115909. https://doi.org/10.1016/j.marpolbul.2023.115909
    31. Hubertus Brunn, Gottfried Arnold, Wolfgang Körner, Gerd Rippen, Klaus Günter Steinhäuser, Ingo Valentin. PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe 2023, 35 (1) https://doi.org/10.1186/s12302-023-00721-8
    32. Lutz Ahrens, Jelena Rakovic, Siri Ekdahl, Roland Kallenborn. Environmental distribution of per- and polyfluoroalkyl substances (PFAS) on Svalbard: Local sources and long-range transport to the Arctic. Chemosphere 2023, 345 , 140463. https://doi.org/10.1016/j.chemosphere.2023.140463
    33. Anne San Román, Eunate Abilleira, Amaia Irizar, Loreto Santa-Marina, Belen Gonzalez-Gaya, Nestor Etxebarria. Optimization for the analysis of 42 per- and polyfluorinated substances in human plasma: A high-throughput method for epidemiological studies. Journal of Chromatography A 2023, 1712 , 464481. https://doi.org/10.1016/j.chroma.2023.464481
    34. Karuna Singh, Naresh Kumar, Asheesh Kumar Yadav, Rahul Singh, Kapil Kumar. Per-and polyfluoroalkyl substances (PFAS) as a health hazard: Current state of knowledge and strategies in environmental settings across Asia and future perspectives. Chemical Engineering Journal 2023, 475 , 145064. https://doi.org/10.1016/j.cej.2023.145064
    35. Jiandong Ye, Haowen Zheng, Mengyang Liu, Yina Tanli, Huaiyuan Qi, Lingkun Jing, Jiajin Huang, Kazi Belayet Hossain, Hongwei Ke, Chunhui Wang, Shanlin Wang, Minggang Cai. Upwelling impact and lateral transport of dissolved PAHs in the Taiwan Strait and adjacent South China Sea. Science of The Total Environment 2023, 895 , 165159. https://doi.org/10.1016/j.scitotenv.2023.165159
    36. Philip J. Brahana, Ahmed Al Harraq, Luis E. Saab, Ruby Roberg, Kaillat T. Valsaraj, Bhuvnesh Bharti. Uptake and release of perfluoroalkyl carboxylic acids (PFCAs) from macro and microplastics. Environmental Science: Processes & Impacts 2023, 25 (9) , 1519-1531. https://doi.org/10.1039/D3EM00209H
    37. Chenxi Zhang, Youxin Xu, Wenyan Liu, Huaiyu Zhou, Ningning Zhang, Zhihao Fang, Junping Gao, Xiaoan Sun, Di Feng, Xiaomin Sun. New insights into the degradation mechanism and risk assessment of HFPO-DA by advanced oxidation processes based on activated persulfate in aqueous solutions. Ecotoxicology and Environmental Safety 2023, 263 , 115298. https://doi.org/10.1016/j.ecoenv.2023.115298
    38. Zhiyong Xie, Roland Kallenborn. Legacy and emerging per- and poly-fluoroalkyl substances in polar regions. Current Opinion in Green and Sustainable Chemistry 2023, 42 , 100840. https://doi.org/10.1016/j.cogsc.2023.100840
    39. Zehong Yang, Qiongfang Zhuo, Wenlong Wang, Shuting Guo, Jianfeng Chen, Yanliang Li, Sihao Lv, Gang Yu, Yongfu Qiu. Fabrication and characterizations of Zn-doped SnO2-Ti4O7 anode for electrochemical degradation of hexafluoropropylene oxide dimer acid and its homologues. Journal of Hazardous Materials 2023, 455 , 131605. https://doi.org/10.1016/j.jhazmat.2023.131605
    40. V.K. Saritha, K.P. Krishnan, Mahesh Mohan. Perfluorooctanoic acid in the sediment matrices of Arctic fjords, Svalbard. Marine Pollution Bulletin 2023, 192 , 115061. https://doi.org/10.1016/j.marpolbul.2023.115061
    41. Jiachen Sun, Lingling Xing, Jiansong Chu. Global ocean contamination of per- and polyfluoroalkyl substances: A review of seabird exposure. Chemosphere 2023, 330 , 138721. https://doi.org/10.1016/j.chemosphere.2023.138721
    42. Elvira Rudin, Juliane Glüge, Martin Scheringer. Per- and polyfluoroalkyl substances (PFASs) registered under REACH—What can we learn from the submitted data and how important will mobility be in PFASs hazard assessment?. Science of The Total Environment 2023, 877 , 162618. https://doi.org/10.1016/j.scitotenv.2023.162618
