ACS Publications. Most Trusted. Most Cited. Most Read
Alkalinity Generation Constraints on Basalt Carbonation for Carbon Dioxide Removal at the Gigaton-per-Year Scale
My Activity

Figure 1Loading Img
    Energy and Climate

    Alkalinity Generation Constraints on Basalt Carbonation for Carbon Dioxide Removal at the Gigaton-per-Year Scale
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (2)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2021, 55, 17, 11906–11915
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.1c02733
    Published August 20, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The world adds about 51 Gt of greenhouse gases to the atmosphere each year, which will yield dire global consequences without aggressive action in the form of carbon dioxide removal (CDR) and other technologies. A suggested guideline requires that proposed CDR technologies be capable of removing at least 1% of current annual emissions, about half a gigaton, from the atmosphere each year once fully implemented for them to be worthy of pursuit. Basalt carbonation coupled to direct air capture (DAC) can exceed this baseline, but it is likely that implementation at the gigaton-per-year scale will require increasing per-well CO2 injection rates to a point where CO2 forms a persistent, free-phase CO2 plume in the basaltic subsurface. Here, we use a series of thermodynamic calculations and basalt dissolution simulations to show that the development of a persistent plume will reduce carbonation efficiency (i.e., the amount of CO2 mineralized per kilogram of basalt dissolved) relative to existing field projects and experimental studies. We show that variations in carbonation efficiency are directly related to carbonate mineral solubility, which is a function of solution alkalinity and pH/CO2 fugacity. The simulations demonstrate the sensitivity of carbonation efficiency to solution alkalinity and caution against directly extrapolating carbonation efficiencies inferred from laboratory studies and small-injection-rate field studies conducted under elevated alkalinity and/or pH conditions to gigaton-per-year scale basalt carbonation. Nevertheless, all simulations demonstrate significant carbonate mineralization and thus imply that significant mineral carbonation can be expected even at the gigaton-per-year scale if basalts are given time to react.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.1c02733.

    • Additional tables and figures to support the parameterization of the geochemical models (equilibrium fCO2 for the wollastonite carbonation reaction as a function of temperature; CO2 fugacity coefficients and fugacity as a function of temperature and pressure; an activity diagram showing aluminosilicate silicate minerals that may form during basalt carbonation; water chemistry used in Figure 1; kinetic rate parameters and mineralogical abundances used; aquifer fluid chemistry used; equilibrium constants used; and calculated carbonation efficiencies (PDF)

    • Results of all carbonation simulations (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 38 publications.

    1. Madeline F. Bartels, Quin R. S. Miller, Ruoshi Cao, Nabajit Lahiri, Jade E. Holliman, Jr., C. Heath Stanfield, H. Todd Schaef. Parts-Per-Million Carbonate Mineral Quantification with Thermogravimetric Analysis–Mass Spectrometry. Analytical Chemistry 2024, 96 (11) , 4385-4393. https://doi.org/10.1021/acs.analchem.3c03936
    2. Jiajie Wang, Masahiko Yagi, Tetsuya Tamagawa, Hitomi Hirano, Noriaki Watanabe. Reactivity and Dissolution Characteristics of Naturally Altered Basalt in CO2-Rich Brine: Implications for CO2 Mineralization. ACS Omega 2024, 9 (4) , 4429-4438. https://doi.org/10.1021/acsomega.3c06899
    3. Charles T. Depp, Quin R. S. Miller, Jarrod V. Crum, Jake A. Horner, H. Todd Schaef. Pore-Scale Microenvironments Control Anthropogenic Carbon Mineralization Outcomes in Basalt. ACS Earth and Space Chemistry 2022, 6 (12) , 2836-2847. https://doi.org/10.1021/acsearthspacechem.2c00165
    4. Ellen G. Polites, H. Todd Schaef, Jake A. Horner, Antoinette T. Owen, Jade E. Holliman Jr., B. Peter McGrail, Quin R.S. Miller. Exotic Carbonate Mineralization Recovered from a Deep Basalt Carbon Storage Demonstration. Environmental Science & Technology 2022, 56 (20) , 14713-14722. https://doi.org/10.1021/acs.est.2c03269
    5. Adedapo N. Awolayo, Heather Norton, Juan Carlos de Obeso, Rachel Lauer, Curran Crawford, Benjamin M. Tutolo. Water-Alternating-Gas (WAG) injection scheme for enhancement of carbon dioxide mineralization in basaltic aquifers. Fuel 2025, 385 , 134127. https://doi.org/10.1016/j.fuel.2024.134127
    6. Dia Milani, Robbie McDonald, Phillip Fawell, Haftom Weldekidan, Graeme Puxty, Paul Feron. Ex-situ mineral carbonation process challenges and technology enablers: A review from Australia’s perspective. Minerals Engineering 2025, 222 , 109124. https://doi.org/10.1016/j.mineng.2024.109124
    7. Claire J. Nelson, David S. Goldberg, Mark D. White. Water-alternating-gas injections for optimized mineral carbon storage in basalt. International Journal of Greenhouse Gas Control 2025, 141 , 104283. https://doi.org/10.1016/j.ijggc.2024.104283
    8. Sihan Huang. Study on Factors Affecting CO2 Sequestration in Basalt. 2025, 138-144. https://doi.org/10.1007/978-3-031-78690-7_14
    9. Yanning Pan, Yunhua Liu, Zengqian Hou, Qiang Sun, Nianzhi Jiao, Guochen Dong, Jihua Liu, Gaoxue Yang, Huiting Zhang, Hailiang Jia, Hao Huang. Laboratory experiments of carbon mineralization potential of the main terrestrial basalt reservoirs in China. Geoscience Frontiers 2025, 16 (1) , 101961. https://doi.org/10.1016/j.gsf.2024.101961
    10. Martin Scherwath, Kate Moran, David Goldberg, Curran Crawford, Terre Satterfield, Romany Webb, Jessica Stigant, Adedapo N. Awolayo, Benjamin M. Tutolo, Rachel Lauer, Eneanwan Ekpo Johnson, Devin Todd. Solid Carbon – a Gigaton-Scale Ocean Rock Solid Climate Solution. SSRN Electronic Journal 2025, 233 https://doi.org/10.2139/ssrn.5069687
    11. Alex J. Rinehart, Andrew J. Luhmann, Benjamin M. Tutolo. The geochemistry of carbon capture and storage with implications for hydromechanical feedbacks and geophysical monitoring. 2025, 235-274. https://doi.org/10.1016/B978-0-323-95941-4.00009-4
    12. Heather Norton, Devin Todd, Curran Crawford. Storage capacity estimates and site conditions of potential locations for offshore-wind powered carbon dioxide removal and carbon sequestration in ocean basalt. Carbon Capture Science & Technology 2024, 13 , 100231. https://doi.org/10.1016/j.ccst.2024.100231
    13. Heather Norton, Philipp Gillessen, Curran Crawford. Techno-economic assessment of supercritical, cold liquid, and dissolved CO2 injection into sub-seafloor basalt. Carbon Capture Science & Technology 2024, 13 , 100236. https://doi.org/10.1016/j.ccst.2024.100236
    14. Qin Zhang, Adedapo N. Awolayo, Patrick R. Phelps, Shafik Vadsariya, Christiaan T. Laureijs, Matthew D. Eisaman, Benjamin M. Tutolo. Enhanced cation release via acid pretreatment for gigaton-scale geologic CO2 sequestration in basalt. International Journal of Greenhouse Gas Control 2024, 139 , 104266. https://doi.org/10.1016/j.ijggc.2024.104266
    15. Brittany Multer Hopkins, Rattan Lal, W. Berry Lyons, Susan A. Welch. Carbon capture potential and environmental impact of concrete weathering in soil. Science of The Total Environment 2024, 957 , 177692. https://doi.org/10.1016/j.scitotenv.2024.177692
    16. Grant Charles Mwakipunda, Ping Yu, Norga Alloyce Komba, Edwin Twum Ayimadu, Jennifer Sanford Moshi, Fravian Mwizarubi, Irene Martin Ndunguru, Long Yu. A review on carbon dioxide sequestration potentiality in basaltic rocks: Experiments, simulations, and pilot tests applications. Geoenergy Science and Engineering 2024, 242 , 213253. https://doi.org/10.1016/j.geoen.2024.213253
    17. O.J. Correia Filho, J.A. Barbosa, T.S. Miranda, G.M.S. Ramos, B.F. Carvalho, A.M. Silva, D.A. Duarte, C.J. Barreto, J.T. Cruz Oliveira, D.O. Barbosa. Volcanic weathered crust reservoir analog: Insights from fault-controlled fracture permeability in the trachytic rocks of the Pernambuco Basin, NE Brazil. Journal of South American Earth Sciences 2024, 148 , 105140. https://doi.org/10.1016/j.jsames.2024.105140
    18. Shayan Gholami, Yong-Rak Kim, Faezeh Salehi. Strengthening and 3D Printing of Magnesium Silicate Hydrate (MSH) Binder for Martian Construction. 2024, 1052-1060. https://doi.org/10.1061/9780784485736.092
    19. Song Lu, Chenlin Hu, Xiangyan Wang, Jonathan Atuquaye Quaye, Ning Lv, Li Deng. Carbon dioxide storage in magmatic rocks: Review and perspectives. Renewable and Sustainable Energy Reviews 2024, 202 , 114728. https://doi.org/10.1016/j.rser.2024.114728
    20. Peng Lu, John Apps, Guanru Zhang, Alexander Gysi, Chen Zhu. Knowledge gaps and research needs for modeling CO2 mineralization in the basalt-CO2-water system: A review of laboratory experiments. Earth-Science Reviews 2024, 254 , 104813. https://doi.org/10.1016/j.earscirev.2024.104813
    21. Matthew D. Eisaman. Pathways for marine carbon dioxide removal using electrochemical acid-base generation. Frontiers in Climate 2024, 6 https://doi.org/10.3389/fclim.2024.1349604
    22. Qin Zhang, Adedapo N. Awolayo, Patrick R. Phelps, Shafik Vadsariya, Christiaan T. Laureijs, Matthew D. Eisaman, Benjamin M. Tutolo. Enhanced Cation Release Via Acid Pre-Treatment for Gigaton-Scale Co2 Mineralization in Basalt. 2024https://doi.org/10.2139/ssrn.4890603
    23. Germano Mário Silva Ramos, José Antonio Barbosa, Araly Fabiana Lima de Araújo, Osvaldo José Correia Filho, Carla Joana Santos Barreto, Jefferson Tavares Cruz Oliveira, Roberta Samico de Medeiros. Potential for permanent CO2 sequestration in depleted volcanic reservoirs in the offshore Campos Basin, Brazil. International Journal of Greenhouse Gas Control 2023, 128 , 103942. https://doi.org/10.1016/j.ijggc.2023.103942
    24. Kiflom G. Mesfin, Domenik Wolff-Boenisch, Sigurdur R. Gislason, Eric H. Oelkers. Effect of Cation Chloride Concentration on the Dissolution Rates of Basaltic Glass and Labradorite: Application to Subsurface Carbon Storage. Minerals 2023, 13 (5) , 682. https://doi.org/10.3390/min13050682
    25. Eric H. Oelkers, Sigurdur R. Gislason, Peter B. Kelemen. Moving subsurface carbon mineral storage forward. Carbon Capture Science & Technology 2023, 6 , 100098. https://doi.org/10.1016/j.ccst.2023.100098
    26. Juan Carlos de Obeso, Adedapo N. Awolayo, Michael J. Nightingale, Chunyang Tan, Benjamin M. Tutolo. Experimental study on plagioclase dissolution rates at conditions relevant to mineral carbonation of seafloor basalts. Chemical Geology 2023, 620 , 121348. https://doi.org/10.1016/j.chemgeo.2023.121348
    27. Terre Satterfield, Sara Nawaz, Guillaume Peterson St-Laurent. Exploring public acceptability of direct air carbon capture with storage: climate urgency, moral hazards and perceptions of the ‘whole versus the parts’. Climatic Change 2023, 176 (2) https://doi.org/10.1007/s10584-023-03483-7
