ACS Publications. Most Trusted. Most Cited. Most Read
Khellin and Visnagin, Furanochromones from Ammi visnaga (L.) Lam., as Potential Bioherbicides
My Activity

Figure 1Loading Img
    Article

    Khellin and Visnagin, Furanochromones from Ammi visnaga (L.) Lam., as Potential Bioherbicides
    Click to copy article linkArticle link copied!

    View Author Information
    Instituto de Biologı́a Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
    AgroField Consulting, Gruenstadter Strasse 82, 67283 Obrigheim, Germany
    Investigaciones Biológicas en Agroquímicos Rosario S.A. (INBIOAR S.A.), Cordoba 1437, Fifth Floor—Office 2, 2000 Rosario, Argentina
    § Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 1848, University, Mississippi 38677, United States
    *(M.L.T) E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2016, 64, 50, 9475–9487
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jafc.6b02462
    Published November 28, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Plants constitute a source of novel phytotoxic compounds to be explored in searching for effective and environmentally safe herbicides. From a previous screening of plant extracts for their phytotoxicity, a dichloromethane extract of Ammi visnaga (L.) Lam. was selected for further study. Phytotoxicity-guided fractionation of this extract yielded two furanochromones, khellin and visnagin, for which herbicidal activity had not been described before. Khellin and visnagin were phytotoxic to model species lettuce (Lactuca sativa) and duckweed (Lemna paucicostata), with IC50 values ranging from 110 to 175 μM. These compounds also inhibited the growth and germination of a diverse group of weeds at 0.5 and 1 mM. These weeds included five grasses [ryegrass (Lolium multiflorum), barnyardgrass (Echinocloa crus-galli), crabgrass (Digitaria sanguinalis), foxtail (Setaria italica), and millet (Panicum sp.)] and two broadleaf species [morningglory (Ipomea sp.) and velvetleaf (Abutilon theophrasti)]. During greenhouse studies visnagin was the most active and showed significant contact postemergence herbicidal activity on velvetleaf and crabgrass at 2 kg active ingredient (ai) ha–1. Moreover, its effect at 4 kg ai ha–1 was comparable to the bioherbicide pelargonic acid at the same rate. The mode of action of khellin and visnagin was not a light-dependent process. Both compounds caused membrane destabilization, photosynthetic efficiency reduction, inhibition of cell division, and cell death. These results support the potential of visnagin and, possibly, khellin as bioherbicides or lead molecules for the development of new herbicides.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jafc.6b02462.

    • Additional data as cited in the manuscript. Phytotoxicity of commercial standards of khellin and visnagin as well as five structural analogues (Table ST1). Pictures of Ammi visnaga (L.) Lam. (Figure S1). 1H NMR data of fractions XIV (khellin) (Figure S2), XV (Figure S4), XVI (Figure S5), and XVII (visnagin) (Figure S6). 13C NMR data of fractions XIV (khellin) (Figure S3) and XVII (visnagin) (Figure S7). Dose–response curves of khellin and visnagin on duckweed (Figure S8), lettuce (Figure S10), and ryegrass (Figure S11). Effect of khellin and visnagin on the tissue of duckweed (Figure S9) and cucumber cotyledon disks under different conditions of illumination (Figure S13). Comparison of germination and growth of lettuce and ryegrass in water and solvent control (Figure S12). Detection and quantification of ROS in cucumber cotyledon disks in darkness (Figure S14). Effect of khellin and visnagin on root meristem cell division of A. cepa (Figure S15) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 47 publications.

    1. Xin-Rong Huang, Chao-Nan Jiang, Hai-Su Wang, Gan Gu, Mei Wang, Xiao-Na Sui, Tong Si, Zhong-Feng Zhang, Peng Zhang, Dong-Lin Zhao. Herbicidal Sorbicillinoid Analogs Cause Lignin Accumulation in Aspergillus aculeatus TE-65L. Journal of Agricultural and Food Chemistry 2024, 72 (38) , 21102-21111. https://doi.org/10.1021/acs.jafc.4c06809
    2. Xing Liu, Yong Zhang, Yue Zou, Chongchong Yan, Jixiang Chen. Recent Advances and Outlook of Benzopyran Derivatives in the Discovery of Agricultural Chemicals. Journal of Agricultural and Food Chemistry 2024, 72 (22) , 12300-12318. https://doi.org/10.1021/acs.jafc.3c09244
    3. Wei Wang, Kang-Wen Xu, Mei Wang, Peng Wu, Zi-Ru Zhang, Xi Gao, Yi-Qiang Li, Guo-Xing Wu, Cheng-Sheng Zhang, Dong-Lin Zhao. Phytotoxic and Antimicrobial Terrein Derivatives and Butenolides Isolated from the Endophytic Fungus Aspergillus terreus HT5. Journal of Agricultural and Food Chemistry 2023, 71 (51) , 20713-20723. https://doi.org/10.1021/acs.jafc.3c05955
    4. Ling Ling, Han Wang, Shanshan Zhang, Yanfang Luo, Zhengke Song, Hui Bing, Huan Qi, Lifeng Guo, Wensheng Xiang, Ji-Dong Wang, Junwei Zhao, Xiangjing Wang. Herbicidal Activity of Secondary Metabolites Isolated from Streptomyces sp. NEAU-HV44 on Selected Weeds and Crops. Journal of Agricultural and Food Chemistry 2023, 71 (45) , 17056-17066. https://doi.org/10.1021/acs.jafc.3c04046
    5. Charles L. Cantrell, Maria Lucia Travaini, Joanna Bajsa-Hirschel, Lara D. Svendsen, Amber Reichley, Gustavo M. Sosa, Seong Jong Kim, Prabin Tamang, Kumudini Meepagala, Stephen O. Duke. Synthesis, Herbicidal Activity, and Structure–Activity Relationships of O-Alkyl Analogues of Khellin and Visnagin. Journal of Agricultural and Food Chemistry 2023, 71 (40) , 14593-14603. https://doi.org/10.1021/acs.jafc.3c03254
    6. Estefânia V. R. Campos, Jonathan Ratko, Ngangom Bidyarani, Vanessa Takeshita, Leonardo F. Fraceto. Nature-Based Herbicides and Micro-/Nanotechnology Fostering Sustainable Agriculture. ACS Sustainable Chemistry & Engineering 2023, 11 (27) , 9900-9917. https://doi.org/10.1021/acssuschemeng.3c02282
    7. Da-Wei Wang, Hang Zhang, Shu-Yi Yu, Rui-Bo Zhang, Lu Liang, Xia Wang, Huang-Ze Yang, Zhen Xi. Discovery of a Potent Thieno[2,3-d]pyrimidine-2,4-dione-Based Protoporphyrinogen IX Oxidase Inhibitor through an In Silico Structure-Guided Optimization Approach. Journal of Agricultural and Food Chemistry 2021, 69 (47) , 14115-14125. https://doi.org/10.1021/acs.jafc.1c05665
    8. Dong-Lin Zhao, Xiao-Bin Han, Mei Wang, Yun-Tao Zeng, Yi-Qiang Li, Guo-Yong Ma, Jing Liu, Cai-Juan Zheng, Ming-Xia Wen, Zhi-Fan Zhang, Peng Zhang, Cheng-Sheng Zhang. Herbicidal and Antifungal Xanthone Derivatives from the Alga-Derived Fungus Aspergillus versicolor D5. Journal of Agricultural and Food Chemistry 2020, 68 (40) , 11207-11214. https://doi.org/10.1021/acs.jafc.0c04265
    9. Jack H. Roireau, Robert J. Rosano, Nicholas C. Lazzara, Thomas Chen, Joanna Bajsa-Hirschel, Kevin K. Schrader, Stephen O. Duke, Dennis Wykoff, Robert M. Giuliano. Synthesis of Pyranopyrans Related to Diplopyrone and Evaluation as Antibacterials and Herbicides. Journal of Agricultural and Food Chemistry 2020, 68 (37) , 9906-9916. https://doi.org/10.1021/acs.jafc.0c02564
    10. Lingling Cao, Wei Yan, Chenguang Gu, Zhiyang Wang, Shuangshuang Zhao, Shuang Kang, Babar Khan, Hailiang Zhu, Jun Li, Yonghao Ye. New Alkylitaconic Acid Derivatives from Nodulisporium sp. A21 and Their Auxin Herbicidal Activities on Weed Seeds. Journal of Agricultural and Food Chemistry 2019, 67 (10) , 2811-2817. https://doi.org/10.1021/acs.jafc.8b04996
    11. S.K.S Ojo, J.O Otugboyega, I.O Ayo, A.M Ojo, B.R Oluwole. Mitigating Action of Nanobioherbicides from Natural Products on Agricultural Produce. 2024, 19-44. https://doi.org/10.1002/9781394234769.ch16
    12. A. Hemanth Babu, D.S.N.B.K. Prasanth, Deepak A. Yaraguppi, Siva Prasad Panda, Sheikh F. Ahmad, Haneen A. Al-Mazroua, Akula Ruchitha Sai, P. Praveen Kumar. Antiparkinson potential of khellin on rotenone-induced Parkinson's disease in a zebrafish model: targeting MAO, inflammatory, and oxidative stress markers with molecular docking, MD simulations, and histopathology evidence. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2024, 284 , 109997. https://doi.org/10.1016/j.cbpc.2024.109997
    13. Raj P. Shah, Sonali S. Bharate. Analytical Methods for Furanochromone Natural Product, Khellin and Its Inspired Drug Candidates, Amiodarone and Sodium Cromoglycate. Critical Reviews in Analytical Chemistry 2024, 54 (4) , 691-706. https://doi.org/10.1080/10408347.2022.2094198
    14. Onyedika C. Chukwuma, Shiau Pin Tan, Helen Hughes, Peter McLoughlin, Niall O’Toole, Nick McCarthy. Evaluating the phytotoxicities of two Irish red seaweeds against common weed species. Journal of Applied Phycology 2024, 36 (2) , 727-743. https://doi.org/10.1007/s10811-023-02992-3
    15. S.K.S Ojo, J.O Otugboyega, I.O Ayo, A.M Ojo, B.R Oluwole. Mitigating Action of Nanobioherbicides from Natural Products on Agricultural Produce. 2024, 19-44. https://doi.org/10.1002/9781119836513.ch2
    16. Wen-Tao Gao, Wen-Hao Su. Weed Management Methods for Herbaceous Field Crops: A Review. Agronomy 2024, 14 (3) , 486. https://doi.org/10.3390/agronomy14030486
    17. Chakravarthi Guntupalli, Mounica Ponugoti, D. S. N. B. K. Prasanth, Narender Malothu. Cerebroprotective effects of khellin: validation through computational studies in a bilateral common carotid artery occlusion/reperfusion (BCCAO/R) model. Molecular Simulation 2024, 7 , 1-10. https://doi.org/10.1080/08927022.2024.2307530
    18. Onyedika C. Chukwuma, Shiau Pin Tan, Helen Hughes, Peter McLoughlin, Niall O’Toole, Nick McCarthy. The potential of seaweeds as a rich natural source for novel bioherbicide formulation/development. Weed Science 2024, 37 , 1-9. https://doi.org/10.1017/wsc.2024.1
    19. Wei Wei, Ping Chen, Babar Khan, Kailin Tian, Yang Feng, Bei Lv, Nasir Ahmed Rajput, Wei Yan, Yonghao Ye, Guiyou Liu. Evaluation of Equisetin as an Anti-Microbial and Herbicidal Agent from Endophytic Fungus Fusarium sp. JDJR1. Agronomy 2024, 14 (1) , 31. https://doi.org/10.3390/agronomy14010031
    20. Gracia Facenda, Miguel Real, Jose A. Galán-Pérez, Beatriz Gámiz, Rafael Celis. Soil Effects on the Bioactivity of Hydroxycoumarins as Plant Allelochemicals. Plants 2023, 12 (6) , 1278. https://doi.org/10.3390/plants12061278
    21. Negin Bahmanpoor, , Seyed Mohammad Mahdi Hamdi, , RamezanAli Ataee, . Real- Time - RT PCR Study of Extract of Ammi visnaga on Pseudomonas aeruginosa Exo A and Exo S Genes Expression. Iranian Journal of Medical Microbiology 2023, 17 (2) , 186-193. https://doi.org/10.30699/ijmm.17.2.186
    22. Hilal ATEŞ, Erkan YALÇIN. Therapeutic Source: Plants. Black Sea Journal of Agriculture 2022, 5 (3) , 336-343. https://doi.org/10.47115/bsagriculture.1078368
    23. Jose Antonio Galán-Pérez, Beatriz Gámiz, Ivana Pavlovic, Rafael Celis. Enantiomer-Selective Characterization of the Adsorption, Dissipation, and Phytotoxicity of the Plant Monoterpene Pulegone in Soils. Plants 2022, 11 (10) , 1296. https://doi.org/10.3390/plants11101296
    24. Wei Wang, Mei Wang, Xian-Bo Wang, Yi-Qiang Li, Ji-Lin Ding, Ming-Xian Lan, Xi Gao, Dong-Lin Zhao, Cheng-Sheng Zhang, Guo-Xing Wu. Phytotoxic Azaphilones From the Mangrove-Derived Fungus Penicillium sclerotiorum HY5. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.880874
    25. Swati Sharma, Lalit M. Pandey. Prospective of fungal pathogen‐based bioherbicides for the control of water hyacinth: A review. Journal of Basic Microbiology 2022, 62 (3-4) , 415-427. https://doi.org/10.1002/jobm.202100381
    26. Dina Gad, Hend E. Abo Mansour, Khalil M. Saad-Allah, Mahmoud S. Abdallah, Aya Ibrahim Elberri, Esraa M. Mosalam. Biostimulants improve the hepatoprotection of Ammi visnaga seed yield extract against carbon tetrachloride induced acute hepatitis in mice through modulation of MAPK. Saudi Journal of Biological Sciences 2022, 27 https://doi.org/10.1016/j.sjbs.2022.01.062
    27. Kawsar Hossen, Krishna Rany Das, Yuka Asato, Toshiaki Teruya, Hisashi Kato-Noguchi. Allelopathic Activity and Characterization of Allelopathic Substances from Elaeocarpus floribundus Blume Leaves for the Development of Bioherbicides. Agronomy 2022, 12 (1) , 57. https://doi.org/10.3390/agronomy12010057
    28. Andrey S. Erst, Alexander A. Chernonosov, Natalia V. Petrova, Maxim S. Kulikovskiy, Svetlana Yu. Maltseva, Wei Wang, Vera A. Kostikova. Investigation of Chemical Constituents of Eranthis longistipitata (Ranunculaceae): Coumarins and Furochromones. International Journal of Molecular Sciences 2022, 23 (1) , 406. https://doi.org/10.3390/ijms23010406
    29. Eduarda Roberta Bordin, Aline Frumi Camargo, Fábio Sptiza Stefanski, Thamarys Scapini, Charline Bonatto, Jessica Zanivan, Karina Preczeski, Tatiani Andressa Modkovski, Francisco Reichert Júnior, Altemir José Mossi, Gislaine Fongaro, Wanessa Algarte Ramsdorf, Helen Treichel. Current production of bioherbicides: mechanisms of action and technical and scientific challenges to improve food and environmental security. Biocatalysis and Biotransformation 2021, 39 (5) , 346-359. https://doi.org/10.1080/10242422.2020.1833864
    30. M. Rahal. Herbe aux cure-dents Ammi visnaga. Phytothérapie 2021, 19 (4) , 267-275. https://doi.org/10.3166/phyto-2021-0271
    31. Mahmudul Hasan, Anis Syahirah Mokhtar, Adam Mustafa Rosli, Hafizuddin Hamdan, Mst. Motmainna, Muhammad Saiful Ahmad-Hamdani. Weed Control Efficacy and Crop-Weed Selectivity of a New Bioherbicide WeedLock. Agronomy 2021, 11 (8) , 1488. https://doi.org/10.3390/agronomy11081488
    32. Rose Marie O.F. Sousa, Ana C. Cunha, Manuel Fernandes-Ferreira. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. Phytochemistry 2021, 187 , 112714. https://doi.org/10.1016/j.phytochem.2021.112714
    33. Mahmudul Hasan, Muhammad Saiful Ahmad-Hamdani, Adam Mustafa Rosli, Hafizuddin Hamdan. Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants 2021, 10 (6) , 1212. https://doi.org/10.3390/plants10061212
    34. Vanessa Maria de Souza Barros, Joab Luhan Ferreira Pedrosa, Débora Ribeiro Gonçalves, Fernanda Carvalho Lopes de Medeiros, Gladyston Rodrigues Carvalho, Adenilson Henrique Gonçalves, Pedro Victor Vicente Quinute Teixeira. Herbicides of biological origin: a review. The Journal of Horticultural Science and Biotechnology 2021, 96 (3) , 288-296. https://doi.org/10.1080/14620316.2020.1846465
    35. Lubna Azmi, Ila Shukla. Perspectives of phytotherapeutics: Diagnosis and cure. 2021, 225-250. https://doi.org/10.1016/B978-0-12-824109-7.00010-8
    36. Tatyana Shokol, Natalia Gorbulenko, Khilya Volodymyr. Synthesis of linear hetarenochromones based on 7-hydroxy-6-formyl(acetyl)chromones. French-Ukrainian Journal of Chemistry 2021, 9 (1) , 70-96. https://doi.org/10.17721/fujcV9I1P70-96
    37. T. E. Ali, M. A. Assiri, M. A. Ibrahim, I. S. Yahia. Nucleophilic Reactivity of a Novel 3-Chloro-3-(4,9-dimethoxy5-oxo-5H-furo[3,2-g]chromen-6-yl)prop-2-enal. Russian Journal of Organic Chemistry 2020, 56 (5) , 845-855. https://doi.org/10.1134/S1070428020050188
    38. Mirza Hasanuzzaman, Sayed Mohammad Mohsin, M.H.M. Borhannuddin Bhuyan, Tasnim Farha Bhuiyan, Taufika Islam Anee, Abdul Awal Chowdhury Masud, Kamrun Nahar. Phytotoxicity, environmental and health hazards of herbicides: challenges and ways forward. 2020, 55-99. https://doi.org/10.1016/B978-0-08-103017-2.00003-9
    39. Valeria E. Perotti, Alvaro S. Larran, Valeria E. Palmieri, Andrea K. Martinatto, Hugo R. Permingeat. Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Science 2020, 290 , 110255. https://doi.org/10.1016/j.plantsci.2019.110255
    40. Noha Khalil, Mokhtar Bishr, Samar Desouky, Osama Salama. Ammi Visnaga L., a Potential Medicinal Plant: A Review. Molecules 2020, 25 (2) , 301. https://doi.org/10.3390/molecules25020301
    41. Julien Zych, Mathieu Guerriaud, Yves Michiels. Amiodarone et dysthyroïdie. Actualités Pharmaceutiques 2019, 58 (591) , 46-48. https://doi.org/10.1016/j.actpha.2019.10.012
    42. Marwa M. Abu-Serie, Noha H. Habashy, Adham M. Maher. In vitro anti-nephrotoxic potential of Ammi visnaga, Petroselinum crispum, Hordeum vulgare, and Cymbopogon schoenanthus seed or leaf extracts by suppressing the necrotic mediators, oxidative stress and inflammation. BMC Complementary and Alternative Medicine 2019, 19 (1) https://doi.org/10.1186/s12906-019-2559-8
    43. Khaled M. M. Koriem, Mahmoud S. Arbid, Marwa A. El-Attar. Acute and subacute toxicity of Ammi visnaga on rats. Interdisciplinary Toxicology 2019, 12 (1) , 26-35. https://doi.org/10.2478/intox-2019-0004
    44. Sarah Osama, Moshera El Sherei, Dalia A. Al-Mahdy, Mokhtar Bishr, Osama Salama. Effect of Salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Industrial Crops and Products 2019, 134 , 1-10. https://doi.org/10.1016/j.indcrop.2019.03.035
    45. Izelmar Todero, Tássia C. Confortin, Luciana Luft, Thiarles Brun, Gustavo A. Ugalde, Thiago Castro de Almeida, Jonas A. Arnemann, Giovani L. Zabot, Marcio A. Mazutti. Formulation of a bioherbicide with metabolites from Phoma sp.. Scientia Horticulturae 2018, 241 , 285-292. https://doi.org/10.1016/j.scienta.2018.07.009
    46. Ramalingam Radhakrishnan, Abdulaziz A. Alqarawi, Elsayed Fathi Abd_Allah. Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety 2018, 158 , 131-138. https://doi.org/10.1016/j.ecoenv.2018.04.018
    47. Dandan Han, Lanying Wang, Yanping Luo. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth. Microbiological Research 2018, 208 , 1-11. https://doi.org/10.1016/j.micres.2018.01.003

    Journal of Agricultural and Food Chemistry

    Cite this: J. Agric. Food Chem. 2016, 64, 50, 9475–9487
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jafc.6b02462
    Published November 28, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1447

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.