    43. Beate I. Escher, Rolf Altenburger, Matthias Blüher, John K. Colbourne, Ralf Ebinghaus, Peter Fantke, Michaela Hein, Wolfgang Köck, Klaus Kümmerer, Sina Leipold, Xiaojing Li, Martin Scheringer, Stefan Scholz, Michael Schloter, Pia-Johanna Schweizer, Tamara Tal, Igor Tetko, Claudia Traidl-Hoffmann, Lukas Y. Wick, Kathrin Fenner. Modernizing persistence–bioaccumulation–toxicity (PBT) assessment with high throughput animal-free methods. Archives of Toxicology 2023, 97 (5) , 1267-1283. https://doi.org/10.1007/s00204-023-03485-5
    44. Lawrence P. Burkhard, Lauren K. Votava. Review of per- and polyfluoroalkyl substances (PFAS) bioaccumulation in earthworms. Environmental Advances 2023, 11 , 100335. https://doi.org/10.1016/j.envadv.2022.100335
    45. Zizi Li, Hai-Hua Huang, Yanjun Huang, Junlong Huang, Minhui Shen, Juan Zheng, Jia-Wei Wang, Gangfeng Ouyang. Highly efficient electrochemical oxidation of hexafluoropropylene oxide homologues at a boron-doped diamond anode. Journal of Environmental Chemical Engineering 2023, 11 (2) , 109280. https://doi.org/10.1016/j.jece.2023.109280
    46. Sylvia Gong, Flannery McLamb, Damian Shea, Jeanne P. Vu, Miguel F. Vasquez, Zuying Feng, Kesten Bozinovic, Ken K. Hirata, Richard M. Gersberg, Goran Bozinovic. Toxicity assessment of hexafluoropropylene oxide-dimer acid on morphology, heart physiology, and gene expression during zebrafish (Danio rerio) development. Environmental Science and Pollution Research 2023, 30 (12) , 32320-32336. https://doi.org/10.1007/s11356-022-24542-z
    47. Zizi Li, Zhi-Mei Luo, Yanjun Huang, Jia-Wei Wang, Gangfeng Ouyang. Recent trends in degradation strategies of PFOA/PFOS substitutes. Chemosphere 2023, 315 , 137653. https://doi.org/10.1016/j.chemosphere.2022.137653
    48. Lihong Zhang, Yuxin Ma, Simon Vojta, Maya Morales‐McDevitt, Mario Hoppmann, Thomas Soltwedel, Jane Kirk, Amila De Silva, Derek Muir, Rainer Lohmann. Presence, Sources and Transport of Polycyclic Aromatic Hydrocarbons in the Arctic Ocean. Geophysical Research Letters 2023, 50 (1) https://doi.org/10.1029/2022GL101496
    49. Yongwei Guo, Wei Shi, Yuqin Liang, Zhiwei Liu, Qiang Xie, Jiaxue Wu, Yuping Wu, Xian Sun. Spatiotemporal and life history related trends of per- and polyfluoroalkyl substances in Indo-Pacific finless porpoises from south China sea (2007–2020). Chemosphere 2023, 310 , 136780. https://doi.org/10.1016/j.chemosphere.2022.136780
    50. Marcus Lange, David Cabana, Anna Ebeling, Ralf Ebinghaus, Hanna Joerss, Lena Rölfer, Louis Celliers. Climate-smart socially innovative tools and approaches for marine pollution science in support of sustainable development. Cambridge Prisms: Coastal Futures 2023, 1 https://doi.org/10.1017/cft.2023.11
    51. Celia Chen, Rainer Lohmann, Robert Mason, Derek Muir. Chemical pollution and the ocean. 2023, 351-426. https://doi.org/10.1016/B978-0-323-95227-9.00001-4
    52. Dorte Herzke, Vladimir Nikiforov, Leo W.Y. Yeung, Børge Moe, Heli Routti, Torgeir Nygård, Geir.W. Gabrielsen, Linda Hanssen. Targeted PFAS analyses and extractable organofluorine – Enhancing our understanding of the presence of unknown PFAS in Norwegian wildlife. Environment International 2023, 171 , 107640. https://doi.org/10.1016/j.envint.2022.107640
    53. Jiaqi Zhou, Karsten Baumann, Jason D. Surratt, Barbara J. Turpin. Legacy and emerging airborne per- and polyfluoroalkyl substances (PFAS) collected on PM 2.5 filters in close proximity to a fluoropolymer manufacturing facility. Environmental Science: Processes & Impacts 2022, 24 (12) , 2272-2283. https://doi.org/10.1039/D2EM00358A
    54. Mohamed Gar Alalm, Daria Camilla Boffito. Mechanisms and pathways of PFAS degradation by advanced oxidation and reduction processes: A critical review. Chemical Engineering Journal 2022, 450 , 138352. https://doi.org/10.1016/j.cej.2022.138352
