How Do Polyethylene Glycol and Poly(sulfobetaine) Hydrogel Layers on Ultrafiltration Membranes Minimize Fouling and Stay Stable in Cleaning Chemicals?Click to copy article linkArticle link copied!
Abstract
We compare the efficiency of grafting polyethylene glycol (PEG) and poly(sulfobetaine) hydrogel layer on poly(ether imide) (PEI) hollow-fiber ultrafiltration membrane surfaces in terms of filtration performance, fouling minimization and stability in cleaning solutions. Two previously established different methods toward the two different chemistries (and both had already proven to be suited to reduce fouling significantly) are applied to the same PEI membranes. The hydrophilicity of PEI membranes is improved by the modification, as indicated by the change of contact angle value from 89° to 68° for both methods, due to the hydration layer formed in the hydrogel layers. Their pure water flux declines because of the additional permeation barrier from the hydrogel layers. However, these barriers increase protein rejection. In the exposure at a static condition, grafting PEG or poly(sulfobetaine) reduces protein adsorption to 23% or 11%, respectively. In the dynamic filtration, the hydrogel layers minimizes the flux reduction and increases the reversibility of fouling. Compared to the pristine PEI membrane that can recover its flux to 42% after hydraulic cleaning, the PEG and poly(sulfobetaine) grafted membranes can recover their flux up to 63% and 94%, respectively. Stability tests show that the poly(sulfobetaine) hydrogel layer is stable in acid, base and chlorine solutions, whereas the PEG hydrogel layer suffers alkaline hydrolysis in base and oxidation in chlorine conditions. With its chemical stability and pronounced capability of minimizing fouling, especially irreversible fouling, protective poly(sulfobetaine) hydrogel layers have great potential for various membrane-based applications.
Cited By
This article is cited by 33 publications.
- Alanis C. Zambrano, Livia M. D. Loiola, Abdullah Bukhamsin, Radoslaw Gorecki, George Harrison, Veerappan Mani, Shadi Fatayer, Suzana P. Nunes, Khaled N. Salama. Porous Laser-Scribed Graphene Electrodes Modified with Zwitterionic Moieties: A Strategy for Antibiofouling and Low-Impedance Interfaces. ACS Applied Materials & Interfaces 2024, 16
(4)
, 4408-4419. https://doi.org/10.1021/acsami.3c15849
- Eric Schönemann, Julian Koc, Jana F. Karthäuser, Onur Özcan, Dirk Schanzenbach, Lisa Schardt, Axel Rosenhahn, André Laschewsky. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021, 22
(4)
, 1494-1508. https://doi.org/10.1021/acs.biomac.0c01705
- Ngoc Lieu Le, Phuoc H.H. Duong, Bruno A. Pulido, Suzana P. Nunes. Zwitterionic Triamine Monomer for the Fabrication of Thin-Film Composite Membranes. Industrial & Engineering Chemistry Research 2021, 60
(1)
, 583-592. https://doi.org/10.1021/acs.iecr.0c04738
- Cheng Jiang, Guixiang Wang, Robert Hein, Nianzu Liu, Xiliang Luo, Jason J. Davis. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chemical Reviews 2020, 120
(8)
, 3852-3889. https://doi.org/10.1021/acs.chemrev.9b00739
- Jia Yang, Yu Li, Xianqiang Yu, Xiangbin Sun, Lin Zhu, Gang Qin, Yahui Dai, Qiang Chen. Tough and Conductive Dual Physically Cross-Linked Hydrogels for Wearable Sensors. Industrial & Engineering Chemistry Research 2019, 58
(36)
, 17001-17009. https://doi.org/10.1021/acs.iecr.9b01796
- Phuoc
H. H. Duong, Kevin Daumann, Pei-Ying Hong, Mathias Ulbricht, Suzana P. Nunes. Interfacial Polymerization of Zwitterionic Building Blocks for High-Flux Nanofiltration Membranes. Langmuir 2019, 35
(5)