    28. Kanchana Kularatne, Olivier Sissmann, François Guyot, Isabelle Martinez. Mineral carbonation of New Caledonian ultramafic mine slag: Effect of glass and secondary silicates on the carbonation yield. Chemical Geology 2023, 618 , 121282. https://doi.org/10.1016/j.chemgeo.2022.121282
    29. Marija P. Rosenqvist, Max W.J. Meakins, Sverre Planke, John M. Millett, Hans Jørgen Kjøll, Martin J. Voigt, Bjørn Jamtveit. Reservoir properties and reactivity of the Faroe Islands Basalt Group: Investigating the potential for CO2 storage in the North Atlantic Igneous Province. International Journal of Greenhouse Gas Control 2023, 123 , 103838. https://doi.org/10.1016/j.ijggc.2023.103838
    30. Muhammad Azeem, Sajjad Raza, Gang Li, Pete Smith, Yong-Guan Zhu. Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar. Soil Ecology Letters 2022, 4 (4) , 293-306. https://doi.org/10.1007/s42832-022-0136-4
    31. Adedapo N. Awolayo, Christiaan T. Laureijs, John Byng, Andrew J. Luhmann, Rachel Lauer, Benjamin M. Tutolo. Mineral surface area accessibility and sensitivity constraints on carbon mineralization in basaltic aquifers. Geochimica et Cosmochimica Acta 2022, 334 , 293-315. https://doi.org/10.1016/j.gca.2022.08.011
    32. Quin R. S. Miller, H. Todd Schaef. Activation energy of magnesite (MgCO 3 ) precipitation: recent insights from olivine carbonation studies. Environmental Science: Advances 2022, 1 (4) , 426-429. https://doi.org/10.1039/D2VA00066K
    33. Adedapo N. Awolayo, Benjamin M. Tutolo. PyGeochemCalc: A Python package for geochemical thermodynamic calculations from ambient to deep Earth conditions. Chemical Geology 2022, 606 , 120984. https://doi.org/10.1016/j.chemgeo.2022.120984
    34. James S. Campbell, Spyros Foteinis, Veronica Furey, Olivia Hawrot, Daniel Pike, Silvan Aeschlimann, Cara N. Maesano, Paul L. Reginato, Daniel R. Goodwin, Loren L. Looger, Edward S. Boyden, Phil Renforth. Geochemical Negative Emissions Technologies: Part I. Review. Frontiers in Climate 2022, 4 https://doi.org/10.3389/fclim.2022.879133
    35. Qin Zhang, Benjamin M. Tutolo. Evaluation of the potential of glauconite in the Western Canadian Sedimentary Basin for large-scale carbon dioxide mineralization. International Journal of Greenhouse Gas Control 2022, 117 , 103663. https://doi.org/10.1016/j.ijggc.2022.103663
    36. Xueya Lu, Kate J. Carroll, Connor C. Turvey, Gregory M. Dipple. Rate and capacity of cation release from ultramafic mine tailings for carbon capture and storage. Applied Geochemistry 2022, 140 , 105285. https://doi.org/10.1016/j.apgeochem.2022.105285
    37. F. Osselin, M. Pichavant, R. Champallier, M. Ulrich, H. Raimbourg. Reactive transport experiments of coupled carbonation and serpentinization in a natural serpentinite. Implication for hydrogen production and carbon geological storage. Geochimica et Cosmochimica Acta 2022, 318 , 165-189. https://doi.org/10.1016/j.gca.2021.11.039
    38. Marija Plahter Rosenqvist, Max W. J. Meakins, Sverre Planke, John M. Millett, Hans Jørgen Kjøll, Martin Voigt, Bjørn Jamtveit. Reservoir Properties and Reactivity of the Faroe Islands Basalt Group: Investigating the Potential for Co2 Storage in the North Atlantic Igneous Province. SSRN Electronic Journal 2022, 36 https://doi.org/10.2139/ssrn.4197588
    39. Tiange Xing, Hamed O. Ghaffari, Ulrich Mok, Matej Pec. Creep of CarbFix basalt: influence of rock–fluid interaction. Solid Earth 2022, 13 (1) , 137-160. https://doi.org/10.5194/se-13-137-2022

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2021, 55, 17, 11906–11915
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.1c02733
    Published August 20, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    2502

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.