    55. Jinghao Li, Xiaohan Li, Yabin Da, Jiali Yu, Bin Long, Peng Zhang, Christopher Bakker, Bruce A. McCarl, Joshua S. Yuan, Susie Y. Dai. Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31881-5
    56. Hui Qin, Yuxin Niu, Haiyang Luan, Minghan Li, Lu Zheng, Yifan Pan, Wei Liu. Effects of legacy and emerging per- and polyfluoroalkyl substances on PPARα/β/γ regulation and osteogenic/adipogenic differentiation. Environment International 2022, 170 , 107584. https://doi.org/10.1016/j.envint.2022.107584
    57. Megumi S. Shimizu, Rosa S. Garcia, G. Brooks Avery, Robert J. Kieber, Stephen A. Skrabal, Ralph N. Mead. Distribution of legacy and emerging per- and polyfluoroalkyl substances in riverine and coastal sediments of Southeastern North Carolina, USA. Environmental Science: Processes & Impacts 2022, 24 (11) , 2119-2128. https://doi.org/10.1039/D2EM00246A
    58. Zuying Feng, Flannery McLamb, Jeanne P. Vu, Sylvia Gong, Richard M. Gersberg, Goran Bozinovic. Physiological and transcriptomic effects of hexafluoropropylene oxide dimer acid in Caenorhabditis elegans during development. Ecotoxicology and Environmental Safety 2022, 244 , 114047. https://doi.org/10.1016/j.ecoenv.2022.114047
    59. Tongzhu Han, Junhui Chen, Kun Lin, Xiuping He, Shujiang Li, Tengfei Xu, Ming Xin, Baodong Wang, Chenguang Liu, Jiangtao Wang. Spatial distribution, vertical profiles and transport of legacy and emerging per- and polyfluoroalkyl substances in the Indian Ocean. Journal of Hazardous Materials 2022, 437 , 129264. https://doi.org/10.1016/j.jhazmat.2022.129264
    60. Kun Lin, Tongzhu Han, Rui Wang, Liju Tan, Xue Yang, Ting Zhao, Yanshan Chen, Mengmeng Wan, Jiangtao Wang. Spatiotemporal distribution, ecological risk assessment and source analysis of legacy and emerging Per- and Polyfluoroalkyl Substances in the Bohai Bay, China. Chemosphere 2022, 300 , 134378. https://doi.org/10.1016/j.chemosphere.2022.134378
    61. Zhiyong Xie, Peng Zhang, Zilan Wu, Shuang Zhang, Lijia Wei, Lijie Mi, Anette Kuester, Juergen Gandrass, Ralf Ebinghaus, Ruiqiang Yang, Zhen Wang, Wenying Mi. Legacy and emerging organic contaminants in the polar regions. Science of The Total Environment 2022, 835 , 155376. https://doi.org/10.1016/j.scitotenv.2022.155376
    62. Zhen Zhao, Jie Li, Xianming Zhang, Leien Wang, Jamin Wang, Tian Lin. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome. Environmental Science and Pollution Research 2022, 29 (33) , 49513-49533. https://doi.org/10.1007/s11356-022-20755-4
    63. Dakota R. Robarts, Kaitlyn K. Venneman, Sumedha Gunewardena, Udayan Apte. GenX induces fibroinflammatory gene expression in primary human hepatocytes. Toxicology 2022, 477 , 153259. https://doi.org/10.1016/j.tox.2022.153259
    64. Mengyang Liu, Minggang Cai, Mengshan Duan, Meng Chen, Rainer Lohmann, Yan Lin, Junhua Liang, Hongwei Ke, Kai Zhang. PAHs in the North Atlantic Ocean and the Arctic Ocean: Spatial Distribution and Water Mass Transport. Journal of Geophysical Research: Oceans 2022, 127 (6) https://doi.org/10.1029/2021JC018389
    65. A. Logemann, M. Reininghaus, M. Schmidt, A. Ebeling, T. Zimmermann, H. Wolschke, J. Friedrich, B. Brockmeyer, D. Pröfrock, G. Witt. Assessing the chemical anthropocene – Development of the legacy pollution fingerprint in the North Sea during the last century. Environmental Pollution 2022, 302 , 119040. https://doi.org/10.1016/j.envpol.2022.119040
    66. Enric Pellicer-Castell, Carolina Belenguer-Sapiña, Jamal El Haskouri, Pedro Amorós, José Manuel Herrero-Martínez, Adela R. Mauri-Aucejo. Iron-Doped Bimodal Mesoporous Silica Nanomaterials as Sorbents for Solid-Phase Extraction of Perfluoroalkyl Substances in Environmental Water Samples. Nanomaterials 2022, 12 (9) , 1441. https://doi.org/10.3390/nano12091441
