Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Quaternized Chitosan/PVA Aerogels for Reversible CO2 Capture from Ambient Air
My Activity

Figure 1Loading Img
    Article

    Quaternized Chitosan/PVA Aerogels for Reversible CO2 Capture from Ambient Air
    Click to copy article linkArticle link copied!

    • Juzheng Song
      Juzheng Song
      International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
      More by Juzheng Song
    • Jie Liu
      Jie Liu
      School of Chemical Engineering & Technology, China University of Mining & Technology, Beijing 100083, China
      More by Jie Liu
    • Wei Zhao
      Wei Zhao
      School of Chemical Engineering, Northwest University, Xi’an 710069, China
      More by Wei Zhao
    • Yan Chen
      Yan Chen
      International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
      More by Yan Chen
    • Hang Xiao
      Hang Xiao
      School of Chemical Engineering, Northwest University, Xi’an 710069, China
      Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
      More by Hang Xiao
    • Xiaoyang Shi
      Xiaoyang Shi
      Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
      More by Xiaoyang Shi
    • Yilun Liu*
      Yilun Liu
      State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
      *E-mail: [email protected]
      More by Yilun Liu
    • Xi Chen*
      Xi Chen
      School of Chemical Engineering, Northwest University, Xi’an 710069, China
      Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
      *E-mail: [email protected]
      More by Xi Chen
    Other Access Options

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2018, 57, 14, 4941–4948
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.iecr.8b00064
    Published March 21, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Developing inexpensive and highly efficient CO2 air capture technologies is an important solution for solving the greenhouse problem. In this work, we used the low-cost quaternized chitosan (QCS)/poly(vinyl alcohol) (PVA) hybrid aerogels with quaternary ammonium groups and hydroxide ions to reversibly capture CO2 from ambient air by humidity swing. The CO2 capture capacity and adsorption rate of the aerogels were investigated over the temperature range 10–30 °C. The CO2 capture capacity of the aerogels was measured to be about 0.18 mmol/g, which is 38% higher than the state-of-the-art commercial membrane. In addition, we proposed a modified pseudo-first-order kinetic model considering both the CO2 adsorption and the H2O desorption, which describes the experimental results very well. For the first time, the moisture-swing CO2 adsorbent is built by low-cost biomass material, which opens up a new approach for the design of the moisture-swing CO2 adsorbent.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 91 publications.

    1. Mark Robertson, Jin Qian, Zhe Qiang. Polymer Sorbent Design for the Direct Air Capture of CO2. ACS Applied Polymer Materials 2024, Article ASAP.
    2. Yaguang Zhu, Austin Booth, Kelsey B. Hatzell. Confinement Effects on Moisture-Swing Direct Air Capture. Environmental Science & Technology Letters 2024, 11 (2) , 89-94. https://doi.org/10.1021/acs.estlett.3c00712
    3. Xinyue Cheng, Xueyan Sun, Shiqiang Zheng, Wenjia Zhou, Zhen Yuan, Liangliang Zhu, Xi Chen. Quaternized Plant-Based Porous Biochar for Direct Air Capture of CO2 by Moisture-Swing Adsorption. Industrial & Engineering Chemistry Research 2024, 63 (5) , 2320-2328. https://doi.org/10.1021/acs.iecr.3c03023
    4. John Hegarty, Benjamin Shindel, Daria Sukhareva, Michael L. Barsoum, Omar K. Farha, Vinayak Dravid. Expanding the Library of Ions for Moisture-Swing Carbon Capture. Environmental Science & Technology 2023, 57 (50) , 21080-21091. https://doi.org/10.1021/acs.est.3c02543
    5. Yixin Tian, Ranhao Wang, Shimao Deng, Yuting Tao, Wei Dai, Qian Zheng, Changzhu Huang, Chenlu Xie, Qiang Zeng, Jia Lin, Hong Chen. Coupling Direct Atmospheric CO2 Capture with Photocatalytic CO2 Reduction for Highly Efficient C2H6 Production. Nano Letters 2023, 23 (23) , 10914-10921. https://doi.org/10.1021/acs.nanolett.3c03167
    6. Hoda Shokrollahzadeh Behbahani, Husain Mithaiwala, Horacio Lopez Marques, Winston Wang, Benny D. Freeman, Matthew D. Green. Quaternary Ammonium-Functionalized Poly(Arylene Ether Sulfone) Random Copolymers for Direct Air Capture. Macromolecules 2023, 56 (16) , 6470-6481. https://doi.org/10.1021/acs.macromol.3c00760
    7. Yihan Shi, Ruiyan Ni, Yi Zhao. Review on Multidimensional Adsorbents for CO2 Capture from Ambient Air: Recent Advances and Future Perspectives. Energy & Fuels 2023, 37 (9) , 6365-6381. https://doi.org/10.1021/acs.energyfuels.3c00381
    8. Nasim Amiri Ramsheh, Haniyeh Dogari, Elias Mosaffa, Mahdi Akhgari, Hossein Ghafuri, Atanu Banerjee. Metformin-Embedded Biocompatible Chitosan/Poly(vinyl alcohol) Beads with Superior Adsorption Properties toward Lead(II) and Levofloxacin. ACS Applied Polymer Materials 2023, 5 (4) , 3148-3160. https://doi.org/10.1021/acsapm.3c00329
    9. Chao Lu, Xiaohong Zhang, Xi Chen. Advanced Materials and Technologies toward Carbon Neutrality. Accounts of Materials Research 2022, 3 (9) , 913-921. https://doi.org/10.1021/accountsmr.2c00084
    10. Joel M. Kolle, Mohammadreza Fayaz, Abdelhamid Sayari. Understanding the Effect of Water on CO2 Adsorption. Chemical Reviews 2021, 121 (13) , 7280-7345. https://doi.org/10.1021/acs.chemrev.0c00762
    11. Ross D. Jansen-van Vuuren, Guilherme Drechsler Vilela, Maedeh Ramezani, Peter H. Gilbert, Danika Watson, Nathan Mullins, Allen K. Lucas, Alan Jeffrey Giacomin, Michael F. Cunningham, Philip G. Jessop. CO2-Responsive Superabsorbent Hydrogels Capable of >90% Dewatering When Immersed in Water. ACS Applied Polymer Materials 2021, 3 (4) , 2153-2165. https://doi.org/10.1021/acsapm.1c00136
    12. Paweł G. Parzuchowski, Aleksandra Świderska, Marlena Roguszewska, Karolina Rolińska, Dominik Wołosz. Moisture- and Temperature-Responsive Polyglycerol-Based Carbon Dioxide Sorbents—The Insight into the Absorption Mechanism for the Hydrophilic Polymer. Energy & Fuels 2020, 34 (10) , 12822-12832. https://doi.org/10.1021/acs.energyfuels.0c02174
    13. Xueru Wang, Juzheng Song, Yan Chen, Hang Xiao, Xiaoyang Shi, Yilun Liu, Liangliang Zhu, Ya-Ling He, Xi Chen. CO2 Absorption over Ion Exchange Resins: The Effect of Amine Functional Groups and Microporous Structures. Industrial & Engineering Chemistry Research 2020, 59 (38) , 16507-16515. https://doi.org/10.1021/acs.iecr.0c03189
    14. He Cai, Xingwang Zhang, Lecheng Lei, Chengliang Xiao. Direct CO2 Capture from Air via Crystallization with a Trichelating Iminoguanidine Ligand. ACS Omega 2020, 5 (32) , 20428-20437. https://doi.org/10.1021/acsomega.0c02460
    15. Juzheng Song, Liangliang Zhu, Xiaoyang Shi, Yilun Liu, Hang Xiao, Xi Chen. Reversible SO2 Removal from Simulated Flue Gas by Ion Exchange Membranes Using the Humidity-Swing. Energy & Fuels 2019, 33 (11) , 10953-10958. https://doi.org/10.1021/acs.energyfuels.9b03297
    16. Juzheng Song, Liangliang Zhu, Xiaoyang Shi, Yilun Liu, Hang Xiao, Xi Chen. Moisture Swing Ion-Exchange Resin-PO4 Sorbent for Reversible CO2 Capture from Ambient Air. Energy & Fuels 2019, 33 (7) , 6562-6567. https://doi.org/10.1021/acs.energyfuels.9b00863
    17. Chenglong Hou, Yusong Wu, Tao Wang, Xinru Wang, Xiang Gao. Preparation of Quaternized Bamboo Cellulose and Its Implication in Direct Air Capture of CO2. Energy & Fuels 2019, 33 (3) , 1745-1752. https://doi.org/10.1021/acs.energyfuels.8b02821
    18. Romesh P. Wijesiri, Gregory P. Knowles, Hasina Yeasmin, Andrew F. A. Hoadley, Alan L. Chaffee. CO2 Capture from Air Using Pelletized Polyethylenimine Impregnated MCF Silica. Industrial & Engineering Chemistry Research 2019, 58 (8) , 3293-3303. https://doi.org/10.1021/acs.iecr.8b04973
    19. Farnoush Fathalian, Hamidreza Moghadamzadeh, Alireza Hemmati, Ahad Ghaemi. Efficient CO2 adsorption using chitosan, graphene oxide, and zinc oxide composite. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-53577-0
    20. Farid Akhtar, Andreas Kaiser. Design and structuring of porous sorbents for CO2 capture and separation. Current Opinion in Green and Sustainable Chemistry 2024, 50 , 100966. https://doi.org/10.1016/j.cogsc.2024.100966
    21. Luming Qi, Zhenyang Rong, Yeyang Ni, Linlin Zhang, Zhe Zhou, Qing Liu, Jihai Tang, Mifen Cui, Xu Qiao. Alginate-derived solid-liquid hybrid structured adsorbent for CO2 capture. Separation and Purification Technology 2024, 347 , 127572. https://doi.org/10.1016/j.seppur.2024.127572
    22. Hao Dong, Tao Wang, Fengsheng Liu, Zhongyang Luo, Xiang Gao, Ming Cai. Unidirectional ice-templating for aerogel adsorbents: Excellent pore structure and high CO2 capture performance for direct air capture. Separation and Purification Technology 2024, 479 , 129588. https://doi.org/10.1016/j.seppur.2024.129588
    23. Ping Fa Chiang, Teng Ling Zhang, Ndungutse Jean Maurice, Mugabekazi Joie Claire, Bigirimana Gentil, Abdul Ghaffar Memon, Abdulmoseen Segun Giwa. Impacts of Polyvinyl Alcohol and Chitosan-Modified Biochar on the Anaerobic Digestion of Sewage Sludge and Valuable Resource Recovery. Processes 2024, 12 (9) , 1987. https://doi.org/10.3390/pr12091987
    24. Arijit Ghorai, Hoyong Chung. Ionic Lignin Polymers for Controlled CO 2 Capture, Release, and Conversion into High‐Value Chemicals. Advanced Materials 2024, 36 (38) https://doi.org/10.1002/adma.202406610
    25. Isabella Nicotera, Apostolos Enotiadis, Cataldo Simari. Quaternized Graphene for High‐Performance Moisture Swing Direct Air Capture of CO 2. Small 2024, 9 https://doi.org/10.1002/smll.202401303
    26. Maryam Helmi, Alireza Hemmati, Ahad Ghaemi. Clinoptilolite and MCM-41 impregnated with chitosan as a green novel adsorbent for CO2 capture. Case Studies in Chemical and Environmental Engineering 2024, 9 , 100764. https://doi.org/10.1016/j.cscee.2024.100764
    27. Subhasis Ghosh, Poushali Chakraborty, Avijit Bhowal, Suvendu Manna, Papita Das. Synthesis of polymeric aerogels with different fillers and their application for the removal of emerging pollutants: a comparative study. Biomass Conversion and Biorefinery 2024, 100 https://doi.org/10.1007/s13399-024-05715-x
    28. Xianyu Lan, Hang Yang, Yuzhu Xiong, Guanyue Zeng, Fuping Dong. Polyvinyl alcohol/chitosan quaternary ammonium salt composite hydrogel with directional macroporous structure for photothermal synergistic antibacterial and wound healing promotion. International Journal of Biological Macromolecules 2024, 267 , 131549. https://doi.org/10.1016/j.ijbiomac.2024.131549
    29. Shiqiang Zheng, Xinyue Cheng, Wenjia Zhou, Tong Wang, Liangliang Zhu, Hang Xiao, Xi Chen. K 2 CO 3 on porous supports for moisture‐swing CO 2 capture from ambient air. Asia-Pacific Journal of Chemical Engineering 2024, 19 (3) https://doi.org/10.1002/apj.3058
    30. Rosalia Maria Cigala, Giovanna De Luca, Ileana Ielo, Francesco Crea. Biopolymeric Nanocomposites for CO2 Capture. Polymers 2024, 16 (8) , 1063. https://doi.org/10.3390/polym16081063
    31. Fatemeh Rafieian, Alain Dufresne, Gholamreza Askari, Atefe Rezaei, Hooria seyedhosseini-Ghaheh, Seid Mahdi Jafari. Aerogels as novel ingredients: Production, properties and applications in medical, food and environmental sectors. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 687 , 133410. https://doi.org/10.1016/j.colsurfa.2024.133410
    32. Jun Liu, Zhen Zhang, Chenyang Liang, Weishu Wang, Tao Wang. Designing and Screening of Moisture‐Swing Porous Adsorbents for Rapid CO2 Capture from Air. ChemNanoMat 2024, 10 (3) https://doi.org/10.1002/cnma.202300412
    33. Farida Baraka, Jalel Labidi. The emergence of nanocellulose aerogels in CO2 adsorption. Science of The Total Environment 2024, 912 , 169093. https://doi.org/10.1016/j.scitotenv.2023.169093
    34. Lin Zhong, Fengcheng Shi, Jiaren Yang, Hong Qian, Jian Zhou, Yanli Niu, Ting Zhang, Fatang Jiang. Comparison of the filtration performance of konjac glucomannan-based aerogel and cellulose acetate. International Journal of Low-Carbon Technologies 2024, 19 , 1864-1871. https://doi.org/10.1093/ijlct/ctae131
    35. Ankita Sao, Mahendra S. Gaikwad. Recent progress and future outlook on hybrid aerogel materials for sustainable CO2 capture: A mini review. Materials Letters 2024, 355 , 135423. https://doi.org/10.1016/j.matlet.2023.135423
    36. Minghai Shen, Fulin Kong, Wei Guo, Zhongqi Zuo, Ting Gao, Sen Chen, Lige Tong, Peikun Zhang, Li Wang, Paul K. Chu, Yulong Ding. Impact of H2O on CO2 adsorption and co-adsorption: Mechanism and high-performance adsorbents for efficient H2O-CO2 capture. Chemical Engineering Journal 2024, 479 , 147923. https://doi.org/10.1016/j.cej.2023.147923
    37. Hassan Rasoulzadeh, Saeed Motesaddi Zarandi, Mohamadreza Massoudinejad, Mostafa M Amini, Amir Sheikhmohammadi. Investigation into the influencing factors and adsorption characteristics in the effective capture of carbon dioxide in flue gas by chitosan grafted Leca biocomposite. International Journal of Environmental Analytical Chemistry 2023, 103 (20) , 9186-9208. https://doi.org/10.1080/03067319.2021.2004408
    38. Hassan Rasoulzadeh, Saeed Motesaddi Zarandi, Mohamadreza Massoudinejad, Mostafa M. Amini. Modelling and optimisation by response surface technique for adsorption of carbon dioxide by aminated biosilica/alginate composite: Experiments, characterisation and regeneration studies. International Journal of Environmental Analytical Chemistry 2023, 103 (16) , 3740-3761. https://doi.org/10.1080/03067319.2021.1912337
    39. Nazrul Hsan, Santosh Kumar, Joonseok Koh, Pradip K. Dutta. Chitosan modified multi-walled carbon nanotubes and arginine aerogel for enhanced carbon capture. International Journal of Biological Macromolecules 2023, 252 , 126523. https://doi.org/10.1016/j.ijbiomac.2023.126523
    40. Taoqing He, Chao Chen, Xingxing Li, Lei Zhu, Xinzhi Cai, Zhaozhu Zheng, Gang Li, Xiaoqin Wang. Innovative dual-function system for efficient CO2 absorption and utilization: Local humidity swing fabric and microalgae-embedded hydrogel. Chemical Engineering Journal 2023, 477 , 147108. https://doi.org/10.1016/j.cej.2023.147108
    41. Zahra Nezafat, Mahmoud Nasrollahzadeh, Shahrzad Javanshir, Talat Baran, Yahao Dong. Recent developments in polysaccharide and lignin-based (nano)materials for CO 2 capture. Green Chemistry 2023, 25 (23) , 9603-9643. https://doi.org/10.1039/D3GC02373G
    42. Xueru Wang, Yan Chen, Wenqi Xu, Arne Lindbråthen, Xinyue Cheng, Xi Chen, Liangliang Zhu, Liyuan Deng. Development of high capacity moisture-swing DAC sorbent for direct air capture of CO2. Separation and Purification Technology 2023, 324 , 124489. https://doi.org/10.1016/j.seppur.2023.124489
    43. Shinta Miyazaki, Masaki Yoshihara, Takashi Toyao, Zen Maeno, Ken-ichi Shimizu. Continuous production of O2-free enriched CO2 from ambient air using moisture swing sorbents. Next Nanotechnology 2023, 3-4 , 100029. https://doi.org/10.1016/j.nxnano.2023.100029
    44. Shin Ying Foong, Yi Herng Chan, Chung Loong Yiin, Serene Sow Mun Lock, Adrian Chun Minh Loy, Juin Yau Lim, Peter Nai Yuh Yek, Wan Adibah Wan Mahari, Rock Keey Liew, Wanxi Peng, Meisam Tabatabaei, Mortaza Aghbashlo, Su Shiung Lam. Sustainable CO2 capture via adsorption by chitosan-based functional biomaterial: A review on recent advances, challenges, and future directions. Renewable and Sustainable Energy Reviews 2023, 181 , 113342. https://doi.org/10.1016/j.rser.2023.113342
    45. N. Hammi, N. Couzon, T. Loiseau, C. Volkringer, A. El Kadib, S. Royer, J. Dhainaut. Hierarchically porous ZIF-67/chitosan beads with high surface area and strengthened mechanical properties: Application to CO2 storage. Materials Today Sustainability 2023, 22 , 100394. https://doi.org/10.1016/j.mtsust.2023.100394
    46. Hao Dong, Tao Wang, Xiaobo Wang, Fengsheng Liu, Chenglong Hou, Zhengfeng Wang, Weishan Liu, Lin Fu, Xiang Gao. Humidity sensitivity reducing of moisture swing adsorbents by hydrophobic carrier doping for CO2 direct air capture. Chemical Engineering Journal 2023, 466 , 143343. https://doi.org/10.1016/j.cej.2023.143343
    47. Xiaoyang Shi, Gahyun Annie Lee, Shuohan Liu, Dongjae Kim, Ammar Alahmed, Aqil Jamal, Lei Wang, Ah-Hyung Alissa Park. Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas. Materials Today 2023, 65 , 207-226. https://doi.org/10.1016/j.mattod.2023.03.004
    48. Weng Siew Lam, Weng Hoe Lam, Pei Fun Lee. The Studies on Chitosan for Sustainable Development: A Bibliometric Analysis. Materials 2023, 16 (7) , 2857. https://doi.org/10.3390/ma16072857
    49. Maryam Helmi, Farzad Moazami, Ahad Ghaemi, Alireza Hemmati. Synthesis, characterization and performance evaluation of NaOH@Chitosan-Fe3O4 as an adsorbent for CO2 capture. Fuel 2023, 338 , 127300. https://doi.org/10.1016/j.fuel.2022.127300
    50. Sunanda Roy, Barnali Dasgupta Ghosh, Kheng Lim Goh, Jaehwan Kim, Hyeok Jun Ahn, Young-Wook Chang. Pores on Pores: A novel approach to fabricate super adsorbents from used face masks for large CO2 capture and dye removal. Carbon 2023, 206 , 422-433. https://doi.org/10.1016/j.carbon.2023.02.040
    51. Yasser Abdullatif, Ahmed Sodiq, Namra Mir, Yusuf Bicer, Tareq Al-Ansari, Muftah H. El-Naas, Abdulkarem I. Amhamed. Emerging trends in direct air capture of CO 2 : a review of technology options targeting net-zero emissions. RSC Advances 2023, 13 (9) , 5687-5722. https://doi.org/10.1039/D2RA07940B
    52. Mary E. Zick, Donovan Cho, Jianheng Ling, Phillip J. Milner. Carbon Capture Beyond Amines: CO 2 Sorption at Nucleophilic Oxygen Sites in Materials. ChemNanoMat 2023, 9 (1) https://doi.org/10.1002/cnma.202200436
    53. Priya Banerjee, Mridula Chowdhury, Papita Das, Ashok Kumar Nadda, Aniruddha Mukhopadhayay. Biopolymers for CO2 capture. 2023, 289-320. https://doi.org/10.1016/B978-0-323-85777-2.00011-1
    54. Bahare Salehi, Lijun Wang. Nanomaterials for the enhancement of microalgae cultivation and bioremediation of wastewater. 2023, 463-477. https://doi.org/10.1016/B978-0-323-98391-4.00011-3
    55. Daniel Casaban, Elena Tsalaporta. The impact of direct air capture during the last two decades: A bibliometric analysis of the scientific research Part II. Sustainable Chemistry for Climate Action 2023, 2 , 100021. https://doi.org/10.1016/j.scca.2023.100021
    56. Debashis Panda, Vaishnavi Kulkarni, Sanjay Kumar Singh. Evaluation of amine-based solid adsorbents for direct air capture: a critical review. Reaction Chemistry & Engineering 2022, 8 (1) , 10-40. https://doi.org/10.1039/D2RE00211F
    57. Erez Cohen, Elena Poverenov. Hydrophilic Chitosan Derivatives: Synthesis and Applications. Chemistry – A European Journal 2022, 28 (67) https://doi.org/10.1002/chem.202202156
    58. Junya Wang, Rong Fu, Shikun Wen, Ping Ning, Mohamed H. Helal, Mohamed A. Salem, Ben Bin Xu, Zeinhom M. El-Bahy, Mina Huang, Zhanhu Guo, Liang Huang, Qiang Wang. Progress and current challenges for CO2 capture materials from ambient air. Advanced Composites and Hybrid Materials 2022, 5 (4) , 2721-2759. https://doi.org/10.1007/s42114-022-00567-3
    59. Minale Belay Getahun, Erik Budi Santiko, Toyoko Imae, Chao-Lung Chiang, Yan-Gu Lin. Photocatalytic conversion of gaseous carbon dioxide to methanol on CuO/ZnO-embedded carbohydrate polymer films. Applied Surface Science 2022, 604 , 154515. https://doi.org/10.1016/j.apsusc.2022.154515
    60. Junye Wu, Xuancan Zhu, Fan Yang, Ruzhu Wang, Tianshu Ge. Shaping techniques of adsorbents and their applications in gas separation: a review. Journal of Materials Chemistry A 2022, 10 (43) , 22853-22895. https://doi.org/10.1039/D2TA04352A
    61. Yuta Kaneko, Klaus S. Lackner. Kinetic model for moisture-controlled CO 2 sorption. Physical Chemistry Chemical Physics 2022, 24 (35) , 21061-21077. https://doi.org/10.1039/D2CP02440C
    62. Feng Li, Yifan Zhang, Shiqiang Zheng, Kai Wang, Jia Ni, Liangliang Zhu, Xi Chen. CO 2 removal in humid environment by ion‐exchange membranes. Asia-Pacific Journal of Chemical Engineering 2022, 17 (5) https://doi.org/10.1002/apj.2816
    63. Xuancan Zhu, Wenwen Xie, Junye Wu, Yihe Miao, Chengjie Xiang, Chunping Chen, Bingyao Ge, Zhuozhen Gan, Fan Yang, Man Zhang, Dermot O'Hare, Jia Li, Tianshu Ge, Ruzhu Wang. Recent advances in direct air capture by adsorption. Chemical Society Reviews 2022, 51 (15) , 6574-6651. https://doi.org/10.1039/D1CS00970B
    64. Bahare Salehi, Lijun Wang. Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater. Energies 2022, 15 (15) , 5387. https://doi.org/10.3390/en15155387
    65. Xingyuan Gao, Shiting Yang, Lifen Hu, Shiyi Cai, Liqing Wu, Sibudjing Kawi. Carbonaceous materials as adsorbents for CO2 capture: synthesis and modification. Carbon Capture Science & Technology 2022, 3 , 100039. https://doi.org/10.1016/j.ccst.2022.100039
    66. María Erans, Eloy S. Sanz-Pérez, Dawid P. Hanak, Zeynep Clulow, David M. Reiner, Greg A. Mutch. Direct air capture: process technology, techno-economic and socio-political challenges. Energy & Environmental Science 2022, 15 (4) , 1360-1405. https://doi.org/10.1039/D1EE03523A
    67. Xiaoyang Shi, Yuanchunyu Lin, Xi Chen. Development of sorbent materials for direct air capture of CO2. MRS Bulletin 2022, 47 (4) , 405-415. https://doi.org/10.1557/s43577-022-00320-7
    68. Gang Wei, Jianming Zhang, Mattia Usuelli, Xiaofang Zhang, Bin Liu, Raffaele Mezzenga. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Progress in Materials Science 2022, 125 , 100915. https://doi.org/10.1016/j.pmatsci.2021.100915
    69. Karol Sikora, Andrzej Nowacki, Piotr Szweda, Anna Woziwodzka, Sylwia Bartoszewska, Jacek Piosik, Barbara Dmochowska. Antimicrobial, Cytotoxic and Mutagenic Activity of Gemini QAS Derivatives of 1,4:3,6-Dianhydro-l-iditol. Molecules 2022, 27 (3) , 757. https://doi.org/10.3390/molecules27030757
    70. R. Nidhi Maalige, Manohara Halanur Mruthunjayappa, S. K. Nataraj. Sustainable Polymer-Based Materials for Energy and Environmental Applications. 2022, 9-30. https://doi.org/10.1007/978-981-16-8755-6_2
    71. Marzieh Badiei, Nilofar Asim, Masita Mohammad, M. Akhtaruzzaman, Nurul Asma Samsudin, Nowshad Amin, Kamaruzzaman Sopian. Nanostructured polysaccharide-based materials obtained from renewable resources and uses. 2022, 163-200. https://doi.org/10.1016/B978-0-12-823439-6.00015-5
    72. Raquel V. Barrulas, Clara López-Iglesias, Marcileia Zanatta, Teresa Casimiro, Gonzalo Mármol, Manuela Ribeiro Carrott, Carlos A. García-González, Marta C. Corvo. The AEROPILs Generation: Novel Poly(Ionic Liquid)-Based Aerogels for CO2 Capture. International Journal of Molecular Sciences 2022, 23 (1) , 200. https://doi.org/10.3390/ijms23010200
    73. Chao Lu, Xiaoyang Shi, Yilun Liu, Hang Xiao, Junjie Li, Xi Chen. Nanomaterials for adsorption and conversion of CO2 under gentle conditions. Materials Today 2021, 50 , 385-399. https://doi.org/10.1016/j.mattod.2021.03.016
    74. Yu F. Tang, Shi J. Ai, Tian P. Lin, Yu Q. Li, Rong Zhou. Quaternary Ammonium Functionalized Lignosulfonate for Simultaneous Adsorption of Anionic/Cationic Dyes and Desinfection. ChemistrySelect 2021, 6 (33) , 8537-8545. https://doi.org/10.1002/slct.202100475
    75. Yizhong Zhang, Xiang Huang, Yiliang Chen, Tao Xie, Lixia Jia, Xin Tan, Tao Yu. Cadmium ions sequestration and transformation on confined magnesium hydroxide gel beads. Separation and Purification Technology 2021, 270 , 118758. https://doi.org/10.1016/j.seppur.2021.118758
    76. Sona Stanly, Honey John. Uncarbonized crosslinked PVA-modified MMT/reduced graphene hybrid aerogel for efficient carbon dioxide adsorption at low pressure. Journal of Polymer Research 2021, 28 (8) https://doi.org/10.1007/s10965-021-02614-x
    77. Paola Franco, Stefano Cardea, Antonio Tabernero, Iolanda De Marco. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules 2021, 26 (15) , 4440. https://doi.org/10.3390/molecules26154440
    78. Zhiyan Liu, Rui Ma, Wenjie Du, Gang Yang, Tao Chen. Radiation-initiated high strength chitosan/lithium sulfonate double network hydrogel/aerogel with porosity and stability for efficient CO 2 capture. RSC Advances 2021, 11 (33) , 20486-20497. https://doi.org/10.1039/D1RA03041H
    79. Satoru Takeshita, Shanyu Zhao, Wim J. Malfait, Matthias M. Koebel. Chemie der Chitosan‐Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angewandte Chemie 2021, 133 (18) , 9913-9938. https://doi.org/10.1002/ange.202003053
    80. Satoru Takeshita, Shanyu Zhao, Wim J. Malfait, Matthias M. Koebel. Chemistry of Chitosan Aerogels: Three‐Dimensional Pore Control for Tailored Applications. Angewandte Chemie International Edition 2021, 60 (18) , 9828-9851. https://doi.org/10.1002/anie.202003053
    81. Tao Wang, Xinru Wang, Chenglong Hou, Jun Liu. Quaternary functionalized mesoporous adsorbents for ultra-high kinetics of CO2 capture from air. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-77477-1
    82. Han Zhang, Junhua Zhang. The preparation of novel polyvinyl alcohol (PVA)-based nanoparticle/carbon nanotubes (PNP/CNTs) aerogel for solvents adsorption application. Journal of Colloid and Interface Science 2020, 569 , 254-266. https://doi.org/10.1016/j.jcis.2020.02.053
    83. Margarita S. Rubina, Igor V. Elmanovich, Alexandra V. Shulenina, Georgy S. Peters, Roman D. Svetogorov, Alexander A. Egorov, Alexander V. Naumkin, Alexander Yu Vasil'kov. Chitosan aerogel containing silver nanoparticles: From metal-chitosan powder to porous material. Polymer Testing 2020, 86 , 106481. https://doi.org/10.1016/j.polymertesting.2020.106481
    84. Xiaoyang Shi, Hang Xiao, Habib Azarabadi, Juzheng Song, Xiaolong Wu, Xi Chen, Klaus S. Lackner. Sorbenten zur direkten Gewinnung von CO 2 aus der Umgebungsluft. Angewandte Chemie 2020, 132 (18) , 7048-7072. https://doi.org/10.1002/ange.201906756
    85. Xiaoyang Shi, Hang Xiao, Habib Azarabadi, Juzheng Song, Xiaolong Wu, Xi Chen, Klaus S. Lackner. Sorbents for the Direct Capture of CO 2 from Ambient Air. Angewandte Chemie International Edition 2020, 59 (18) , 6984-7006. https://doi.org/10.1002/anie.201906756
    86. Shi Wei, Yern Chee Ching, Cheng Hock Chuah. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydrate Polymers 2020, 231 , 115744. https://doi.org/10.1016/j.carbpol.2019.115744
    87. Maoli Yin, Yingfeng Wang, Yan Zhang, Xuehong Ren, Yuyu Qiu, Tung-Shi Huang. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydrate Polymers 2020, 232 , 115823. https://doi.org/10.1016/j.carbpol.2019.115823
    88. Meng Yang, Chao Ma, Mimi Xu, Shujuan Wang, Lizhen Xu. Recent Advances in CO2 Adsorption from Air: a Review. Current Pollution Reports 2019, 5 (4) , 272-293. https://doi.org/10.1007/s40726-019-00128-1
    89. Habib Azarabadi, Klaus S. Lackner. A sorbent-focused techno-economic analysis of direct air capture. Applied Energy 2019, 250 , 959-975. https://doi.org/10.1016/j.apenergy.2019.04.012
    90. Shadpour Mallakpour, Masoud Hatami. An effective, low-cost and recyclable bio-adsorbent having amino acid intercalated LDH@Fe3O4/PVA magnetic nanocomposites for removal of methyl orange from aqueous solution. Applied Clay Science 2019, 174 , 127-137. https://doi.org/10.1016/j.clay.2019.03.026
    91. Fei Li, Luo-Gang Ding, Bing-Jian Yao, Ning Huang, Jiang-Tao Li, Qi-Juan Fu, Yu-Bin Dong. Pd loaded and covalent-organic framework involved chitosan aerogels and their application for continuous flow-through aqueous CB decontamination. Journal of Materials Chemistry A 2018, 6 (24) , 11140-11146. https://doi.org/10.1039/C8TA03275K

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2018, 57, 14, 4941–4948
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.iecr.8b00064
    Published March 21, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3080

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.