, 1284-1293. https://doi.org/10.1021/acs.langmuir.8b00960
- Sahar Feizolahi, Majid Pakizeh, Mahdieh Namvar‐Mahboub. Multilayer‐coated polyphenylsulfone membranes with superior antifouling properties of
PEG
‐
NH
2
hydrogel for ultrafiltration process. Journal of Applied Polymer Science 2024, 57 https://doi.org/10.1002/app.56184
- Milad Nouri, Ali Poorkhalil, Hasan Farrokhzad. Modification Methods Categorization of Polymeric Membranes for Pervaporation: A Review. Polymer Reviews 2024, 329 , 1-28. https://doi.org/10.1080/15583724.2024.2396853
- Peter Ohlemüller, Rupert Konradi. Photoactivatable poly(2-oxazoline)s enable antifouling hydrogel membrane coatings. European Polymer Journal 2024, 213 , 113097. https://doi.org/10.1016/j.eurpolymj.2024.113097
- Zhen Song, Rui Han, Kunpeng Yu, Rong Li, Xiliang Luo. Antifouling strategies for electrochemical sensing in complex biological media. Microchimica Acta 2024, 191
(3)
https://doi.org/10.1007/s00604-024-06218-2
- Zeinab Alipoor, Seyed Mahmoud Mousavi, Ehsan Saljoughi, Hamed Karkhanechi. Toward fabrication of fouling resistant pervaporation membrane for desalination: Surface modification of TFC membrane via grafting of mPEG-NH2. Desalination 2023, 567 , 116970. https://doi.org/10.1016/j.desal.2023.116970
- Kristina Fischer, Jessica Lohmann, Eva Schmidt, Theresa Helene Blaich, Carsten Belz, Isabell Thomas, Eric Vogelsberg, Agnes Schulze. Anti-biofouling membranes via hydrogel electron beam modification – A fundamental and applied study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 675 , 132044. https://doi.org/10.1016/j.colsurfa.2023.132044
- Haiqing Chang, Huaxin Zhao, Fangshu Qu, Zhongsen Yan, Naiming Liu, Mengzhe Lu, Ying Liang, Bo Lai, Heng Liang. State-of-the-art insights on applications of hydrogel membranes in water and wastewater treatment. Separation and Purification Technology 2023, 308 , 122948. https://doi.org/10.1016/j.seppur.2022.122948
- Qirong Ke, Mathias Ulbricht. In situ reactive coating of porous filtration membranes with functional polymer layers to integrate boron adsorber property. Journal of Membrane Science 2022, 660 , 120851. https://doi.org/10.1016/j.memsci.2022.120851
- Huanmin Wang, Xiaoming Guo, Cunbao Pei, Wei Dong, Yongyi Yao. Hydrophilic modification of polypropylene membrane via tannic and titanium complexation for high‐efficiency oil/water emulsion separation driven by self‐gravity. Polymer Engineering & Science 2022, 62
(7)
, 2131-2142. https://doi.org/10.1002/pen.25994
- Samuel J. Lounder, Patrick T. Wright, Luca Mazzaferro, Ayse Asatekin. Fouling-Resistant Membranes with Tunable Pore Size Fabricated Using Cross-Linkable Copolymers with High Zwitterion Content. Journal of Membrane Science Letters 2022, 2
(1)
, 100019. https://doi.org/10.1016/j.memlet.2022.100019
- Jianxin Wen, Hua Li. Thermal Spray Coatings for Protection Against Microbiologically Induced Corrosion: Recent Advances and Future Perspectives. Journal of Thermal Spray Technology 2022, 31
(4)
, 829-847. https://doi.org/10.1007/s11666-022-01345-9
- Gansheng Liu, Christine Matindi, Mengyang Hu, Xianhui Li, Xiaohua Ma, Jianxin Li. Zwitterion-modified membranes for water reclamation. 2022, 349-389. https://doi.org/10.1016/B978-0-323-89977-2.00002-6
- Hasan Idrees, Ibrahim M. A. ElSherbiny, Meagan Hecket, Qirong Ke, Christian Staaks, Ahmed S. G. Khalil, Mathias Ulbricht, Stefan Panglisch. Surface Modification of Ready‐to‐Use Hollow Fiber Ultrafiltration Modules for Oil/Water Separation. Chemie Ingenieur Technik 2021, 93
(9)
, 1408-1416. https://doi.org/10.1002/cite.202100044
- Ritabrata Ganguly, Pabitra Saha, Sovan Lal Banerjee, Andrij Pich, Nikhil K. Singha. Stimuli‐Responsive Block Copolymer Micelles Based on Mussel‐Inspired Metal‐Coordinated Supramolecular Networks. Macromolecular Rapid Communications 2021, 42
(17)
https://doi.org/10.1002/marc.202100312
- Soraya Laghmari, Patrick May, Mathias Ulbricht. Polyzwitterionic hydrogel coating for reverse osmosis membranes by concentration polarization-enhanced in situ “click” reaction that is applicable in modules. Journal of Membrane Science 2021, 629 , 119274. https://doi.org/10.1016/j.memsci.2021.119274
- Thanh TH Le, Linh TK Vu, Ngoc Lieu Le. Effects of membrane pore size and transmembrane pressure on ultrafiltration of red‐fleshed dragon fruit (
Hylocereus polyrhizus
) juice. Journal of Chemical Technology & Biotechnology 2021, 96
(6)
, 1561-1572. https://doi.org/10.1002/jctb.6672
- Xiaomei Zhan, Jifeng Cheng, Li Xiang, Huiju Shao, Shuhao Qin. Constructing Microstructures of Chlorinated Polyvinyl Chloride Microporous Membranes by Non-solvent Induced Phase Separation for High Permeate Flux and Rejection Performance. Fibers and Polymers 2021, 22
(5)
, 1189-1199. https://doi.org/10.1007/s12221-021-0237-1
- Jichao Wang, Jiayu Tian, Shanshan Gao, Wenxin Shi, Fuyi Cui. Dopamine triggered one step polymerization and codeposition of reactive surfactant on PES membrane surface for antifouling modification. Separation and Purification Technology 2020, 249 , 117148. https://doi.org/10.1016/j.seppur.2020.117148
- Suzana P Nunes. Can fouling in membranes be ever defeated?. Current Opinion in Chemical Engineering 2020, 28 , 90-95. https://doi.org/10.1016/j.coche.2020.03.006
- Mustafa Arslan, Bruno A. Pulido, Suzana P. Nunes, Yusuf Yagci. Functionalization of Poly(oxindole biphenylylene) membranes by photoinduced thiol-yne click chemistry. Journal of Membrane Science 2020, 598 , 117673. https://doi.org/10.1016/j.memsci.2019.117673
- Suzana P. Nunes. Block Copolymer Membranes. 2020, 297-316. https://doi.org/10.1016/B978-0-12-814681-1.00011-4
- Anthony Szymczyk, Bart van der Bruggen, Mathias Ulbricht. Surface Modification of Water Purification Membranes. 2019, 363-398. https://doi.org/10.1002/9783527819249.ch13
- Eric Schönemann, André Laschewsky, Erik Wischerhoff, Julian Koc, Axel Rosenhahn. Surface Modification by Polyzwitterions of the Sulfabetaine-Type, and Their Resistance to Biofouling. Polymers 2019, 11
(6)
, 1014. https://doi.org/10.3390/polym11061014
- Yanming Lin, Ling Wang, Jinsheng Zhou, Lin Ye, Huiyuan Hu, Zhongkuan Luo, Li Zhou. Surface modification of PVA hydrogel membranes with carboxybetaine methacrylate via PET-RAFT for anti-fouling. Polymer 2019, 162 , 80-90. https://doi.org/10.1016/j.polymer.2018.12.026
- Cong Liu, Lili Wu, Chaocan Zhang, Wanyu Chen, Shuo Luo. Surface hydrophilic modification of PVDF membranes by trace amounts of tannin and polyethyleneimine. Applied Surface Science 2018, 457 , 695-704. https://doi.org/10.1016/j.apsusc.2018.06.131
- Kevin Daumann, Patrick May, Janina Brückerhoff, Mathias Ulbricht. Synthesis of well-defined cross-linkable zwitterionic macromolecular building blocks for hydrogels. Reactive and Functional Polymers 2018, 131 , 251-257. https://doi.org/10.1016/j.reactfunctpolym.2018.07.004
- Wioleta Sikorska, Cezary Wojciechowski, Małgorzata Przytulska, Gabriel Rokicki, Monika Wasyłeczko, Juliusz L. Kulikowski, Andrzej Chwojnowski. Polysulfone–polyurethane (PSf-PUR) blend partly degradable hollow fiber membranes: preparation, characterization, and computer image analysis. Desalination and Water Treatment 2018, 128 , 383-391. https://doi.org/10.5004/dwt.2018.23101
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.