    67. Hugo Olvera-Vargas, Zuxin Wang, Jianxiong Xu, Olivier Lefebvre. Synergistic degradation of GenX (hexafluoropropylene oxide dimer acid) by pairing graphene-coated Ni-foam and boron doped diamond electrodes. Chemical Engineering Journal 2022, 430 , 132686. https://doi.org/10.1016/j.cej.2021.132686
    68. Jian Zhou, Guoqing Zhao, Min Li, Jiaqian Li, Xiaoxue Liang, Xinyi Yang, Jia Guo, Tiecheng Wang, Lingyan Zhu. Three-dimensional spatial distribution of legacy and novel poly/perfluoroalkyl substances in the Tibetan Plateau soil: Implications for transport and sources. Environment International 2022, 158 , 107007. https://doi.org/10.1016/j.envint.2021.107007
    69. Dorte Herzke, Vladimir Nikiforov, Leo W.Y. Yeung, Børge Moe, Heli Routti, Torgeir Nygård, Geir. W. Gabrielsen, Linda Hanssen. Targeted Pfas Analyses and Extractable Organofluorine – Enhancing Our Understanding of the Presence of Unknown Pfas in Norwegian Wildlife. SSRN Electronic Journal 2022, 7 https://doi.org/10.2139/ssrn.4162937
    70. Xuemin Feng, Xin Chen, Yi Yang, Liping Yang, Yumin Zhu, Guoqiang Shan, Lingyan Zhu, Shufeng Zhang. External and internal human exposure to PFOA and HFPOs around a mega fluorochemical industrial park, China: Differences and implications. Environment International 2021, 157 , 106824. https://doi.org/10.1016/j.envint.2021.106824
    71. Xiaoxian Xie, Jiafeng Zhou, Luting Hu, Ruonan Shu, Mengya Zhang, Ze Xiong, Fengchun Wu, Zhengwei Fu. Exposure to hexafluoropropylene oxide dimer acid (HFPO-DA) disturbs the gut barrier function and gut microbiota in mice. Environmental Pollution 2021, 290 , 117934. https://doi.org/10.1016/j.envpol.2021.117934
    72. Raj Mukhopadhyay, Binoy Sarkar, Kumuduni Niroshika Palansooriya, Jaffer Yousuf Dar, Nanthi S. Bolan, Sanjai J. Parikh, Christian Sonne, Yong Sik Ok. Natural and engineered clays and clay minerals for the removal of poly- and perfluoroalkyl substances from water: State-of-the-art and future perspectives. Advances in Colloid and Interface Science 2021, 297 , 102537. https://doi.org/10.1016/j.cis.2021.102537
    73. Arslan Ahmad, Prosun Bhattacharya. Book review. Groundwater for Sustainable Development 2021, 15 , 100605. https://doi.org/10.1016/j.gsd.2021.100605
    74. Edmond Sanganyado, Kudakwashe E. Chingono, Willis Gwenzi, Nhamo Chaukura, Wenhua Liu. Organic pollutants in deep sea: Occurrence, fate, and ecological implications. Water Research 2021, 205 , 117658. https://doi.org/10.1016/j.watres.2021.117658
    75. Simone Trimmel, Kristine Vike-Jonas, Susana V. Gonzalez, Tomasz Maciej Ciesielski, Ulf Lindstrøm, Bjørn Munro Jenssen, Alexandros G. Asimakopoulos. Rapid Determination of Per- and Polyfluoroalkyl Substances (PFAS) in Harbour Porpoise Liver Tissue by HybridSPE®–UPLC®–MS/MS. Toxics 2021, 9 (8) , 183. https://doi.org/10.3390/toxics9080183
    76. Eriko Yamazaki, Sachi Taniyasu, Xinhong Wang, Nobuyoshi Yamashita. Per- and polyfluoroalkyl substances in surface water, gas and particle in open ocean and coastal environment. Chemosphere 2021, 272 , 129869. https://doi.org/10.1016/j.chemosphere.2021.129869
    77. Richard A. Brase, Elizabeth J. Mullin, David C. Spink. Legacy and Emerging Per- and Polyfluoroalkyl Substances: Analytical Techniques, Environmental Fate, and Health Effects. International Journal of Molecular Sciences 2021, 22 (3) , 995. https://doi.org/10.3390/ijms22030995
    78. Mengyang Liu, Minggang Cai, Mengshan Duan, Meng Chen, Rainer Lohmann, Yan Lin, Junhua Liang, Hongwei Ke, Kai Zhang. Polycyclic Aromatic Hydrocarbons in the North Atlantic Ocean and the Arctic Ocean: Spatial Distribution and Water Mass Transport. SSRN Electronic Journal 2021, 5 https://doi.org/10.2139/ssrn.3940194

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect